
The PeregrineHigh-Performance RPC SystemDavid B. Johnson1Willy ZwaenepoelDepartment of Computer ScienceRice UniversityP.O. Box 1892Houston, Texas 77251-1892(713) 527-4834dbj@cs.cmu.edu, willy@cs.rice.edu

This work was supported in part by the National Science Foundation under Grants CDA-8619893 and CCR-9116343,and by the Texas Advanced Technology Program under Grant No. 003604014.1Author's current address: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891.



SummaryThe Peregrine RPC system provides performance very close to the optimum allowed by the hardwarelimits, while still supporting the complete RPC model. Implemented on an Ethernet network ofSun-3/60 workstations, a null RPC between two user-level threads executing on separate machinesrequires 573 microseconds. This time compares well with the fastest network RPC times reported inthe literature, ranging from about 1100 to 2600 microseconds, and is only 309 microseconds abovethe measured hardware latency for transmitting the call and result packets in our environment.For large multi-packet RPC calls, the Peregrine user-level data transfer rate reaches 8.9 megabitsper second, approaching the Ethernet's 10 megabit per second network transmission rate. Betweentwo user-level threads on the same machine, a null RPC requires 149 microseconds. This paperidenti�es some of the key performance optimizations used in Peregrine, and quantitatively assessestheir bene�ts.Keywords: Peregrine, remote procedure call, interprocess communication, performance,distributed systems, operating systems



1 IntroductionThe Peregrine remote procedure call (RPC) system is heavily optimized for providing high-performance interprocess communication, while still supporting the full generality and functionalityof the RPC model [3, 10], including arguments and result values of arbitrary data types. Thesemantics of the RPC model provides ample opportunities for optimizing the performance ofinterprocess communication, some of which are not available in message-passing systems that donot use RPC. This paper describes how Peregrine exploits these and other opportunities forperformance improvement, and presents Peregrine's implementation and measured performance.We concentrate primarily on optimizing the performance of network RPC, between two user-levelthreads executing on separate machines, but we also support e�cient local RPC, between twouser-level threads executing on the same machine. High-performance network RPC is importantfor shared servers and for parallel computations executing on networks of workstations.Peregrine provides RPC performance that is very close to the hardware latency. For networkRPCs, the hardware latency is the sum of the network penalty [6] for sending the call and the resultmessage over the network. The network penalty is the time required for transmitting a message of agiven size over the network from one machine to another, and is measured without operating systemoverhead or interrupt latency. The network penalty is greater than the network transmission timefor packets of the same size because the network penalty includes additional network, device, andprocessor latencies involved in sending and receiving packets. Latency for local RPCs is determinedby the processor and memory architecture, and includes the expense of the required local procedurecall, kernel trap handling, and context switching overhead [2].We have implemented Peregrine on a network of Sun-3/60 workstations, connected by a 10megabit per second Ethernet. These workstations each use a 20-megahertz Motorola MC68020processor and an AMD Am7990 LANCE Ethernet network controller. The implementation usesan RPC packet protocol similar to Cedar RPC [3], except that a blast protocol [20] is used formulti-packet messages. The RPC protocol is layered directly on top of the IP Internet datagramprotocol [13]. In this implementation, the measured latency for a null RPC with no arguments orreturn values between two user-level threads executing on separate Sun-3/60 workstations on the1



Ethernet is 573 microseconds. This time compares well with the fastest null network RPC timesreported in the literature, ranging from about 1100 to 2600 microseconds [3, 12, 8, 15, 17, 19], andis only 309 microseconds above the measured hardware latency de�ned by the network penalty forthe call and result packets in our environment. A null RPC with a single 1-kilobyte argumentrequires 1397 microseconds, showing an increase over the time for null RPC with no argumentsof just the network transmission time for the additional bytes of the call packet. This time is338 microseconds above the network penalty, and is equivalent to a user-level data transfer rateof 5.9 megabits per second. For large multi-packet RPC calls, the network user-level data transferrate reaches 8.9 megabits per second, achieving 89 percent of the hardware network bandwidthand 95 percent of the maximum achievable transmission bandwidth based on the network penalty.Between two user-level threads executing on the same machine, a null RPC with no arguments orreturn values requires 149 microseconds.In Section 2 of this paper, we present an overview of the Peregrine RPC system. Section 3discusses some of the key performance optimizations used in Peregrine. In Section 4, we describethe Peregrine implementation, including single-packet network RPCs, multi-packet network RPCs,and local RPCs. The measured performance of Peregrine RPC is presented in Section 5. InSection 6, we quantify the e�ectiveness of the optimizations mentioned in Section 3. Section 7compares our work to other RPC systems, and Section 8 presents our conclusions.2 Overview of the Peregrine RPC SystemThe Peregrine RPC system follows the conventional RPC model of servers exporting one or moreinterfaces, making a set of procedures available, and clients binding to an interface before performingcalls [3, 10]. Calls to these procedures appear to the client as a conventional procedure call andto the server as a conventional procedure invocation. In reality, the client invokes a client stubprocedure that packages the call arguments and the identi�cation of the procedure into a callmessage, which is then delivered to the server machine. Collecting the arguments into the messageis referred to as marshaling [10]. Once at the server machine, a server stub procedure unmarshalsthe arguments from the call message, invokes the appropriate procedure in the server, and on return2



from that procedure, marshals the return values into the result message, which is delivered to theclient machine. The client stub then unmarshals the return values from the result message andreturns to the client program. In Peregrine, it is the client stub's responsibility to convert the callarguments into the server's representation, and to convert the results back on return. All networkpackets and all processing at the server use only the server's data representation, thereby o�oadingany data representation conversion overhead from a server to its clients.RPC binding initializes data structures in the client and server kernels for use on each call andreturn, and returns a binding number to the client program. The binding number provides a formof capability, ensuring that no RPCs can be executed without �rst binding. In addition to thebinding number, a word of binding 
ags is returned, identifying the data representation used bythe server machine.No special programming is necessary in the client or server, and no compiler assistance isrequired. In performing an RPC, argument values are pushed onto the call stack by the clientas if calling the server routine directly. The binding number is stored by the client stub and isautomatically provided to the kernel on each call. Although this associates a single server bindingwith the procedure names provided by the interface's client stubs, the associated binding numbermay also be changed before each call by the client if desired. The binding 
ags word is also storedby the client stub and is used by the stub on each call.The client and server stubs are automatically generated from a description language similar toANSI C function prototypes. Procedure arguments may be of any data type. Individual argumentsmay be either immediate data values or pointers to data values. Pointer arguments may optionallybe declared in one of three ways, depending on whether the data value must be passed on the call,the return, or both [15]:� An in pointer argument describes a data value that must be passed on the call, but need notbe passed back on the return.� An out pointer argument describes a data value that must be passed on the return, but neednot be passed on the call. 3



� An in-out pointer argument describes a data value that must be passed on both call andreturn.If not speci�ed, a pointer argument is assumed to be in-out .3 Optimizing RPC PerformanceThis paper concentrates on the following key optimizations used in the Peregrine RPCimplementation:1. Arguments (results) are transmitted directly from the user address space of the client (server),avoiding any intermediate copies.2. No data representation conversion is done for argument and result types when the client andthe server use the same data representation.3. Both call and return packets are transmitted using preallocated and precomputed headertemplates, avoiding recomputation on each call.4. No thread-speci�c state is saved between calls in the server. In particular, the server thread'sstack is not saved, and there is no register saving when a call returns or register restoringwhen a new call is started.5. The arguments are mapped into the server's address space, rather than being copied.6. Multi-packet arguments are transmitted in such a way that no copying occurs in the criticalpath. Copying is either done in parallel with network transmission or is replaced by pageremapping.The �rst three optimizations can be used in any message-passing system, while the last threedepend on RPC semantics and could not be used in a (non-RPC) message passing system. Thesemantics of the RPC model requires only that the speci�ed procedure be executed in the server'saddress space [3, 10]. There is no requirement that the threads that execute these procedure callscontinue to exist after the call has returned. Although the server's state must be retained between4



separate calls to the same server, no thread-speci�c state such as register or stack contents of thesethreads need be retained. Furthermore, the arguments for a new incoming call can be located atany available address in the server's address space.4 ImplementationIn Peregrine, the kernel is responsible for getting RPC messages from one address space to another,including fragmentation and reassembly, retransmission, and duplicate detection for messages thatmust travel across the network. The kernel also starts a new thread in the server when a callmessage arrives, and unblocks the client thread when the return message arrives. All processingspeci�c to the particular server procedure being called is performed in the stubs, simplifying thekernel design.The current Peregrine implementation uses the thread and memory management facilities of theV-System [6], but is not speci�c to the V-System and does not use the V-System's message passingprimitives or protocols, with one exception. At bind time, Peregrine currently uses the V-System'sfacilities for connecting to a server. Additional traps were added to the kernel to support RPC calland return, and minor changes were made in several kernel routines, such as context switching andthe Ethernet device driver. Most of the code added to the kernel has been written in C. Less than100 assembly language instructions were added, consisting mainly of �rst-level trap and interrupthandling (before calling a C procedure) and context switching support.4.1 Hardware RequirementsThe Peregrine implementation utilizes the \gather" DMA capability of the Ethernet controller.Given a list of segments, each speci�ed by a start address and a length, the Ethernet controllercan transmit a single packet consisting of the combined data from those segments. The gathercapability avoids copying noncontiguous segments of a call or result packet into a contiguous bu�erbefore transmission. The ability to perform gather DMA is a common feature of many modernnetwork interfaces and is not unique to the Sun architecture or the LANCE Ethernet controller.5



We also rely on the ability to remap memory pages between address spaces by manipulatingthe page table entries. We place no restrictions on the relationship between the relative sizes ofmemory pages and network packets. In the Sun-3/60 architecture, remapping pages requires onlythe modi�cation of the corresponding page table entries. However, many other architectures alsorequire that the translation-lookaside bu�er (TLB) entries for the remapped pages in the MMU bemodi�ed. Page remapping can still be performed e�ciently in such systems with modern MMUdesigns. For example, the new Sun Microsystems SPARC reference MMU [14, 18] uses a TLB butallows individual TLB entries to be 
ushed by virtual address, saving the expense of reloadingthe entire TLB after a global 
ush. Similarly, the MIPS MMU [9] allows the operating system toindividually modify any speci�ed TLB entry.4.2 The Packet HeaderThe Peregrine RPC protocol is layered directly on top of the Internet IP protocol [13], which in ourcurrent implementation is layered directly on top of Ethernet packets. Figure 1 shows the IP andPeregrine RPC packet headers. In the RPC header, the packet type is either \call" or \return." The
Procedure number

Call sequence number

IP header checksum

Packet sequence number

RPC packet data length

IP total length

RPC total message length

IP identification

Version IHL Type of service

Flags Fragment offset

Time to live IP protocol

Source IP address

Destination IP address

RPC packet type

Client identifier

Server identifierFigure 1 IP and Peregrine RPC packet headers6



call sequence number identi�es separate RPCs from the same client, whereas the packet sequencenumber identi�es each packet of a particular call or result message. For single-packet argumentor result messages, the packet sequence number is always 0. The procedure number identi�es theparticular procedure to call in the server's address space, and is used only for call packets. Thelength of the data present in this packet is speci�ed in the RPC packet data length �eld, and thetotal length of all data being sent with this RPC call or return is speci�ed in the RPC total messagelength �eld.The headers of the call packets sent from one client to a particular server change little fromone packet to the next. Likewise, the headers of the result packets sent by that server back to thesame client change little between packets. Many of the �elds of the Ethernet header, the IP header,and the RPC header can be determined in advance and reused on each packet transmission. Atbind time, a packet header template is allocated and the constant �elds are initialized; only theremaining �elds are modi�ed in sending each packet. In particular, the entire Ethernet headerremains constant for the duration of the binding. In the IP and RPC headers, only the heavilyshaded �elds indicated in Figure 1 are changed between packets. The lightly shaded �elds changebetween calls, but not between individual packets of the same call. Furthermore, since most of theIP header remains the same between calls, most of the header can be checksummed at bind time,requiring only the few modi�ed �elds to be added to the checksum on each packet transmission.4.3 Client and Server StubsThe client stub consists mainly of a kernel trap to transmit the call message, followed by a subroutinereturn instruction. The server stub consists mainly of a subroutine call to the speci�ed procedure,followed by a kernel trap to transmit the result message. This trap in the server stub does notreturn. Since a new server thread is created to handle each call, this trap instead terminates thethread and prepares it for reuse on the next call.For each area of memory that must be transmitted with a call or result message, the stub buildsa bu�er descriptor containing the address and the length of that area. The client stub builds adescriptor for the stack argument list and for the area of memory pointed to by each pointer7



argument. The length of this area must be available to the stub. Usually, this length is also anargument to the procedure, but it may need to be computed by the stub. Each bu�er descriptoris tagged to indicate to the kernel whether that bu�er is in, out , or in-out . The client stub buildsdescriptors for all pointer arguments, but the server stub builds a descriptor only for the out andin-out pointer arguments. These descriptors built by the server stub are not tagged since they areall treated as out by the kernel in sending the result message.At binding time, the binding 
ags word is set to indicate any data representation conversionnecessary for communication between this particular client and server. If both client and server usethe same data representation, no 
ags are set and all data representation conversion is bypassed.If representation conversion is necessary, the client stub creates new bu�ers on its stack to hold thedata values in the server's representation. For example, the client stub may need to byte-reverseintegers or convert 
oating point data formats for arguments being passed on the call. These stackbu�ers are deallocated automatically with the rest of the stack frame when the client stub returns,simplifying the client stub and avoiding the overhead of allocating these bu�ers on the heap. Forthe stack argument list itself, as a special case, any data representation conversion is performed\in place" if the client and server representations are the same size, replacing the old values withthe same values in the server's representation. This special case is possible since, by the compiler'sprocedure calling convention, the stack arguments are scratch variables to the client stub and areautomatically deallocated from the stack upon return.4.4 Single-Packet Network RPC4.4.1 Sending the Call PacketWhen a process performs an RPC, the arguments are pushed onto the process's stack and aprocedure call to the client stub is performed as if calling the server procedure directly. The clientstub builds the bu�er descriptors on the stack as described in Section 4.3, pushes the procedurenumber and the binding number onto the stack, and traps into the kernel. The stack contentsat the time of the trap are illustrated in Figure 2. The kernel directs the Ethernet interface totransmit the packet using gather DMA from the packet header template corresponding to the8



Previous stack frames
. . .

Third argument
Second argument

. . .

First argument

Procedure call return address

. . .
Buffer descriptors

Procedure number

Binding number
top of
stack Figure 2 Client stack on entry to the kernelgiven binding number and from the bu�ers indicated by the in and in-out descriptors. On theSun architecture, however, I/O using DMA can proceed only to or from virtual addresses in kernelmemory. Therefore, for each bu�er other than the packet header template (which already residesin kernel memory), the corresponding memory pages are �rst double-mapped into kernel spacebefore instructing the Ethernet interface to transmit the packet. The arguments are copy-on-writeprotected so that they are available for possible retransmission.4.4.2 Receiving the Call PacketThe arguments for the call are received as part of the packet into a bu�er in the kernel, but beforecalling the requested procedure in the server, the arguments must be placed on the top of the serverthread's stack. To avoid copying them onto the stack, we arrange instead to use the packet bu�eritself as the server thread's stack. At initialization time, the Ethernet interface is con�gured witha number of packet bu�ers, each with size equal to the maximum Ethernet packet size, such thateach bu�er is at the high-address end of a separate virtual memory page. The layout of the callpacket in this page after receipt is shown in Figure 3.9



Third argument
Second argument

. . .

First argument

. . .
in and in-out buffers

RPC header

IP header

Ethernet header

High-address end of page
(empty for packets of maximum size)

Low-address end of page
(available for server thread stack growth)

. . .Figure 3 Received call packet in one of the server's Ethernet receive bu�er pages
10



On arrival of a packet, the Ethernet interrupt routine examines the packet. The IP headerchecksum is veri�ed, and if the packet is an RPC call packet, control is passed to the RPCpacket handler. Duplicate detection is done using the RPC call and packet sequence numbers.A preallocated server thread is then reinitialized to execute this call, or if no free threads areavailable in the pool, a new thread is created. The receive packet bu�er page is remapped into theserver's address space at the location for the thread's stack, and an unused page is remapped tothe original virtual address of the packet bu�er to replace it for future packets. The thread beginsexecution at the server's RPC dispatch procedure that was registered when the server exported theRPC interface.The arguments and procedure number from the remapped packet bu�er are on the top of thethread's stack. The server dispatch procedure uses the procedure number to index into a table ofprocedure-speci�c stub addresses. It then pops all but the call arguments o� its stack and jumps tothe corresponding stub address from the table. If there are no pointer arguments, the correspondinguser procedure in the server is immediately called by the stub. If there are pointer arguments, eachmust �rst be replaced with a pointer to the corresponding bu�er in the server's address space. Forin and in-out pointers, the address of the bu�er that arrived with the packet, which is now on theserver stack, is used. For out pointers, no bu�er was sent in the packet, and a new bu�er is createdinstead. The stub then calls the corresponding user procedure in the server.4.4.3 Sending the Result PacketWhen the server procedure returns to the stub, the stub builds any necessary bu�er descriptors forout or in-out pointer arguments, as described in Section 4.3, and then traps into the kernel with thefunctional return value of the procedure in a register following the MC680x0 compiler convention.The result packet is then transmitted using the Ethernet interface gather DMA capability, in thesame way as for the call packet (Section 4.4.1). Any result bu�ers are copy-on-write protected inthe server's address space, to be available for possible retransmission. When the results are receivedby the client, an acknowledgement is returned and the result bu�ers are unprotected. As with theCedar RPC protocol [3], the transmission of a new RPC by the same client to this server shortly11



after this reply also serves as an implicit acknowledgement. The server thread does not return fromthis kernel trap, and thus when entering the kernel on this trap, and later when leaving the kernelto begin a new RPC, the thread's registers need not be saved or restored.4.4.4 Receiving the Result PacketWhen the result packet is received by the client kernel, the copy-on-write protection is removedfrom the arguments. The functional return value is copied into the client thread's saved registers.Any data in the packet being returned for out or in-out bu�ers are copied by the kernel to theappropriate addresses in the client's address space, as indicated by the bu�er descriptors built bythe client stub before the call. The client thread is then unblocked and resumes execution in theclient stub immediately after the kernel trap from the call.The copy of the return bu�ers into the client's address space could be avoided by insteadremapping the packet bu�er there, but this would require a modi�cation to conventional RPCsemantics. Pointers to out or in-out bu�ers would need to be passed by the user instead as apointer to a pointer to the bu�er rather than directly as a single pointer, and the client stub wouldthen overwrite the second pointer (pointing to the bu�er) with the address of the bu�er in theremapped packet, e�ectively returning the bu�er without copying its data. The client would thenbe responsible for later deallocating memory used by the return packet bu�er. This semantics is usedby the Sun RPC implementation [17] to avoid the expense of copying. We have not implementedthis mechanism in Peregrine because we want to preserve conventional RPC semantics.4.5 Multi-Packet Network RPCFor a network RPC in which the message containing the argument or result values is larger thanthe data portion of a single Ethernet RPC packet, the message is broken into multiple packetsfor transmission over the network. These packets are sent using a blast protocol [20] to reducelatency by eliminating per-packet acknowledgements. Selective retransmission is used to avoidretransmission of the entire message. As in the single-packet case, the data are transmitted directlyfrom the client's address space using gather DMA to avoid copying. Once the arguments (results)12



have been transmitted and assembled at the server (client) machine, the execution of a multi-packetnetwork RPC is the same as for the single-packet case described in Section 4.4.The call message is composed with the argument list and bu�ers in the same order as fora single-packet call, which is then transmitted in a sequence of packets each of maximum size.However, the packet that would conventionally be sent �rst (containing, at least, the beginning ofthe argument list) is instead sent last. That is, the �rst data packet transmitted starts at an o�setinto the call message equal to the maximum data size of a packet. Following this, the remainder ofthe packets are sent in their conventional order, followed �nally by what would otherwise have beenthe �rst packet. For example, Figure 4 illustrates the transmission of a call message composed offour packets. The packets are transmitted in the order 1, 2, 3, 0: packet 0 contains the beginningof the argument list, and packet 3 contains the end of the last in or in-out bu�er.On receipt at the server machine, the packets are reassembled into the call message in a singlecontiguous bu�er. For all but the last packet received (the packet containing the beginning of the
sent Data 0

Header 0

Data 3

Header 3

Data 2

Header 2

Data 1

Header 1

Data 3

Data 2

Data 1

Data 0

Header 0

into buffer

Packets 1-3
data are copied

at server

Packet 0 buffer
is remapped

at server

last

sent
first

page
boundary

Figure 4 Example multi-packet call transmission and reception13



argument list), the packet data are copied into the contiguous bu�er, as illustrated in Figure 4. Thisbu�er begins with the space for the data of packet 1 and is located on a page-aligned address. Foreach packet copied, the copying overhead occurs in parallel with the transmission of the followingpacket of the call. In Figure 4, the copying of the data from packet 1 at the server occurs inparallel with the transmission of packet 2 by the client, and so forth. When the last packet arrives(packet 0), it is instead remapped into the page located immediately before the assembled argumentbu�er (now containing the data of packets 1 through 3). As described in Section 4.4.2, the Ethernetreceive bu�ers are each located at the high-address end of a separate virtual memory page. Thus,by remapping this last packet to a page immediately before the bu�er containing the copied datafrom the other packets of the call, a contiguous argument bu�er is assembled without copying thedata of this �nal packet. Since this is the last packet transmitted for this call, the copying ofthis packet's data could not be done in parallel with the transmission of another packet of thecall. By remapping this packet instead of copying its data, we avoid this overhead. Since there isunused space below the Ethernet receive bu�er in each page, only the �rst packet of the original callmessage can be remapped in this way to assemble a contiguous bu�er containing the arguments,therefore necessitating the transmission of the \�rst" packet last.If the result message requires multiple packets, it is likewise sent as a sequence of packets usinga blast protocol. As described in Section 4.4.4, however, the result data arriving at the clientare always copied into the bu�ers described by the out and in-out descriptors built by the clientstub, and no remapping is used. Thus, the packets of the result message are simply sent in theirconventional order rather than the order used in transmitting a multi-packet call message. Oncethe complete result message has arrived, the client thread is restarted as in the single-packet case.4.6 Local RPCBetween two threads executing on the same machine, Peregrine uses memory mapping to e�cientlymove the call arguments and results between the client's and server's address spaces. The techniqueused is similar to our remapping of the Ethernet packet receive bu�er to form the server thread'sstack for network RPCs. The execution of the call in the client and server stubs is the same as14



for network RPC. The client stub builds the bu�er descriptors and traps into the kernel. Oncein the kernel, if the server is local, the arguments are copied from the memory areas indicatedby the in and in-out bu�er descriptors into a page-aligned bu�er in the client's address space,and this bu�er is then remapped from the client's address space into the server's address spaceto become the stack for the server thread's execution of the call. A new thread from the pool ofpreallocated server threads created at bind time is reinitialized for this call, and begins executionin the server dispatch procedure. On return from the call, the stack bu�er is remapped back intothe client thread's address space, and the kernel then copies any out or in-out arguments to theircorrect locations in the client's address space. By remapping the bu�er between address spaces, thearguments are never accessible in both the client and server address spaces at the same time. Thisprevents other threads in the client's address space from potentially modifying the arguments inthe server during the call. Although this implementation of local RPC is similar to that used in theLRPC system [2], Peregrine di�ers signi�cantly in several areas, as will be discussed in Section 7.Copying the arguments before remapping them into the server's address space is necessary inorder to preserve RPC semantics for arguments that do not �ll an entire page. Without this copy,we would need to remap all pages of the client's address space that contained any portion of theargument list or data values described by pointer arguments. Since there may also be other datavalues in these same pages, this remapping would allow the server access to these values, allowingthem to be read or modi�ed and perhaps violating the correctness or security requirements of theclient. Also, since the remapped pages are not accessible in the client's address space during theexecution of the call by the server, other threads in the client's address space would not have accessto these pages and could be forced to wait until the call completed before continuing their ownexecution. The copying is performed in the kernel rather than in the client stub in order to use thesame stubs for both local and network RPC.5 PerformanceAll performance measurements presented in this paper were obtained using diskless Sun-3/60workstations connected by a 10 megabit per second Ethernet network. The network was otherwise15



idle during the measurements. For each individual measurement, the total elapsed time for a trialof 10,000 iterations (or 100,000 iterations for some measurements) was measured and divided bythe number of iterations. Among individual trials for the same measurement, the results varied byless than 1 percent. For each measurement, the performance �gures presented have been averagedover several individual trials.5.1 The Network PenaltyThe network penalty [6] is the minimum time required to transfer a given number of bytes overthe network from one machine to another on an idle network. It is a function of the processor, thenetwork, the network interface, and the number of bytes transferred. The network penalty does notinclude protocol overhead, context switching, or interrupt processing costs. It represents the cost oftransferring the data in one direction only. Any acknowledgements required by particular higher-level protocols would incur a separate network penalty. Table 1 shows the measured network penaltyfor single-packet transfers, for various packet sizes ranging from the minimum to the maximumEthernet packet size. Also shown in Table 1 are the network transmission times for the same packetsizes, computed at the Ethernet transmission rate of 10 megabits per second, and the di�erencebetween the transmission time and the network penalty. This di�erence is due to a number offactors, including additional network and device latencies and processor cost. The network latencystems from the transmission of synch and preamble bits, and from the delay in listening for thecarrier. The device latency results from checking the LANCE Ethernet interface's bu�er descriptorrings, used for communication between the CPU and the interface, at both the sender and thereceiver. Additional latency occurs as a result of �lling the DMA FIFO on the sender, and 
ushingthe end of the packet to memory on the receiver. The interface furthermore checks the CRC ofeach incoming packet, and sets a number of bits in the device register. Similarly, on transmissionthe CPU sets a number of bits in the device register to direct the interface to send a packet.For data transfers larger than the maximum Ethernet packet data size, the network penaltymeasures the cost of streaming the required number of packets over the network. The packetsare sent as quickly as possible, with no delay between packets and no protocol acknowledgements.16



Data Size Transmission Time � Network Penalty Overhead(bytes) (microseconds) (microseconds) (microseconds)46 51.2 132 80.8100 94.4 173 78.6200 174.4 255 80.6400 334.4 417 82.6800 654.4 743 88.61024 833.6 927 93.41500 1214.4 1314 99.6�The transmission time includes 18 additional bytes in each packet consisting of theEthernet destination address, source address, packet type, and CRC.Table 1 Network penalty for various packet sizesTable 2 shows the measured network penalty for multi-packet data transfers, for various multiplesof the maximum Ethernet packet data size. The transmission data rate achieved is also shown.In addition to the reasons mentioned previously for the di�erence between network penalty andnetwork transmission time for single-packet transfers, the interpacket gap required by the LANCEEthernet controller for sending back-to-back transmissions prevents full utilization of the 10 megabitper second bandwidth of the Ethernet [4].Data Size Number of Network Penalty Data Rate(bytes) Packets (milliseconds) (Mbits/second)1500 1 1.31 9.163000 2 2.58 9.306000 4 5.13 9.3612000 8 10.21 9.4024000 16 20.40 9.4148000 32 40.83 9.4096000 64 81.59 9.41Table 2 Network penalty for multi-packet data transfers17



5.2 Single-Packet Network RPCThe performance of the Peregrine RPC system for single-packet RPCs is close to the networkpenalty times given in Table 1. Table 3 summarizes our measured RPC performance. The networkpenalty shown represents the cost of sending the call and result packets over the network. Thedi�erence for each case between the measured RPC time and the corresponding network penaltytimes indicates the overhead added by Peregrine.To determine the sources of this overhead, we also separately measured the execution timesfor various components of a null RPC. In this cost breakdown, each component was executed100,000 times in a loop, and the results averaged. In a few cases, such as in measuring the executiontime of the Ethernet interrupt routine, small changes were made to the timed version of the codein order to be able to execute it in a loop, but all such changes closely preserved the individualinstruction execution times. These results are shown in Table 4. The components are dividedbetween those that occur in the client before transmitting the call packet, those in the serverbetween receiving the call packet and transmitting the result packet, and those in the client afterreceiving the result packet. A number of operations necessary as part of a network RPC do notappear in Table 4 because they occur in parallel with other operations. On the client's machine,these operations include putting the call packet on the retransmission queue, handling the Ethernettransmit interrupt for the call packet, blocking the calling thread, and the context switch to thenext thread to run while waiting for the RPC results. On the server's machine, the operations thatoccur in parallel with other components of the RPC cost breakdown include handling the Ethernettransmit interrupt for the result packet, and the context switch to the next thread.Procedure Network Penalty Measured RPC OverheadNull RPC 264 573 3094-byte int argument RPC 267 583 3161024-byte in RPC 1059 1397 3381024-byte in-out RPC 1854 2331 477Table 3 Peregrine RPC performance for single-packet network RPCs (microseconds)18



Component TimeProcedure call to client stub and matching return 2Client stub 5Client kernel trap and context switch on return 37Client Ethernet and RPC header completion 2Client IP header completion and checksum 5Client sending call packet 41Network penalty for call packet 132Server Ethernet receive interrupt handling 43Server Ethernet and RPC header veri�cation 2Server IP header veri�cation and checksum 7Duplicate packet detection 5Page remapping of receive bu�er to be server stack 4Other server handling of call packet 8Server context switch and kernel trap on return 26Server stub 4Server Ethernet and RPC header completion 2Server IP header completion and checksum 5Server sending result packet 25Network penalty for result packet 132Client Ethernet receive interrupt handling 43Client Ethernet and RPC header veri�cation 2Client IP header veri�cation and checksum 7Client handling of result packet 5Total measured cost breakdown 544Measured cost of complete null RPC 573Table 4 Measured breakdown of costs for a null network RPC (microseconds)The cost of sending the call packet is more expensive than the cost of sending the result packetbecause the binding number must be checked and the corresponding binding data structures foundwithin the kernel. Directing the Ethernet interface to transmit the call packet is also more expensivethan for the result packet due to the provision for sending the packets of a multi-packet call messagein a di�erent order, as described in Section 4.5. Although this feature is not used on a null RPC,its presence does a�ect the null call's overhead.The use of the IP Internet Protocol [13] in the Peregrine implementation adds a total of only24 microseconds to the overhead on each null RPC. Large calls experience a further overhead19



of 16 microseconds in transmission time on the Ethernet for each IP header (at 10 megabits persecond), but this overhead does not a�ect the null RPC time since its packet size is still less than theminimum allowed Ethernet packet size. Although the use of IP is not strictly necessary on a singlelocal area network, it allows Peregrine packets to be forwarded through IP gateways, justifying itsmodest cost.5.3 Multi-Packet Network RPCTable 5 shows the performance of Peregrine RPC for various RPCs with large, multi-packet call orresult messages. The throughput indicates the speed at which the argument and result values aretransmitted, and does not include the size of the Ethernet, IP, or RPC packet headers. Like thesingle-packet network RPC performance, the performance of multi-packet network RPC is close tothe network penalty for sending the call and return messages. Peregrine achieves a throughput ofup to 8.9 megabits per second, coming within 89 percent of the network bandwidth and within95 percent of the maximum bandwidth as limited by the network penalty.5.4 Local RPCUnlike network RPC performance, the performance of local RPC is determined primarily byprocessor overheads [2]. In particular, the minimum cost of a local null RPC is the sum of the costsof a procedure call from the client user program to the client stub, a kernel trap and a contextswitch on the call, and a kernel trap and a context switch on the return. In order to prevent theserver from accessing other memory in the client and to prevent other threads in the client fromProcedure Network Penalty Latency Throughput(bytes) (milliseconds) (milliseconds) (Mbits/second)3000-byte in RPC 2.71 3.20 7.503000-byte in-out RPC 5.16 6.04 7.9548000-byte in RPC 40.96 43.33 8.8648000-byte in-out RPC 81.66 86.29 8.90Table 5 Peregrine RPC performance for multi-packet network RPCs20



modifying the arguments during the server's execution of the call, at least one memory-to-memorycopy of the arguments is also required. The kernel trap and address space switch costs dependheavily on the processor architecture and operating system design [1]. The �gures reported forthese operations in Table 4 apply to the local RPC case as well, making the minimum null localRPC cost in our environment 65 microseconds.Table 6 summarizes the measured performance of local RPC in the Peregrine implementation.Relative to the minimum null RPC cost, this measured performance shows an implementationoverhead of 84 microseconds for a local null call. This overhead includes the costs of executing theclient and server stubs, validating the binding number in the kernel, reinitializing a server threadto execute the call, remapping the argument bu�er from the client address space into the stack forthe new server thread, and remapping the bu�er back to the client on return.6 E�ectiveness of the OptimizationsIn this section, we revisit the six optimizations listed in Section 3 and discuss their e�ectiveness inthe Peregrine RPC implementation:1. Arguments (results) are transmitted directly from the user address space of the client (server),avoiding any intermediate copies.To determine the e�ectiveness of this optimization, we measured the cost of performingmemory-to-memory copies using the standard copying routine available in our C runtimelibrary. For small copies, the library routine is ine�cient, requiring 12 microseconds tocopy only 4 bytes (and 9 microseconds to copy 0 bytes), due to a high startup overhead forProcedure TimeNull RPC 1494-byte int argument RPC 1501024-byte in RPC 3101024-byte in-out RPC 468Table 6 Performance of local Peregrine RPC (microseconds)21



determining di�erent special cases for loop unrolling during the copy. To copy 1024 bytes, thelibrary routine requires 159 microseconds, and to copy the user-level data of a maximum-sizedEthernet packet requires 209 microseconds. In contrast, using gather DMA to transmit thepacket without memory-to-memory copies avoids these costs entirely, but adds 3 microsecondsper page for the copy-on-write protection, plus between 3 and 7 microseconds per packet forsetting up the Ethernet interface to transmit each separate area of memory to be sent aspart of the packet. We conclude that even for the smallest argument and return value sizes,transmission from the user address space results in a performance gain.2. No data representation conversion is done for argument and result types when the client andthe server use the same data representation.RPC systems, such as SunRPC [17], that use a single \external representation" for datatypes must convert all arguments and result values to this standard representation, even ifthe client and server machines both use the same native representation that happens to di�erfrom the standard RPC external representation. The savings achieved by not performing thisconversion when the client and server machines use the same native representation dependon the size and type of argument and result values. As an example of these savings in ourhardware environment, the time required to byte-swap a single 4-byte integer using the routineavailable in our C runtime library is 13 microseconds, and the time required to byte-swap anarray of 256 integers (1024 bytes) is 1076 microseconds.3. Both call and return packets are transmitted using preallocated and precomputed headertemplates, avoiding recomputation on each call.As shown in Table 4, the cost of transmitting the call packet is 48 microseconds, includingthe time to complete the IP and RPC headers. The corresponding cost of transmitting theresult packet is 32 microseconds. To evaluate the e�ectiveness of using the header templates,we measured these same components in a modi�ed version of the implementation that didnot use this optimization. Based on these measurements, the packet header templates22



save 25 microseconds per packet, or 50 microseconds total for a null RPC. Of these 25microseconds per packet, 7 microseconds are spent building the Ethernet and RPC headers,and 18 microseconds for the IP header and IP checksum.4. No thread-speci�c state is saved between calls in the server. In particular, the thread's stackis not saved, and there is no register saving when a call returns or register restoring when anew call is is started.In our implementation, this optimization saves 11 microseconds per RPC, as shown by thedi�ering kernel trap and context switch overhead of the client and the server threads inTable 4. The savings from this optimization occur entirely at the server, since the contextswitch for the client thread while waiting for the RPC results to be returned must be acomplete context switch, saving and restoring all registers. On processors with larger numbersof registers that must be saved and restored on a context switch and a kernel trap, suchas the SPARC processor's register windows [18], this optimization will increase further insigni�cance [1].5. The arguments are mapped into the server's address space, rather than being copied.The cost of performing memory-to-memory copies was reported above. From Table 4, thecost of remapping the Ethernet receive bu�er in the server to become the new server thread'sstack is 4 microseconds. Thus, even for a null RPC, remapping the stack saves 5 microsecondsover the cost of calling the library's memory copying routine. Similarly, for a 4-byte intargument RPC, 8 microseconds is saved by remapping rather than copying the arguments.Since the cost of remapping the bu�er is independent of the size of the argument list (up tothe maximum packet size), the savings by remapping rather than copying increase quicklywith the argument list size. For example, the performance gain achieved by remapping thearguments into the server's address space for a 1024-byte in RPC is 155 microseconds, andfor a maximum-sized single packet RPC, 205 microseconds.23



6. Multi-packet arguments are transmitted in such a way that no copying occurs in the criticalpath. Copying is either done in parallel with network transmission or is replaced by pageremapping.For all but the last packet transmitted, the copying occurs in parallel with thetransmission of the following packet on the network. Copying the data of a full packetrequires 209 microseconds, whereas the network transmission time for a full packet is1214 microseconds. Thus, this copying requires only about 16 percent of the minimum timebetween packets. The overhead of copying the data of the last packet of a multi-packet callmessage is also eliminated by remapping the packet into the server's address space, saving anadditional 209 microseconds.7 Comparison to Other SystemsComparison of RPC systems is di�cult because di�erences in hardware and software platformspresent implementors with di�erent design tradeo�s. All RPC systems, however, face a similar set ofchallenges in achieving good performance. First among these challenges is avoiding expensive copiesboth in the client and the server. Expensive data representation conversions and recomputation ofheaders must also be avoided to the extent possible. Reducing overhead for thread management inthe server is another important concern. We summarize here the approaches used by a number ofsystems for which good performance has been reported in the literature [2, 5, 12, 8, 15, 19].Some of the optimizations incorporated in Peregrine are similar to optimizations used by theLRPC system [2]. However, LRPC supports only local RPC, between two threads executing onthe same machine, whereas we have concentrated primarily on network RPC support, betweentwo threads executing on separate machines over the network. LRPC preallocates and initializescontrol and data structures at bind time to reduce later per-call latency. This preallocation isroughly similar to our preallocation of packet header templates at bind time. Also, like Peregrine,LRPC does not retain server thread-speci�c state between calls, although LRPC takes advantageof this in a di�erent way than does Peregrine. LRPC uses the client thread directly in the server's24



address space to execute the call, avoiding some context switching overhead. The Peregrine localRPC implementation di�ers speci�cally from LRPC in two additional areas. First, LRPC wasimplemented only on VAX processors, which provide a separate argument pointer register in thehardware and procedure calling convention. By using the argument bu�er as the stack for the newserver thread, we avoid the need for a dedicated argument pointer register. Also, unlike LRPC, theargument bu�er in Peregrine is never accessible in both the client and server address spaces at thesame time, avoiding the problem of allowing other threads in the client to modify the argumentsduring the call.The V-System kernel is a message-passing system [5]. As a result, the optimizations speci�cto RPC are not available to the V kernel. Gather DMA for packet header and data is used insome implementations. The arguments are copied into the server's address space. For multi-packetarguments, the copy is done on-the-
y as each packet arrives, such that only the last packet addsto the latency. The optimistic blast protocol implementation [4] attempts to avoid these copiesby predicting that the next packet to arrive during a blast is indeed the next packet in the blastprotocol transfer. Packet headers are derived from a header template.In Sprite [12], RPC is used for kernel-to-kernel communication, thereby avoiding concernsrelating to copies between user and kernel space. Sprite makes limited use of gather DMA fortransmitting the arguments and return values. The gather capability of the network interface isused to transmit packets consisting of a header and a data segment, usually a �le block, whichneed not be contiguous. The data of multi-packet arguments or return values are copied on-the-
y,as in the V kernel. The data segment consists of bytes, while the header is made up of \words."The header contains a tag, indicating to the receiver whether data conversion is necessary. Headertemplates are used to avoid recomputation. A pool of kernel daemon threads handles incomingcalls; the stack and the registers of these threads are saved and restored.The x-kernel is a testbed for modular yet e�cient implementation of protocols [7]. The x-kernel's RPC implementation is composed of a number of \smaller" protocols [8]. Arguments to anRPC call are put into a single contiguous bu�er by the client stub. Small arguments are copied intothe server's address space, while a transparent optimistic blast protocol implementation attempts25



to avoid copies for large arguments [11]. Data is transmitted in the native format of the sender,with a 
ag indicating the sender's architecture. The receiver checks this 
ag, and performs thenecessary conversion, if any. Each of the component protocols use a template for its protocolheader, which is then copied into a header bu�er. RPCs are executed by a server thread selectedfrom a pre-allocated pool of threads. The thread persists across invocations; its registers and stackare saved and restored.The Fire
y RPC system [15] was implemented on a small shared-memory multiprocessor.Copies are avoided in a variety of ways. Arguments are put into a single bu�er in user space, andtransmitted from there using DMA. On the server side, a collection of packet bu�ers is staticallymapped into all address spaces, and thus available to the server without further copies. Headertemplates are built at bind time, but the UDP checksum is completely recomputed for every packet.A pool of server threads accepts incoming calls; the threads maintain their user stack and registersbetween calls, but the kernel stack is discarded. The data representation can be negotiated at bindtime.Amoeba is a message-passing kernel [19]. RPC is built on top of the kernel's synchronousmessage-passing primitives by stubs that can be generated automatically or by hand. As withthe V kernel, the optimizations speci�c to RPC are not available to the Amoeba kernel. Beforetransmission by the kernel, the stub copies all argument or result values into a single contiguousbu�er. Amoeba does not enforce any data representation conversion of these bu�ers; any neededconversion is left to the stub writer. Within the kernel, Amoeba completely rebuilds the packetheader for each transmission, without the use of header templates.SunRPC is implemented with a collection of library routines on top of the Unix kernel [17],and thus the optimizations speci�c to RPC are not available to SunRPC. The stubs copy allarguments or result values into a single contiguous bu�er, converting them to a standard datarepresentation [16], before requesting the kernel to transmit them as a message. As a specialcase in some implementations, if the client or server transmitting an RPC message uses the samenative representation as the network standard representation for some data types, representation26



conversion is bypassed for those values. Some versions of the Unix kernel use header templates fortransmitting consecutive network packets on the same connection.In terms of performance comparison for RPC and message-passing systems, two metrics seem tobe common: the latency of a null RPC (or message) and the maximum data throughput provided bya series of RPCs with large arguments (or a series of large messages). Table 7 shows the publishedperformance �gures for network communication in a number of RPC systems and message-passingoperating systems. The machine name and type of processor used for each system are shown, alongwith an estimate of the CPU speed of each in MIPS [15]. Except where noted, all performance�gures in Table 7 were measured between two user-level threads executing on separate machines,connected by a 10 megabit per second Ethernet.8 ConclusionWe have described the implementation and performance of the Peregrine RPC system. Peregrinesupports the full generality and functionality of the RPC model. It provides RPC performancethat is very close to the hardware latency, both for network RPCs, between two user-level threadsSystem Machine Processor MIPS Latency Throughput(microsec.) (Mbits/sec.)Cedar [3]� Dorado Custom 4 1097 2.0Amoeba [19] Sun-3/60 MC68020 3 1100 6.4x-kernel [8] Sun-3/75 MC68020 2 1730 7.1V-System [5] Sun-3/75 MC68020 2 2540 4.4Fire
y [15] 5-CPU Fire
y MicroVax II 5 2660 4.6Sprite [12]y Sun-3/75 MC68020 2 2800 5.7Fire
y [15] 1-CPU Fire
y MicroVax II 1 4800 2.5SunRPC [17]z Sun-3/60 MC68020 3 6700 2.7Peregrine Sun-3/60 MC68020 3 573 8.9�Measured on a 3 megabit per second Ethernet.yMeasured kernel-to-kernel, rather than between two user-level threads.zMeasurements reported by Tanenbaum et al. [19].Table 7 Performance comparison of network RPC and message-passing systems27



executing on separate machines, and for local RPCs, between two user-level threads executingon the same machine. Peregrine has been implemented on a network of Sun-3/60 workstations,connected by a 10 megabit per second Ethernet. In the Peregrine system, the measured latencyfor a null RPC over the network is 573 microseconds, which is only 309 microseconds above thehardware latency for transmitting the required packets. For large multi-packet RPC calls, thenetwork user-level data transfer rate reaches 8.9 megabits per second, over the 10 megabit persecond Ethernet. Between two user-level threads on the same machine, the measured latency for anull RPC is 149 microseconds.We have described the bene�ts of various optimizations that we used in the implementationof Peregrine. In particular, we avoid copies by transmitting arguments and return values directlyfrom user space, and by mapping the arguments into the server's address space. We have foundthese optimizations to be bene�cial even for the smallest argument and return value sizes. Furthersavings were obtained by using header templates and avoiding recomputation of the header oneach call, by avoiding data representation conversions for communication between machines withidentical native data representations, and by reducing thread management overhead on the server.AcknowledgementsMike Burrows, Fred Douglis, Frans Kaashoek, Sean O'Malley, John Ousterhout, Larry Peterson,Mike Schroeder, and Brent Welch provided insights into the design of the RPC systems in whichthey participated. We thank them for their help, and we hope that we have represented theirsystems accurately in our comparisons with their work. We also wish to thank John Carter, AlanCox, Mootaz Elnozahy, Pete Keleher, and the referees for their comments on the paper.References[1] T.E. Anderson, H.M. Levy, B.N. Bershad, and E.D. Lazowska. The interaction of architectureand operating system design. In Proceedings of the 4th Symposium on Architectural Supportfor Programming Languages and Operating Systems, pages 108{120, April 1991.28



[2] B.N. Bershad, T.E. Anderson, E.D. Lazowska, and H.M. Levy. Lightweight remote procedurecall. ACM Transactions on Computer Systems, 8(1):37{55, February 1990.[3] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Transactions onComputer Systems, 2(1):39{59, February 1984.[4] J.B. Carter and W. Zwaenepoel. Optimistic implementation of bulk data transfer protocols.In Proceedings of the International Conference on Measurement and Modeling of ComputerSystems (Sigmetrics '89), pages 61{69, May 1989.[5] D.R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314{333,March1988.[6] D.R. Cheriton and W. Zwaenepoel. The distributed V kernel and its performance for disklessworkstations. In Proceedings of the 9th ACM Symposium on Operating Systems Principles,pages 129{140, October 1983.[7] N.C. Hutchinson and L.L. Peterson. The x-kernel: An architecture for implementing protocols.IEEE Transactions on Software Engineering, SE-17(1):64{76, January 1991.[8] N.C. Hutchinson, L.L. Peterson, M.B. Abbott, and S. O'Malley. RPC in the x-kernel:evaluating new design techniques. In Proceedings of the 12th ACM Symposium on OperatingSystems Principles, pages 91{101, December 1989.[9] G. Kane. MIPS RISC Architecture. Prentice Hall, 1989.[10] B.J. Nelson. Remote Procedure Call. PhD thesis, Carnegie Mellon University, May 1981.[11] S.W. O'Malley, M.B. Abbott, N.C. Hutchinson, and L.L. Peterson. A transparent blast facility.Journal of Internetworking, 1(2):57{75, December 1990.[12] J.K. Ousterhout, A.R. Cherenson, F. Douglis, M.N. Nelson, and B.B. Welch. The Spritenetwork operating system. IEEE Computer, 21(2):23{36, February 1988.[13] J.B. Postel. Internet Protocol. Internet Request For Comments RFC 791, September 1981.29



[14] ROSS Technology, Inc., Cypress Semiconductor Company. SPARC RISC User's Guide, secondedition, February 1990.[15] M.D. Schroeder and M. Burrows. Performance of Fire
y RPC. ACM Transactions onComputer Systems, 8(1):1{17, February 1990.[16] Sun Microsystems, Inc. XDR: External data representation standard. Internet Request ForComments RFC 1014, Internet Network Working Group, June 1987.[17] Sun Microsystems, Inc. Network Programming, May 1988.[18] Sun Microsystems, Inc. The SPARC architecture manual, version 8, January 1991.[19] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, J. Jansen, andG. van Rossum. Experiences with the Amoeba distributed operating system. Communicationsof the ACM, 33(12):46{63, December 1990.[20] W. Zwaenepoel. Protocols for large data transfers over local networks. In Proceedings of the9th Data Communications Symposium, pages 22{32, September 1985.

30


