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Chapter 1

From C++ to Java

1.1 Introduction

At first glance, Java and C++ appear very similar. Both languages use notation
derived from the widely-used C programming language. Nevertheless, Java and C++
are radically different beneath the surface. Java is an object-oriented language: a
program is simply a collection of classes and inheritance between classes is pervasive.
In contrast, C++ is typically used as an object-based language where classes are
simply used to encapsulate procedural code, hiding implementation details from
the clients of the class code. Object-oriented programming in C++ is awkward
for a variety of reasons that will become apparent as we explain object-oriented
programming in Java.

In this short monograph, we will discover how easy it is to write object-oriented
code in Java. Although it is tecnically possible to write object-based code in Java,
it is considered very bad style. Fortunately, our pedagogy will prevent you from
writing object-based code by deferring the discussion of the Java language features
that support object-based programming.

1.1.1 What is an Object?

Before discussing the specifics of Java’s object system, let’s define what an object is.
Within a computer program, an object consists of

• a finite collection of variables called fields representing the properties of a
specific physical or conceptual object, and

• a finite collection of designated operations called methods for observing and
changing the fields of that object.

No code other than the designated operations can access or modify object fields.
The fields and methods of an object are often called the members of the object.
Each member of an object has a unique identifying name.

1
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To make the notion of object more concrete, let us consider a simple example.
Assume that we want to maintain a directory containing the office address and phone
number for each person in the Rice Computer Science Department. In Java, each
entry in such a directory has a natural representation as an object with three fields
containing the person’s name, address, and phone number represented as character
strings. We defer discussion about how to represent the directory itself until Section
1.4.

Each entry object must include operations to retrieve the name, address, and
phone number fields, respectively.

Let’s summarize the form of a directory entry as a table:

Fields:

String name;

String address;

String phone;

Methods:

String getName();

String getAddress();

String getPhone();

This tabular description is not legal Java syntax. We will introduce the actual
syntactic details in the next section of this chapter.

The three methods getName, getAddress, and getPhone do not take any explicit
arguments because they are invoked by sending a “method call” to an object, called
the receiver, which serves as an implicit argument for the method. In Java, the code
defining the method can refer to this implicit argument using the keyword this,
which is reserved for this purpose.

The syntax for invoking the method m (with no arguments) on the object o is

m.o()

Consider the following example: assume that a Java program can access an Entry

object e and needs to get the value of the name field of this object. The method
invocation

e.getName()

returns the desired result.

Finger Exercise: In the DrJava programming environment, open the program
file Entry.java, compile it, and type the following statements in the Interactions

pane:

Entry e = new Entry("Corky","DH 3104","x 6042");

e.getName()

e.getPhone()
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The first line defines a variable e as an Entry object with name field "Corky",
address field "DH 3104", and phone field "x 6042". The second line is an expres-
sion that computes the name field of e. What value does the Java evaluator return
for the name field of e? The phone field of e?

Before we explain the Java code in the program Entry.java defining the meth-
ods getName, getAddress, and getPhone, let us briefly explore the syntax of Java
expressions and statements. Java expressions built from primitive operators look
almost exactly the same in Java as in C++.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

-5 + 3

-(5 + 3)

5 % 3

5./3.

5 / 0

5./0.

3 + .1 * .1 - 3.

5 < 6

5. > 6.

Java expressions directly in the Interactions pane. Did you get the answers that you
expected?

Java has the same precedence rules for expressions built from primitive opera-
tions as C++.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

72. - 32. * 1.8

(72. - 32.) * 1.8

72. - 30. - 12.

72. - (30. - 12.)

Did you get the answers that you expected?
Program statements have essentially the same syntax in Java as in C++. The

most common form of statement in Java is an assignment statement that introduces
a new variable:

type var = expr ;

In the preceding syntax template, type is a Java type name, var is a Java variable
name, and expr is an expression of type compatible with the type of var. The
assignment statement

int x = 5;

introduces the variable x and gives it the value 5.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
statements and expressions:
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int x = 5;

x*x

double d = .000001;

double dd = d*d;

dd

dd*dd

1. + dd

1. + dd*dd

Did you get the answers that you expected?
Java includes all of the basic statement forms found in the C++ programming

language expressed in essentially the same syntax. In the remainder of this mono-
graph, we will introduce these statement forms as they are needed. Although Java
accepts most C++ syntax, many common C++ constructions are considered bad
style in Java.

Note that Java treats boolean as a distinct type from int, eliminating some
common sources for error in C++. For example, the test expression in a conditional
statement must be of type boolean.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

int x = 7;

if (x = 5) y = 0; else y = 10;

y

Did you get the behavior that you expected? Repeat the exercise with corrected
syntax (replacinng ”=” in the test expression by instead of ”==”).

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

boolean switch = (x = 7);

switch

Did you get the behavior that you expected? Repeat the exercise with corrected
syntax (replacinng ”=” in the initialization expression by ”==”).

1.1.2 Classes: Templates for Creating Objects

Every Java program consists of a collection of classes—nothing else. A class is a
template for creating a particular form of object. A Java class definition corre-
sponds to a C++ struct definition generalized to include all of procedures that
process objects of the defined class. In Java, all program code must be part of some
class.

Each object created by a class template contains the same members, each of
which is either a field or a method. A field is a “container” that holds a value. A
method is an operation on the fields of the object and any values that are passed as
arguments to the method. The objects created by a particular class template are
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called the instances or objects of that class. Each instance contains the members
specified in the class template.

Each member of a class has a name consisting of a Java identifier, any sequence
of “alphanumeric characters” (letters, digits, and ) beginning with a letter or
other than a keyword. A complete list of the keywords of Java is given in Chapter
4 which is an Appendix on the syntax of Java. For now, we will require all such
names to be unique within a class. We will slightly relax this restriction when we
discuss overloading in Section 1.9.4.

The Java program in Figure 1 defines a class Entry suitable for representing
entries in the department directory application described in Section 1.1.1:

class Entry {

/* fields */

String name;

String address;

String phone;

/* constructor */

Entry(String n, String a, String p) {

this.name = n;

this.address = a;

this.phone = p;

}

/* accessors */

String getName() { return this.name; }

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

}

Figure 1: The Entry class

Let’s examine the syntax of the Entry class definition. It consists of seven
members:

• three fields name and address and phone which must contain String values;

• a constructor that specifies how these fields are initialized when an Entry

object is constructed; and

• three methods getName, getAddress, and getPhone that define accessors for
extracting the corresponding fields from an Entry.

An instance (object) of the class Entry is created by an expression of the form

new Entry("SomeName","SomeAddress","SomePhone")
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The three methods defined in class Entry are extremely simple, yet they illustrate
the most important characteristic of object-oriented programming: operations are
attached to the data objects that they process. The methods getName, getAddress,
and getPhone take no arguments yet they have access to the fields of the Entry
object to which they are attached. The Entry object e in the method call

e.getName()

is called the receiver because it “receives” the method call. (In the Java Language
Specification, the term target is used instead of receiver.)

In the code for the Entry class, the constructor and accessor methods all refer
to fields of this, the hidden parameter bound to the object that is the receiver of
the method invocation. For example, the expression

this.name

returns the value of the name field of the object this. In constructor invocations,
this is bound to the newly allocated object.

One attractive feature of Java is that the method syntax mandates a type con-
tract (declaration of input types and output type) as part of the method header.
For example, the method header

String getName()

indicates that the getName method takes no arguments (other than the “receiver”
as an implicit argument (bound to this in the body of the method) and returns
a String value. In subsequent examples, we will define methods that take explicit
arguments; the type of each such argument must be declared in the method header.

Finger Exercise: In the Definitions pane of DrJava, enter the Java program
defining the Entry class given earlier in this section. In the DrJava Interactions pane,
try evaluating the following program text:

Entry e = new Entry("Corky", "DH 3104", "x 6042");

e.getName()

e.getAddress()

e.getPhone()

Save your program for future use in a file named Entry.java. We will explain the

syntax of Java class definitions in more detail in Section 1.3.

1.1.3 Defining Constants

In addition to (instance) members (shown in the Entry class above), a Java class
can include static members that are attached to the class rather than instances of
the class. The static members of a class are not included in the template used to
create class instances. There is only one copy of a static field for an entire class—
regardless of how many instances of the class are created (possibly none). The most
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important use of static fields is to hold program constants. We will discuss static
methods later in this monograph.

In Java, each program constant is attached to an appropriate class as a static

final field of that class. The final attribute indicates that the field is a constant.
For example, the built-in Java class Integer includes the constant static final

fields int MIN VALUE and int MAX VALUE specifying the minimum and maximum
values of int type.

The following Java class defines two constants: INCHES PER METER and METERS PER INCH:

class Conversions {

static final double INCHES_PER_METER = 39.37;

static final double METERS_PER_INCH = .0254;

}

Outside of the Conversions class, these two contants are denoted

Conversions.INCHES PER METER

and

Conversions.METERS PER INCH,

respectively. The name of a static field is prefixed by the name of the class in which
it is defined, e.g., Conversions.INCHES PER METER.

Finger Exercise: In the Definitions pane of DrJava, enter the Conversions

class given above. Define a class Person with two fields name and height and
three methods getName, getHeightInMeters, and getHeightInInches. Test your
Person class by creating several different instances and applying all three methods
to them.

1.1.4 Capitalization and Commenting Conventions

By convention, Java programs are written entirely in lower case characters with
three exceptions.

• The first letter of class names are capitalized to distinguish class names from
member names.

• The names of constant static final fields are written entirely capital let-
ters. For example, the static final fields in the preceding subsection are all
capitalized according to this convention.

• The first letter in each word of a multi-word identifier after the first is capi-
talized. For example, the built-in Java class Object includes a method called
toString() that we will discuss later. The capital S signifies the beginning of
a word within the multi-word name toString().
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These conventions are not enforced by Java compilers, but it is considered bad style
to violate them. A related convention is to never use the special character $ in a
name; this character is reserved for the use of the Java compiler. Unfortunately,
most Java compilers do not enforce this convention.

Java relies on commenting conventions similar to those in C++. A comment that
is confined to a single line begins with the character sequence // and ends at the
end of the line. Longer comments must be enclosed between the opening “bracket”
/* and “closing” bracket */. Examples of both form of comments appear in Section
1.4. Note that a bracketed comment can appear in the middle of a line of code.

Finger Exercise: add both forms of comment to the Conversions and Person

classes from the preceding exercise.

1.2 Java Data Types

Java programs manipulate two fundamentally different kinds of values: primitive
values and object values.

1.2.1 Primitive Types

All primitive values belong to one of eight primitive types: int, float, boolean,
char, byte, short, long, and double. Four of these types designate different sizes
of bounded integers:

• byte contains the integers ranging from -128 to 127;

• short contains the integers ranging from -32768 to 32767;

• int contains the integers ranging from -2147483648 to 2147483647; and

• long contains the integers ranging from

-9223372036854775808

to

9223372036854775807.

In practice, only three of these primitive types are widely used: int, boolean, and
double.

A program should never contain explicit references to any of the specific integer
constants given above. They can always be replaced by references to the static

final fields MIN VALUE and MAX VALUE in the corresponding “wrapper” class: Byte,
Short, Integer or Long. Java has a built-in wrapper class for each primitive type.
For example, in the wrapper class Integer corresponding to the primitive type
int, MIN VALUE = -2147483648 and MAX VALUE = 2147483647. For more informa-
tion on the primitive wrapper classes, read the on-line documentation from Sun
Microsystems for the built-in class Number and its subclasses.
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The boolean type has two values true and false. The char type supports the
Unicode character set which includes all conventional ASCII characters plus almost
any foreign character imaginable. The char type is rarely used in Java programs
because a flexible String object type is built-in to the language. The remaining
two types float and double are used for approximate computations involving real
numbers; they denote standard IEEE 32-bit and 64-bit formats, respectively.

Numeric Constants Java interprets unadorned integer constants as values of
type int. Long integer constants are indicated by attaching the suffix L to the
number. For example, the constant 9223372036854775807L can be used in Java
program text, while the same constant without the L is an error because it is too big
to be an int. The double type is the default type for any floating point constant.
On modern machines, there is little reason to use the less precise float.

Conversions Between Types [Optional] Java will automatically convert any
numeric type to a more “general” numeric type demanded by context. The following
list gives the primitive numeric types in increasing order of generality:

byte → short → int → long → float → double

Note that the notion of generality here is imperfect in some situations. The conver-
sion of a long to a float, for example, will often lose precision. In fact, even the
conversion of a really large long value to a double can lose precision.

Java provides explicit conversion operators called casts to convert a numeric type
to a less general type. A cast is simply a type name enclosed in parentheses used a
prefix operator. For example, the following expression casts the int constant 127

to the type byte

(byte)127

When converting from one bounded integer type to another, Java silently truncates
leading digits if the output type is shorter than the input type. Watch out!

Finger Exercise: In DrJava, convert the maximum long value to double. (Do
not type the 20+ digits for this constant!) What do you get? Convert the maximum
long value to type float. What do you get? Why? Try converting the maximum
long value minus 1 to double and back again. Do you get the same result?

1.2.2 Object Types

Object values are created by instantiating classes, which may either be built-in or
program-defined. Classes are organized in a strict hierarchy with the special built-in
class Object at the top. Every class C except Object has a unique parent in the
hierarchy called the superclass of C. A descendant in the class hierarchy is called a
subclass. Each subclass of a class C includes all of the members (fields and methods)
of C and possibly additional members. For this reason, we say that each immediate
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subclass of (child of) C extends C. Note that subclass relation is transitive and
reflexive. If class A is a subclass of class B and class B is a subclass of class C then
A is a subclass of C (transitivity). In addition, every class A is a subclass of itself
(reflexivity).

We will reserve the term extends to describe the immediate subclass (child)
relation: A extends B iff A is an immediate subclass of B. Hence, the extends relation
is neither transitive nor reflexive. Since Object is the top class of the hierarchy, all
classes are subclasses of Object.

For example, the built-in classes Integer and Float extend the built-in class
Number which extends Object. Hence, the superclass of Integer is Number, the
superclass of Float is Number, and the superclass of Number is Object.

Object values are actually references to objects. For this reason, two different
fields can be bound to exactly the same object. In Java, objects are never implicitly
copied. When a field or method parameter v is bound to an object o, the value of
v is a reference to the object o, not a copy of o!

Two objects can be compared for identity by using the == comparison operator.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
sequence of statements and expressions:

Integer i = new Integer(5);

Integer j = i;

Integer k = new Integer(5);

i == j

i == k

Did you get the answers that you expected?
Every Java class C has an associated type C consisting of all instances of class

C and all of its subclasses. Hence, the type Object contains all object values.
The built-in class String has the class Object as its superclass. Since the class
String has no subclasses, the only values of type String are instances of the class
String. In contrast, the built-in class Number is a child of class Object and has
several subclasses including Integer and Float. Hence, all instances of the classes
Integer and Float are values of type Number.

In Java, every field and method has a declared type given as part of its definition.
For a method, the declared type includes the type of the result and the types of the
parameters.

Java determines the type of every program expression using a simple set of rules
and confirms that

• the value assigned to a field is consistent with the field’s declared type;

• the values passed as arguments to a method are consistent with the corre-
sponding parameter types;

• the value returned by a method is consistent with the declared return type of
the method; and
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• the member name in a field reference or method invocation is compatible with
the static type of the receiver.

We will discuss these “type-checking” rules in more detail in Section 1.9.2.

1.3 Java Class Definitions

In Java, new forms of data are defined by the class construct. A class C serves as
a template for creating instances of the class and as a basis for defining new classes
that extend (enlarge) C.

1.3.1 Defining Classes to Represent Compound Data

We have finally introduced enough Java mechanics to define the data required to
represent the department directory entries described in Section 1.1.2. Recall that a
directory entry is a object with the following fields and methods:

Fields:

String name;

String address;

String phone;

Methods:

String getName();

String getAddress();

String getPhone();

In Java, we define this new form of data as the class

class Entry {

/* fields */

String name;

String address;

String phone;

/* accessors */

String getName() { return this.name; }

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

}

1.3.2 Constructors

Given a class definition, Java provides a mechanism called new for creating new
instances of the class. To exploit the new construct, the class must provide a special
method called a constructor that specifies how the fields are initialized. A construc-
tor method has the same name as the class and does not contain the return type in
the heading. The constructor for our sample class Entry has the following form:
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Entry(String n, String a, String p) {

this.name = n;

this.address = a;

this.phone = p;

}

Like a method with void return type, a constructor does not contain a return

statement.
If the preceding constructor is included in the definition of class Entry, then the

expression

new Entry("Corky", "DH 3104", "x 6042")

constructs an instance of class Entry with the name "Corky", the address "DH

3104", and the phone "x 6042". The value of the new expression is the created
object.

In general, a class may have several different constructors, but each constructor
must have a distinct list of argument types (so the Java compiler can determine
which one is meant!). If a class does not include a constructor, Java generates a
default constructor of no arguments that initializes each field of the object to the
“null” value of its declared type. The “null” value for any class type is the value
null, which refers to nothing. The null value of each primitive type is the “zero”
value for that type: 0 for the six numeric primitive types, false for boolean, and
the null character (which has code 0) for char.

Let us summarize syntax for constructors. A constructor definition for a class
C begins with name of the class followed by a (possibly empty) list of parameters
separated by commas and enclosed in parentheses. The remainder of the constructor
definition is a (possibly empty) sequence of Java statements enclosed in braces.
When a new instance of class C is created, the body of the corresponding constructor
is executed to initialize the fields of the created object. New objects are created by
new expressions that have the form

new C(E1, . . ., En)

E1, . . ., En are expressions with types matching the parameter declarations for
some constructor of class C. When a new expression is evaluated, Java creates a new
instance of class C and initializes the fields of C by binding the parameters of the
matching constructor to the values of the argument expressions and executing the
statements in the body of the constructor.

Finger Exercise: Add a second constructor to your saved Entry class. Your
second constructor should take one argument, the value of String name, and ini-
tialize the other fields to the String "unknown". Test your code.

1.3.3 Defining Instance Methods

The three instance methods getName, getAddress and getPhone in class Entry all
simply return the value of a field from the object that received the method call.
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Let us define another method for class Entry that does more computation. As-
sume that we want to define an operation match for the class Entry that takes
a string argument keyName and determines whether it matches the name field of
the specified Entry object. We could include such a method definition within the
definition of class Entry as shown in Figure 2:

class Entry {

/*fields */

String name;

String address;

String phone;

/* constructor */

Entry(String n, String a, String p) {

this.name = n;

this.address = a;

this.phone = p;

}

/* accessors */

String getName() { return this.name; }

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

/* other methods */

/** determines if this matches keyName */

boolean match(String keyName) {

return this.name.equals(keyName);

}

}

Figure 2: The expanded Entry class
The match method is implemented using the equals method on the String field

name. Recall that the String class is built-in to Java. The equals method from
the String class takes an argument and returns true if (and only if) it is a String

with exactly the same contents as the receiver String object. Hence,

(new Entry("Corky","DH 3104","x 6042")) . match("Corky")

returns

true,

while

(new Entry("Corky","DH 3104","x 6042")) . match("Matthias")

returns
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false.

Warning The Java infix operator == can be used to compare objects, but the
results of such a comparison are problematic for most applications. On objects, the
== operator returns true if (and only if) the both arguments are exactly the same
object. Hence, if x is a variable of some object type T, the expression

x == x

returns

true

For distinct object arguments, the == operator returns false. Hence,

new Entry("Corky","DH 3104","x 6042") == new Entry("Corky","DH 3104","x 6042")

returns

false

because each occurrence of new creates a distinct object. For most Java object types
including String, the == operator is not a reliable mechanism for testing equality!
While the Java compiler follows the convention of creating only one copy of each
String constant, it is unwise to rely on this fact because computed strings do not
obey this convention. (Neither does the DrJava Interactions pane!)

Finger Exercise

1. Add the match method to your Entry class. Test your code.

2. Modify your match method to use the == operator instead of the equals

method. Find some test cases where it fails! Hint: A String constant that
appears in the DrJava interactions pane will be distinct from any String con-
stant defined in a class in the Definitions pane.

Java Design Rule: There are only two valid uses of the == operator:

• to compare values of primitive type; and

• to test object identity (not equality!).

The second use is relatively uncommon.

1.3.4 Printing Objects

Given the definition of the Entry class given above, we could evaluate the expression

new Entry("Corky","DH 3104","x 6042")
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in the DrJava Interactions pane but the result would not be very informative. When
the Java evaluator needs to convert an object to a printable String representation,
it uses a method called toString which is defined in class Object. Since every class
is a subclass of Object, every class includes the toString method.

Every class inherits a definition of the toString method from its superclass.
The ultimate superclass Object contains a simple definition for toString that is
not very informative: it returns the String consisting of the class name for this

followed by an @ followed by the address in memory where the object this is located.
Each class below Object in the superclass hierarchy either relies on the toString

method inherited from its superclass or introduces a new definition for toString()
that overrides the definition in its superclass.

Finger Exercise Load your file Entry.java into DrJava and compile it. Then
evaluate

new Entry("Corky","DH 3104","x 6042")

new Entry("Corky","DH 3104","x 6042")

Did you get the results that you expected? Note that each new operation creates a
distinct object.

The Entry class is an immediate subclass of the Object class which defines
the toString method. This definition of toString simply generates the String
consisting of the name of the class concatenated with an sign and an identifying
serial number for the object.

To produce a better printed form for the instances of a class, we must define a
toString method specifically for that class. In the case of the Entry class, we could
define toString as follows:

public String toString() {

return "Entry[" + this.name + ", " + this.address + ", "

+ phone + "]";

}

Java requires the public attribute in the header of the toStringmethod because
it overrides an inherited method that is public. In Java, every class member has an
associated visibility attribute. When an inherited method is overridden, its visibility
cannot be reduced. We will discuss this issue in more detail in Section 1.5.8.

Finger Exercise Load your saved program Entry.java into the Definitions pane
of DrJava. Add the definition immediately above to the Entry class and compile
the program. In the Interactions pane, evaluate the same print statement as in the
last finger exercise. Is this output more helpful?

Java Design Rule: Redefine (override) the toString() method for every class
that is used to represent data. (Recall that classes can also be used to group static
fields and methods.)
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1.4 The Union and Composite Patterns

In our department directory example, an object of type Entry only has one form,
namely an instance of class Entry. If we were designing the data for a more com-
prehensive directory such as a city phone directory, we would need more than one
form of entry. At a minimum, we would need entry formats suitable for business
listings, government listings, and residential listings. For such a phone directory, we
might define an entry as follows.

A CityEntry is either:

• a BusinessEntry(name,addr,phone,city,state),

• a GovernmentEntry(name,addr,phone,city,state,gov), or

• a ResidentialEntry(name,addr,phone),

where name is a string specifying the name for the listing, addr is a string specifying
the street address for the listing, phone is a string specifying the phone number
(with area code) for the listing, city and state are strings specifying the city and
state for the listing, and gov is a string specifying the government entity for that
the listing, e.g. the ”City of Houston”.

The BusinessEntry and GovernmentEntry forms include city and state informa-
tion because businesses and government agencies that serve clients in cities outside
their local calling area often elect to have their phone numbers included in the direc-
tories of other cities (in addition to the cities where they are located). In addition,
government listings include a string specifying the government entity to which they
belong. For example, a listing for the Federal Bureau of Investigation would specify
the ”U.S. Government” as the gov field.

In Java, we can define the CityEntry type by introducing a CityEntry class
that we extend by “concrete” classes1 for each different form of Entry data. This
technique, which is widely used in object-oriented programming, is called the union
pattern. In the union pattern, an abstract class serves as the root of a hierar-
chy of subclasses called variants, which are the component types of the union. In
this example, there are three variant classes: BusinessEntry, GovernmentEntry,
ResidentialEntry.

Since we are designing CityEntry objects for use in phone directories, every
CityEntry supports two methods, String getName() which gets the name of the
entry, and String toString() which returns all of the information for that entry.
The following Java code defines the CityEntry type:

The Java code in the CityEntry example above involves several concepts that
we have not discussed before.

• The attribute abstract attached to the class CityEntry indicates that CityEntry
is a class that cannot be instantiated. The class CityEntry exists solely to

1Any class that is not declared as abstract is “concrete”.
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/** a CityEntry is either:

* (i) new BusinessEntry(name,addr,phone,city,state),

* (ii) new GovernmentEntry(name,addr,phone,city,state,gov), or

* (iii) new ResidentialEntry(name,addr,phone). */

abstract class CityEntry {

String name;

CityEntry(String n) { name = n; }

String getName() { return name; }

}

class BusinessEntry extends CityEntry {

String address, phone, city, state; // saves space

BusinessEntry(String n, String a, String p, String c, String s) {

super(n);

this.address = a;

this.phone = p;

this.city = c;

this.state = s;

}

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

String getCity() { return this.city; }

String getState() { return this.state; }

}

class GovernmentEntry extends CityEntry {

String address, phone, city, state, government;

GovernmentEntry(String n, String a, String p, String c, String s, String g) {

super(n);

this.address = a;

this.phone = p;

this.city = c;

this.state = s;

this.government = g;

}

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

String getCity() { return this.city; }

String getState() { return this.state; }

String getGovernment() { return this.government; }

}

class ResidentialEntry extends CityEntry {

String name, address, phone;

ResidentialEntry(String n, String a, String p) {

super(n);

this.address = a;

this.phone = p;

}

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

}

Figure 1.1: The City Directory union class hierarchy
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group the concrete classes BusinessEntry, GovernmentEntry, and ResidentialEntry

as a type that includes all three kinds of data.

• The concrete classes BusinessEntry, GovernmentEntry, and ResidentialEntry

are the only subclasses of the class CityEntry. Hence, the only values of type
CityEntry are the instances of the classes BusinessEntry, GovernmentEntry,
and ResidentialEntry.

• Each concrete class includes a constructor definition that specifies how new
instances of the class are initialized. Each concrete class also includes getter
(accessor) methods (like getPhone) to get the values of the various fields of
the class.

The following expression creates a BusinessEntry for Rice University

new BusinessEntry("Rice University", "6100 Main Street",

"713-348-8101", "Houston", "Texas")

This syntax is wordy but straightforward. Don’t forget to include the keyword new

at the front on each constructor invocation!

Finger Exercise Enter the preceding class definitions into the Definitions pane
of DrJava. Compile this program and evaluate the following expressions in the
Interactions pane:

BusinessEntry e1 = new BusinessEntry("Rice University", "6100 Main St.",

"713-527-8101", "Houston", "TX");

ResidentialEntry e2 = new ResidentialEntry("Robert Cartwright",

"3310 Underwood St.", "713-660-0967");

e1.getName()

e2.getName()

Did you get the results that you expected?

1.4.1 Member Hoisting

The preceding Java program can be improved by eliminating duplicated code in the
subclasses extending CityEntry. The concrete classes forming a union are called
variants. Note that the fields name, address, and phone appear in all three variants
of the abstract class CityEntry. So do the definitions of the corresponding accessors
getName, getAddress, and getPhone. These repeated member definitions can be
hoisted into the abstract class CityEntry yielding the following Java code:

abstract class CityEntry {

String name, address, phone;

String getName() { return this.name; }

String getAddress() { return this.address; }

String getPhone() { return this.phone; }

}
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class BusinessEntry extends CityEntry {

String city, state;

BusinessEntry(String n, String a, String p, String c, String s) {

this.name = n;

this.address = a;

this.phone = p;

this.city = c;

this.state = s;

}

String getCity() { return this.city; }

String getState() { return this.state; }

}

class GovernmentEntry extends CityEntry {

String city, state, government;

GovernmentEntry(String n, String a, String p, String c, String s, String g) {

this.name = n;

this.address = a;

this.phone = p;

this.city = c;

this.state = s;

this.government = g;

}

String getCity() { return this.city; }

String getState() { return this.state; }

String getGovernment() { return this.government; }

}

class ResidentialEntry extends CityEntry {

ResidentialEntry(String n, String a, String p) {

this.name = n;

this.address = a;

this.phone = p;

}

}

Finger Exercise In the preceding code, the abstract class CityEntry has three
concrete subclasses: ResidentialEntry, BusinessEntry, and GovernmentEntry.
By applying some very simple program transformations, you can eliminate more du-
plicate code in the CityEntry class and subclasses by inserting a new abstract class
NonResidentialEntry between CityEntry and the concrete classes BusinessEntry
and GovernmentEntry hoisting the common members of these concrete classes.
After this addition, the class CityEntry still has only three concrete subclasses
but only one of them is an immediate subclass. The other immediate subclass is
NonResidentialEntry. Test your code using DrJava.



CHAPTER 1. FROM C++ TO JAVA 20

Finger Exercise Note that the constructor for each concrete subclass of CityEntry
replicates the code for initializing the fields address and phone defined in the ab-
stract class CityEntry. Similarly, the constructor for each concrete subclass of
NonResidentialEntry replicates code for initializing the fields city and state.
This code replication can be eliminated by defining constructors for the abstract
classes CityEntry and NonResidentialEntry and inserting a call on the special
method name super at the beginning of each concrete class constructor.

In the body of a constructor for a class C, the reserved word super can be used
as a method name to to invoke a constructor in the superclass of C. In such an
invocation, the method name super must be followed by an appropriate argument
list enclosed in parentheses just like any other method call. (For more information
on super calls, consult a Java reference book such as Thinking in Java by Eckel,
The Java Programming Language by Arnold and Gosling, or Java in a Nutshell by
Flanagan.)

Eliminate constructor code replication in the CityEntry class hierarchy. Test
your code using DrJava.

Member hoisting is a special form of the general concept of code factoring. Code
factoring is any transformation that eliminates repeated code. In functional lan-
guages like Scheme, code factoring is typically accomplished by introducing a new
function with a repeated code pattern as its body. Each instance of the repeated
pattern is replaced by an appropriate call on the new function. In some cases, the
arguments to the pattern are procedures. This form of code factoring can be im-
plemented in several different ways in Java. If all of the code repetitions appear
within a class hierarchy for which the programmer has control of the source, then
a method can be introduced in the most restrictive subclass that includes all of
the occurrences of the repeated pattern. Each occurrence can be replaced by an
invocation of the introduced method. In some cases, the arguments to the method
are command objects (discussed in Section 1.8) representing procedures.

Java Design Rule: never repeat code in the variant classes in a union type.
Hoist any repeated code into methods defined in an abstract superclass.2 while
variants B and C share code for method n. In this case, either the code for method
m or the code for method n can be hoisted but not both. More complex factoring
methods are possible (using, for example, the command pattern discussed in Section
1.8), but they are typically not worth the complication.

1.4.2 The Composite Pattern

Let’s return to our department directory example and show how to use the union
pattern to represent department directory data.

A DeptDirectory is either:

• an Empty directory, or

2In pathological cases, some repeated code may not be subject to factoring because of conflicts

among possible factorings. For example, variants A and B may share code for method m
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• a composite directory Cons(e,d) where e is the first Entry of the directory
and d is the rest of the directory.

Note: the use of the name Cons for composite objects is taken from functional
languages like Scheme; it abbreviates the word “construct”.

In Java, each new type of data is represented by a class. Since the DeptDirectory
type has two variants, we must use the union pattern to represent this type. The
following collection of class definitions relies on the union pattern to define the
DeptDirectory type. Since the DeptDirectory type is implemented by an abstract
class, we will prepend the name DeptDirectory with the letter A to indicate that
the class is abstract.

/** an DeptDirectory is either:

* (i) the empty directory new Empty(), or

* (ii) the non-empty directory new Cons(Entry,DeptDirectory)

*/

abstract class DeptDirectory {}

class Empty extends DeptDirectory {}

class Cons extends DeptDirectory {

Entry first;

DeptDirectory rest;

/* constructor */

Cons(Entry f, DeptDirectory r) {

this.first = f;

this.rest = r;

}

/* accessors */

Entry getFirst() { return this.first; }

DeptDirectory getRest() { return this.rest; }

}

Note that our data definition comment is redundant; all of the information in the
data definition is given by the group class definitions. But the commment is useful
because it is so much more compact than the code.

The class Empty contains no fields, because empty directories have no embedded
data. The class Cons contains two fields first and rest as specified in the data
defintion for DeptDirectory. Similarly, the Entry class contains three fields name,
address, and phone. The abstract class DeptDirectory is extended by only two
classes: Empty and Cons. Hence, DeptDirectory is the union of Empty and Cons.

The Java code in the DeptDirectory example relies on one new feature that we
have not seen before, namely the notion of a default constructor. The class Empty is
concrete but does not include a constructor to initialize its fields because there are
no fields to initialize! Java automatically generates a default zero-ary constructor for
any class definition that does not include a constructor. As a result, the expression
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new Empty()

generates a new instance of the class Empty.
When Unions are Composite The use of the union pattern in the DeptDirectory

example has an extra feature not present in the preceding CityEntry example.
One of the variants of the union class DeptDirectory includes a field of type
DeptDirectory which makes the structure of the union definition self-referential.
Self-referential structures are ubiquitous in computation, because any the concrete
definition of an infinite set ultimately involves self-reference. In the OOP (“object-
oriented programming”) community, this specialized usage of the union pattern is
called the composite pattern. To repeat, a union pattern with root class C is com-
posite when one or more of the variants of the pattern contains fields of type C.

The following expression creates a DeptDirectory containing the address and
phone information for Corky and Matthias:

new Cons(new Entry("Corky","DH3104","x 6042"),

new Cons(new Entry("Matthias","DH3106","x 5732"), new Empty()))

This syntax is wordy but straightforward. Don’t forget to include the keyword new

at the front on each constructor invocation!

Finger Exercise Enter the text for the DeptDirectory example in the DrJava
Definitions pane. Define a variable d of type DeptDirectory initialized to the value
of the expression given in the preceding example. Try evaluating the following
expressions:

d.getFirst()

d.getFirst().getName()

d.getFirst().getNumber()

d.getRest().getRest()

d.getRest().getRest()

d.getRest().getFirst()

d.getRest().getFirst().getName()

Save your program in a file called DeptDirectory.java.

1.4.3 Defining Instance Methods for a Composite Class

In Section 1.3.1, we showed how to define simple (instance) methods for the indi-
vidual class Entry. But we did not show how to express operations that process all
of the different forms of data defined by a composite hierarchy. Since each different
form of data in a composite hierarchy is represented by a distinct concrete class, we
can write a separate method definition for each kind of data.

Consider the following example. Assume that we want to define a method

String firstAddress(String name)
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on DeptDirectory that returns the address for the first person in the directory if
the directory is non-empty and the null reference null if it is empty. We can write
separate definitions for the method firstAddress in the concrete classes Empty and
Cons as follows:

class Empty {

...

String firstAddress() { return null; }

}

class Cons {

...

String firstAddress() { return this.first.getAddress(); }

}

Now assume that x is a variable of type DeptDirectory. If we try to invoke the
method firstAddress on x, Java will reject the code as erroneous because the class
DeptDirectory does not contain a method named firstAddress. How can we en-
large the definition of firstAddress so that it applies to the class DeptDirectory?

The answer is that we declare the method firstAddress in the class DeptDirectory
as an abstract method:

abstract class DeptDirectory {

...

/* firstAddress() returns the first address in a DeptDirectory;

it returns null if the DeptDirectory is empty */

abstract String firstAddress();

}

An abstract method is a method without a body. Abstract methods can only ap-
pear in abstract classes. Any class containing an abstract method must be declared
abstract because it cannot be instantiated. Every concrete class extending an ab-
stract class must provide concrete definitions for the abstract methods it inherits.
This rule guarantees that abstract methods are never attached to objects.

Let us illustrate the process of defining a method over a composite class hierarchy
in more detail by defining a method

String findAddress(String name)

on DeptDirectory that finds the address for the person identified by name, assum-
ing that name is in the directory.

First, we must insert the following member somewhere in the class DeptDirectory

/* findAddress(s) returns the address of the person with name s;

it returns null if no matching entry is found */

abstract String findAddress(String name);

The abstract modifier in the definition indicates that the definition only describes
the input and output types for the method, not how it is implemented. Each concrete
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class extending DeptDirectory must provide a definition for findAddress that
includes a code body describing how it is implemented.

The ordering of members within a class typically does not affect program be-
havior. Nevertheless, it is good programming practice to list class members in a
consistent order. We recommend placing static final fields at the beginning of
the class followed by dynamic members and finally static method (which have been
discussed yet). Within each category, we recommend the following order: fields,
constructors, methods. (Of course, there is no such thing as a static constructor.)
According to this convention, the abstract method findAddress should be the last
member in the DeptDirectory class.

Second, we must provide a concrete definition of the findAddress method in
each concrete subclass of DeptDirectory, namely Empty and Cons. Note that the
composite pattern guarantees that a program includes code specifically to process
each data variant. Moreover, in any variant containing a field f of parent type, the
method typically invokes itself recursively on f. This approach to defining methods
is so common and so important that OOP community has designated it as a separate
pattern, called the interpreter pattern, enriching the composite pattern.

Let us return to defining the findAddress method. By definition, there is
no Entry in an Empty directory matching the name passed as an argument to
findAddress. Hence, findAddress must return a value signaling failure. In Java,
the most convenient choice for such a value is null, the reference to no object. All
object values in Java are actually references, so the same object can simultaneously
appear as the value of many different variables. Java also provides the special value
null, which is the reference to no object. Java null should only be used to represent
a special failure value. It should never be used to represent one of the alternatives in
a data definition, e.g., the empty DeptDirectory. The reason for this prohibition
is simple: null is not an object. Any attempt to invoke a method on null will
generate a run-time error aborting program execution.

The following code is an appropriate definition of the findAddress method in
the Empty class.

String findAddress(String name) { return null; }

The definition of findAddress for Cons objects is the only interesting chunk of
code in this entire example. Since a Cons object always contains an Entry first and
a DeptDirectory rest, the findAddress method must check to see if the passed
name matches the name field of first and, depending on the outcome, either return
the value of the address or recur on rest.

The object-oriented method has exactly the same recursive structure as the cor-
responding function definition.

The method can simply be coded as follows:

String findAddress(String name) {

if (name.equals(this.first.getName()))

return this.first.getAddress();
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else return this.rest.findAddress(name);

}

Every class contains the instance method equals which takes a single argument
of type Object. The Object class at the top of the class hierarchy defines this
method. For a String object name, the equals method returns true if and only if
the argument object contains exactly the same sequence of characters as name.

In the code above, the expression

name.equals(this.first.getName())

invokes the equals method of object in field name on the argument

this.first.getName().

The expression

this.first.getName()

invokes the getName method of the Entry object in the field first to get its name

field. Similarly, the expression

this.first.getAddress()

invokes the getAddress method of the Entry object in field first to get its address
field; the expression

this.rest.findAddress(name)

invokes the findAddress method of the DeptDirectory object in the rest field on
the object name.

Since the members of this are so frequently accessed in methods of a class, Java
allows the field prefix

this.

to be omitted! Hence, the definition of findAddress could have been written

String findAddress(String name) {

if (name.equals(first.getName()))

return first.getAddress();

else

return rest.findAddress(name);

}

Since explicit references to this clutter code making it more difficult to read, we
will generally omit them. (In some situations, a method must refer to the entire
receiver object this rather than one of its fields. In such a situation, the use of the
keyword this is essential.)

Finger Exercise Load the text for the DeptDirectory example from you saved
file into the DrJava Definitions pane. Edit the Cons class to construct some sample
directories. Compile the program and try some test lookups in the Interactions

pane. Write a method findPhone analogous to findOffice and test it on similar
examples. Remember to use the design steps given in our design recipe.

Save your extended program in place of your original DeptDirectory program.
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1.4.4 Conditional Statements

In the definition of the findAddress method, we used an conditional statement of
the form:

if (test) then consequent else alternative

where test is an expression of boolean type and consequent and alternative are state-
ments. Conditional statements are used to classify program values into disjoint sets
or regions using logical tests that we call claims. In simple example given above, we
distinguished between two claims:

name.equals(first.name)

and

!(name.equals(first.name))

1.4.5 Blocks

In Java, braces are to aggregate sequences of statements into individual statements.
A sequence of statements

{

s1;

s2;

...

sn;

}

enclosed in braces is called a block. A block is a form of Java statement. The other
forms of statements that we have seen so far are variable definitions, assignment
statements, conditional statements, and method calls.

Suppose that we wanted to print a message every time the findAddress method
failed to match a name in a DeptDirectory. We need to add a statement to the
else clause of our conditional statement in the body of findAddress in class Cons.
We can accomplish this task by surrounding the return statement in the else clause
with braces and inserting our print statement before the return statement as shown
below:

String findAddress(String name) {

if (name.equals(first.getName()))

return first.getAddress();

else {

System.out.println(first.getName() + " does not match");

return rest.findAddress(name);

}

}

Why not insert the print statement after the return statement instead of before?



CHAPTER 1. FROM C++ TO JAVA 27

1.4.6 Singleton Pattern

One of the most important uses of static final fields is storing the canonical
instance of a class that only needs a single instance. For example, the Empty subclass
of DeptDirectory only needs one instance because the class has no (dynamic) fields.

class Empty extends DeptDirectory{

...

static final Empty ONLY = new Empty();

}

Instead of allocating new instances of Empty, code can simply refer to the canonical
instance Empty.ONLY. The final attribute stipulates that the variable ONLY cannot
be modified. This code pattern is called the singleton pattern because it constructs
a single instance of the class.

The implementation of the singleton pattern shown above suffers from an an-
noying defect: the class definition for Empty does not prevent code in another class
from creating additional instances of the Empty class. We can solve this problem by
making the constructor for Empty private.

class Empty extends DeptDirectory{

...

private Empty() {}

static final Empty ONLY = new Empty();

}

Then code outside of class Empty cannot perform the operation

new Empty();

A private member of a class C is only visible inside class C. We will discuss visibility
modifiers in more detail in Section ??.

1.5 Basic Program Design

In the preceding sections of this monograph, we studied a Java subset suitable for
explicating the basic principles of Java program design. The process of program
design can be broken down into six steps:

• Data Analysis and Design

• Contract and Header

• Examples

• Template

• Body

• Test

which we collectively call the design recipe. Let us examine each of these six steps
in the context of writing object-oriented programs in Java.
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1.5.1 The Design Recipe

Data Analysis and Design

Our first task in writing a program is to understand and define the data that the
program will process. We must compile an inventory of the various forms of data
that can appear as program inputs and outputs and determine how to represent
their “relevant” properties as Java data objects. In scientific problem solving, this
process is often called “data modeling” or simply “modeling”. For each distinct form
of data, we must define a Java class with fields that represent the relevant properties
of each object of that form. We use the composite pattern to specify which different
forms of data belong to the same more general category of data. In the preceding
section, for example, we grouped the Empty department directory and non-empty
Cons department directories together using the composite pattern to form the more
general category DeptDirectory.

Java class definitions are more general and flexible than data definition facilities
for defining structures in procedural and fucntional languages because because they
enable the programmer to determine (i) exactly which primitive operations, includ-
ing constructors, the new form of data will support, (ii) how objects will be printed
as strings, (iii) and the types of object fields and methods.

The extra generality provided by Java comes at a price. A Java programmer
must write far more text to define a class than a functional programmer does to
define a comparable struct.

It is a good idea to define a collection of examples for each concrete class in a
data definition. These examples can be defined as static fields of the class or as
static fields of an accompanying test class.

Contract and Header

Since Java is a strongly typed language, it mandates the declaration of a type
“contract” for each method in a class. This contract simpy specifies the types of the
method arguments and the type of the result. On the other hand, Java does not
mandate the inclusion of a contract stating (i) what if any additional preconditions
(beyond the the types of the arguments) must hold for the method to be called, and
(ii) what relationship exists between the inputs and output of a method. The latter
is often called a postcondition or output condition for the method. Well-written
Java programs include a “behavioral contract” for every method, specifying any
additional constraints on the inputs and what value (as a function of the inputs)
the method returns.

For methods defined over composite types (abstract classes at the top of com-
posite class hierarchies), the behavioral contract should be attached as a comment
to the abstract method definition in the top class.
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Examples

Each class should include a collection of sample inputs and corresponding outputs
for each method. If the body of a method contains more than one control path (e.g.
a conditional statement), the collection of examples should include at least one
example for each control path. The examples for each method should be included
in either a test method for the class or a separate test class. We will explain how
to set up tests in separate test classes later in this monograph.

Template

In Java, much of the template selection process is mandated by the object-oriented
programming model. When a data type T consisting of several different forms of
data is represented by a composite class hierarchy, each method m defined on T
must be defined in the class T corresponding to T. With a few rare exceptions, the
method definition for m in T must be abstract, forcing each concrete subclass of
T to provide a definition for m. In each variant class V, the relevant data for each
definition of m is simply the set of object fields in V.

The only features in the template for a Java method definition that are not
dictated by the object-oriented programming model are the recursive method calls
corresponding to circular references in the data definition. For any method m in a
class C containing a object field f of type T where T is a supertype of C (e.g. C is a
concrete class in a composite class hierarchy with T at the top), the body of m will
usually invoke m recursively on each such field f. These recursive calls appear in the
template. For a concrete example, see Section 1.5.2.

Body

The coding part of the design process consists of filling in the body of each method
m in each concrete class C using the available object fields and the results of recursive
calls from the template. In some cases, writing this code requires ingenuity. But
in the vast majority of cases, the coding process is very easy given decomposition
provided by the template.

Test

Each class C representing a data type definition3 should include a CTest method
that evaluates each primitive operation for the data type on the sample data values
defined for its input domain and other representative input values.

If the DrJava programming environment is not available, the main method
for the class can be used instead of test. Alternatively, a tool like JUnit (see
www.junit.org) can be used to run all of the test methods in a program. In fact,
for large programs, tools like JUnit are essential to automate the testing process–
which must be performed every time a program is modified.

3For a composite class hierarchy, use the top class.
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1.5.2 An Extended Example: Lists

Let us study how the design recipe described above applies to the process of writing
some simple programs involving lists of integers. Lists are ubiquitous in program-
ming. The DeptDirectory type introduced in Section 1.4 is simply a specialized
form of list. For reasons that will become clear later in the monograph, we will use
the name IntList rather than List for our list type.

An IntList is either:

• an Empty list, or

• a composite list Cons(e,l) where e is the first Object of the IntList, and
l is the rest of the IntList.

Compare this definition with the definition of DeptDirectory given earlier.
We can abbreviate the preceding definition using the following mathematical

notation:

IntList := Empty() + Cons(int, IntList)

which states that the set IntList is the union of the sets Empty and Cons. The
set Empty contains a single object Empty() while the set Cons contains all objects
Cons(o,l) where o is any int and l is any element of type IntList.

Assume that we are given the task of writing a program to perform some standard
operations on lists of integers such as computing the sum of the numbers in a list,
computing the product of the numbers in a list, and sorting the members of a list
into ascending order.

Since we need to perform a variety of different operations on IntList, we will
include a full set of getter operations (also called selectors or accessors), namely
getFirst and getRest methods. The following collection of Java classes provides
a minimalist definition for the IntList type:

/** Composite Data Definition:

* IntList := new Empty() + new Cons(int, IntList)

*/

abstract class IntList {

/** Returns first element of non-empty list.

* Throws an IllegalArgumentException on Empty.

*/

abstract int getFirst();

/** Returns the ‘‘rest’’ a non-empty list (all elements but first).

* Throws an IllegalArgumentException on Empty.

*/

abstract IntList getRest();

/** Returns "" for Empty

* " e1 e2 ... en" for IntList with elts e1,...,en
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*/

abstract String toStringHelp();

}

class Empty extends IntList {

/** The only instance of class Empty */

static final Empty ONLY = new Empty(); // singleton pattern

/* constructor */

private Empty() {}

/* Cons accessors */

int getFirst() { throw new IllegalArgumentException(

"first requires a non Empty IntList");

}

IntList getRest() { throw new IllegalArgumentException(

"rest requires a non Empty IntList");

}

/* other methods */

public String toString() { return "()"; }

String toStringHelp() { return ""; }

}

class Cons extends IntList {

/* private fields */

private int first;

private IntList rest;

/* constructor */

Cons(int f, IntList r) {

first = f;

rest = r;

}

/* accessors */

int getFirst() { return first; }

IntList getRest() { return rest; }

/* other methods

public String toString() { // no leading space before first

return "(" + first + rest.toStringHelp() + ")";

}

String toStringHelp() { // leading space before each elt

return " " + first + rest.toStringHelp();

}
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}

These three classes form a conventional composite class hierarchy with IntList at
the top. These class definitions rely on Java exceptions to handle erroneous uses of
the getFirst and getRest methods. We will discuss exceptions in detail in Section
1.9.3. For now, all you need to know is that (i) all exceptions are elements of the the
built-in type Exception and (ii) the throw statements in the bodies of getFirst
and getRest in class Empty abort the computation and print the specified strings
as part of the error message.

The IntList class includes the method toStringHelp as a “help” method for
printing lists without any extraneous spaces. The String representation for every list
is enclosed in parentheses, but leading blanks appear every element after the first.
The toStringHelp method is responsible for printing the elements of a list tail
that excludes the first element. Hence, toStringHelp generates a space before each
element that it processes. In contrast, toString generates the enclosing parentheses
and the first element if present; it delegates formatting the remaining elements of
the list to toStringHelp.

1.5.3 Type Predicates and Type Casts in Java

In Java, all reference (object) types are subtypes of the universal type Object. If
we ignore the eight primitive types (which all have corresponding wrapper types in
the Object type hierarchy), then Object is the universal type to which all program
values belong.

To test membership in particular object types, Java provides a collection of
postfix operators of the form

instanceof T

where T is any defined object type. Hence, given the preceding program defining
type IntList, Java interprets the program expressions below as follows:

new Empty() instanceof Empty ⇒ true

new Cons(0, new Empty()) instanceof Empty ⇒ false

"A" instanceof Empty ⇒ false

The instanceof operator has the same precedence as the relational operators. (Al-
though the second “argument” to instanceof must be a type name, the Java parser
initially recognizes this argument as an expression.)

Finger exercise: Load the sample program IntList.java into the DrJava
Definitions pane. Add definitions for isEmpty and isCons. In the Interactions pane
try evaluating the following sequence of interactive computations:

IntList empty = new Empty();

empty

IntList oneElt = new Cons(1, empty);

oneElt
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empty.isEmpty()

empty.isCons()

oneElt.getFirst()

oneElt.isEmpty()

oneElt.isCons()

IntList twoElts = new Cons(0, oneElt);

twoElts.getFirst()

twoElts.getRest()

twoElt.getRest().isCons()

empty.getFirst()

empty.getRest()

"A".isEmpty()

"A".isCons()

Perform the equivalent sequence of membership tests as in the previous exercise
using instanceof operators instead of the operations isEmpty and isCons.

To accomodate static type checking, Java includes type coercion functions called
casts. You may have noticed that Java includes operations for casting one primitive
type to another. These primitive type casts convert values of one type to “cor-
responding” values of another type. The casting operations for object types have
a completely different meaning; casting a value v to an object type T peforms an
instanceof check on v provided v is not null. If the check returns false, then Java
throws a ClassCastException indicating that the cast failed. If this exception is
not caught (see Section 1.11.3), Java aborts execution and prints an error message
indicating which cast failed. In contrast, primitive type casts never fail!

Casting the null value to an object type always succeeds, so a value that has
been cast to a particular type T can still generate a NullPointerException if it is
subsequently used as the receiver in a method call.

If object type casts can only cause a program to abort execution, what good
are they? Since the cast prevents execution from continuing if the instanceof test
fails, the compiler knows that the result of object casting expression

( T) e

has type T. Consequently, the static type checker in the compiler assigns the static
type T to this casting expression. By inserting object casting operations in a pro-
gram, you can tell the static type checker that a particular expression has a narrower
(more precise) type that the type that would otherwise be assigned by the static
type checking rules.

Finger exercise: Load the preceding definition of the IntList class and sub-
classes the DrJava Definitions pane. Save your code in the file IntList.java. In the
Interactions pane try evaluating the following sequence of interactive computations:

IntList empty = new Empty();

IntList oneElt = new Cons("B", empty);

oneElt

oneElt.first
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((Cons) oneElt).first

oneElt.rest

((Cons) oneElt).rest

Perform the equivalent sequence of membership tests as in the previous exercise
using instanceof operators instead of the operations isEmpty and isCons.

1.5.4 Avoiding the Use of the instanceof test

1.5.5 Maintaining Sample Test Data

In the design recipe given earlier in this section, we suggested including sample
instances for each concrete class in a data definition as static final fields of the
respective classes. We could add the following static final fields in the classes
Empty and Cons to perform this function.

...

class Empty extends IntList {

...

static final ONLY = new Empty();

}

class Cons extends IntList {

...

static final oneElt = new Cons(1, Empty.ONLY);

static final twoElts = new Cons(5, oneElt);

static final threeElts = new Cons(-10, twoElts);

}

Although this approach works well for small programs, it does not scale well
to larger programs. The storage overhead involved in storing sample data values
as static members of program classes may be significant. Moreover, when testing
programs that mutate data, the testing process may destructively modify the test
inputs so they must be re-constructed before each test run. A much more robust
approach to writing tests is to define a separate test class CTest for each target class
(or class hierarchy) C that we want to test. This approach is used in the widely used
JUnit test framework, which we will discuss later in the monograph.

For now, we will write our test code in a separate test class without the support
of the JUnit test framework. For simple target classes like IntList, we will define
our test inputs as static final fields of the test class.

1.5.6 A Sample Program

We are now ready to define a simple program to sum the integers in a lists. We will
add a definition of the method

int sum();
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to each class in our composite class hierarchy for IntList. Let’s begin by writing
the contract and header for sum in the abstract class IntList:

// IntList := Empty() + Cons(Object, IntList)

abstract class IntList {

...

abstract int sum();

// returns the sum of the numbers in this

}

Next we need to generate examples showing the expected behavior of the method:

/** IntList := Empty() + Cons(Object, IntList) */

abstract class IntList {

...

abstract int sum();

// returns the sum of the numbers in this

}

class IntListTest() {

static final oneElt = new Cons(1, Empty.ONLY);

static final twoElts = new Cons(5, oneElt);

static final threeElts = new Cons(-10, twoElts);

/** Given the the answer ans, computes the sum() on this and

* compares it against ans. If the values disagree, it throws an

* exception with an embedded error message; otherwise it

* silently returns.

*/

void test(IntList input, int ans) {

int result = sum();

if (result != ans) throw new

RuntimeException("Test FAILURE: computed answer is: " + result +

" correct answer is: " + ans);

}

void sumTest() {

test(Empty.ONLY, 0);

test(oneElt, 1);

test(twoElts, 6);

test(threeElts, -4)

}

}

The test and sumTest methods both have result type void, which is the degen-
erate, empty type. There are no values of type void. A method with void return
type does not return a value. When running a program test, we want the test to
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“silently” return (indicating successful completion) unless there is an error, which
generates an exception aborting the execution of the test.

As the fourth step, we select a template for writing the sum method, which for
methods on composite hiearchies like IntList is usually the interpreter pattern:

class Empty {

...

int sum() { ... }

}

class Cons extends IntList {

int first;

IntList rest;

...

int sum() { ... first ... rest.sum() ... ; }

}

Finally, we complete the coding process by filling in the bodies of the methods
in the template:

class Empty {

...

int sum() { return 0; }

}

class Cons extends IntList {

int first;

IntList rest;

...

int sum() { return first + rest.sum(); }

}

To finish the design recipe, we test our code using the examples in the main

method of IntList.

Finger Exercises:

1. Load your saved file IntList.java into DrJava Definitions pane. Define the
sum method as described above. Try some simple experiments in the Inter-

actions pane to convince yourself that your IntList class (including the sum

method) is correctly coded.

2. Next add the IntListTest class to your program in the Definitions pane.
In the Interactions pane, run the tests specified in the method invocation new

IntListTest().sumTest(). The method should silently return if you coded
everything correctly.
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3. Using the same design recipe, add a definition of a method mapSquare() that
constructs a list consisting of the square of each element in the input list
(this). Add a method squareTest() to the IntListTest class to test your
mapSquare method and confirm that your code works. Note that the Data
Analysis and Design step has already been done in the definition of the
IntList hierarchy. Save your revised program in the file IntList.java.

1.5.7 Inheritance and the Composite Pattern

Up to this point, we have used methods in Java essentially like functions in a pro-
cedural lanuage. What makes object-oriented programming truly powerful is the
ability to add new forms of data to our program without modifying any old code.
For example, if we later decide to insert links to other directories as additional form
of DeptDirectory data, we can simply define a new subclass Link of DeptDirectory
with a subDir field referring to the embedded directory (which can be searched us-
ing the findAddress method. The new class must define findAddress for the new
form of data that it introduces, but none of the existing classes requires any change
whatsoever.

In defining a program extension, the added data does not have to be a new
subclass of an abstract class like DeptDirectory. The new data can be a subclass
of an existing concrete class. For example, we could extend our directory program
by defined a class EntryWithPosition extending Entry with a String field title

specifying the person’s title (graduate student, instructor, professor, chair, etc.)
and a getter method getTitle to retrieve it. No revision of the Entry class would
be required. Unfortunately, to extract this information using the programming
techniques discussed so far, we would have to add a new method findTitle to
the composite class hierarchy DeptDirectory—modifying existing code. We will
introduce a design pattern, called the visitor pattern near the end of this chapter
that eliminates this problem.

When a class C extends another class D, every instance (non-static) member m
of D is automatically an instance member of C with one exception: if C redefines
the method m4 We say that the instance members of class D are inherited by the
subclass C. The linguistic convention of automatically incorporating the instance
member definitions of a class in each of its subclasses is called inheritance. If an
inherited method m is redefined in class C, we say that the new definition overrides
the inherited definition.

We have already made extensive use of a limited form of inheritance in the
composite pattern. All of the variant classes of in a composite hierarhcy provide def-
initions for the abstract methods inherited from the abstract superclass. Recall the
DeptDirectory and IntList programs. When an abstract method from an abstract
class is overridden in a concrete subclass (e.g. findAddress from DeptDirectory

in the classes Empty and Cons), the “missing” definition inherited from the abstract

4The redefined method must have exactly the same name and input and output types as the

method m that would have been inherited.



CHAPTER 1. FROM C++ TO JAVA 38

class is overridden. This special form of overriding is sometimes called method ex-
tension because the inherited meaning of the method (nothing) is extended rather
than modified.

When a class C overrides a method m in its superclass D, code in the body of C
can still invoke the overridden method m from D using the special notation

super.m( ... )

The feature can be used to add pre-processing and post-processing code to an in-
herited method m. The overriding definition of m can check or transform its inputs,
invoke super.m on the transformed inputs, and subsequently check or transform
the result produced by the super.m call.

It is important to remember that all unqualified member references in inherited
code implicitly refer to the implicit method argument this which is bound to an
instance of the inheriting class! Hence, the meaning of a method call appearing in
inherited code changes if the specified method has been overridden! In practice,
this semantic convention gives the behavior that programmers expect for instances
of subclasses, but it can occasionally produce surprises—particulary if the method
overriding is the result of an accidental rather than an intentional name match.

Finger exercise: Load the superCall sample program into the DrJava Def-

initions pane. The body of method length in class Vector includes calls on the
instance method getLeft and getRight. The class TranlatedVector which ex-
tends Vector contains a super call on length in its overriding definition of length.
To what object is this bound in the inherited length method when it is invoked
by the super call?

The meaning of field names in inherited code is even more subtle than the
meaning of method names, because fields are never overridden. If the extending
class C defines a field with the same name as an inherited field, the inherited field is
merely “shadowed” exactly as it would be by a local variable with the same name.
The inherited field still exists in each instance of C and can be accessed by code in
the body of C (assuming that it not private, see Section 1.5.8) by casting the C

object to its superclass type D before extracting the field.
If you follow the programming guidelines recommended in this monograph you

can generally avoid the pathologies discussed in the preceding paragraph. According
to our stylistic rules, field references should never span class boundaries (with the
exception of visitor objects discussed below in Section 1.10). Hence, shadowed
members are only accessed through getter methods inherited from the superclass.
The only field that can be accessed directly is the one defined in the current class.

Overriding equals

As an example of inheritance, consider the method

public boolean equals(Object o);
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which is defined in the class Object, the superclass of all Java classes. Any Java
class that is defined without a designated superclass is an immediate subclass of the
Object class. In the class Object, equals is defined to mean Object identity. Two
object references are identical if and only if they refer to exactly the same object
(produced by a particular new operation).

For some classes, identity is the appropriate definition for equality, but for many
others it is not. In the built-in class String, the equals method is redefined to
compare the sequences of characters in strings, so that copies of the same string are
considered equal. The redefinition of equals only affects the class String and any
subclasses that it might have. This selective form of method redefinition is called
method overriding.

The overriding of the equals method is particularly delicate because the Java
libraries all assume that equals defines an equivalence relation–except on the argu-
ment null, which is treated as a special case. In particular, for all non-null x and
y, x.equals(y) iff y.equals(x). If the argument to equals is null, then the Java
API specification stipulates that equals must return false.5 If the class containing
the overriding definition of equals can be extended (subclassed) then the coding of
equals is quite subtle.

In particular, the overriding definition must confirm that the argument o belongs
to exactly the same class as this. Assume that we are overriding the definition of
equals in the composite class hierarchy IntList given in Section 1.5.2 above. The
following code for the definition of equals in the Cons does not work in general!

public boolean equals(Object o) {

return (o != null) && (o instanceof Cons) &&

(first == ((Cons)o).first) && rest.equals(((Cons)o).rest);

}

This code can fail if Cons has a subclass ExtCons because equals can report that
an instance of ExtCons is equal to an instance of Cons. Even worse, if equals is
overridden in ExtCons using the same instanceof pattern,

public boolean equals(Object o) {

return (o != null) && (o instanceof ExtCons) &&

(first == ((ExtCons)o).first()) && rest.equals(((ExtCons)o).rest());

}

a.equals(b) does not imply b.equals(a) For example, if a is an instance of Cons
and b is an an instance of ExtCons with exactly the same first and rest fields as a,
a.equals(b) will be true while b.equals(a) will be false (because a instanceof

ExtCons is false.
The problem with the instanceof pattern for writing equals is that instanceof

does not test for an exact class match. We can compare the classes of objects by

5This part of the equals specification is poorly designed because it unnecessarily complicates

the behavior of equals without providing any useful benefit. A better specification would have

stipulated that the behavior of equals on null was unspecified because null is outside the intended

domain of the method.
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using the method getClass() which is inherited by all classes from Object. This
method returns an instance of the class Class representing the class of the receiver
object. In addition, we can get the Class object for any specific class C, simply by
typing C.class. Every class has exactly one Class object representing it. Hence,
the equals method for Cons above can be rewritten:

public boolean equals(Object o) {

return (o != null) && (o.getClass() == Cons.class) &&

(first == ((Cons)o).first) && rest.equals(((Cons)o).rest);

}

Finger Exercise Load the sample program intList into the DrJava Definitions

pane. Override the definition of equals for both Empty and Cons to match the
definition of the mathematical notion of equality on lists of integers, i.e., two lists
are equal iff they contain exactly the same elements in exactly the same order. Try
evaluating a substantial set of test cases for your new method in the Interaction pane
of DrJava.

1.5.8 Helper Methods, Packages, and Visibility

The coding of non-trivial methods often involves the use of auxiliary methods called
“help” methods. The specified operation may be easily derivable from another op-
eration that has a simpler definition. For example, in the preceding definition of the
composite class hierarchy IntList, we introduced a helper method toStringHelp

to help support the printing of lists without extraneous blanks. The toStringHelp

method prints the rest of a non-empty list with a leading blank before each element
but no trailing blanks or closing parenthesis.

Since helper methods are defined strictly for the use of code within the class, we
would like to prevent the definition from “leaking” outside the class. Java provides
a mechanism for preventing such leaks. Class members can be assigned one of
four visibility levels private, default, protected or public. private members are
visible only within the class in which they are defined. Default members are visible
only within the package in which they are defined. protected members are visible
in the package in which they are defined and in subclasses of the defining class.
public members are visible everywhere.

In section 1.1.2, we stated that the only way to access the fields of an object
is through “getter” methods provided by the class definition. If we always declare
the instance (non-static) fields of a class as private, then this statement is com-
pletely accurate. We strongly recommend following this convention; it supports to
the object-oriented principle of separating the implementation of a class from its
interface.

We have avoided mentioning the Java package system until now because it is
not helpful in writing programs of modest size. Large Java programs typically are
partitioned into packages analogous to the file directories in a tree-structure file
system. Each package, except for the “default” package discussed below, has a
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unique name consisting of one or more Java identifiers separated by periods. Hence
java, java.lang, and java.awt.event are are all valid package names.

Every Java class belongs to some package. If a source file does not mention
a package name, then it is considered part of a special “default” package with no
name. In this monograph, we will use the default package for all of the code that we
write. On the other hand, all of the Java core library code that we will use resides
in named packages. The Java libraries are partitioned into packages like java.util,
java.awt, java.awt.event and javax.swing. Packages are not nestable. There is
no connection between java.awt and java.awt.event other than a common name
prefix.

The private attribute is well-suited to hiding helper methods that aren’t re-
quired in subclasses. The protected attribute is useful when helper methods
are referenced in subclasses residing in other packages. In our example above,
toStringHelp is accessed by all of the subclasses of IntList. Hence, the appro-
priate protection mechanism for our toStringHelp is either default or protected.
Since all our program classes reside in the same package, it doesn’t matter. How-
ever, if we wanted to define subclasses of IntList in another package, we would
need to declare the toStringHelp method as protected to make it visible within
these subclasses.

When an inherited method is overridden, it cannot be made less visible. Hence,
an overridden public method must be declared as public. On the other hand, an
overridden protected method may be declared as public.

Finger Exercise Load the sample IntList program into the DrJava Definitions

pane. Convert the test method to a private method. Confirm that the main

method for the IntList class still executes the test suite for the sum method. In
the Interactions pane, try evaluating the following sequence of statements:

IntList l = new Cons(17, new Cons(13, Empty.ONLY));

l.test(30);

1.6 Using Classes to Enforce Invariants [Optional]

Some data objects have an associated invariant (boolean condition) which must be
maintained for the object to be well-formed. For example, the elements in a sorted
list must appear in increasing order (non-decreasing if duplicates are allowed). In
many cases, a class can ensure that such an invariant always holds by enforcing a
well-chosen interface.

Consider the example that we already cited: a sorted list. Can we define a class
OrdList similar to IntList class that guarantees that all instances are sorted? The
answer is yes, but we have to change the visible interface (members) supported by
the IntList class. In particular, we cannot allow clients of the OrdList class to
perform new operations on OrdList. To add an element to an OrdList, clients must
use a method
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OrdList insert(int f)

that inserts f in proper position in this.
The Ordlist class includes a binary constructor just like IntList except for the

fact that it is private, implying that no code outside of class Cons can use it. This
visibility restriction raises a minor problem: how can we write the insert method
for the Empty subclass? The binary Cons constructor is not accessible! The answer
is to define a second constructor for the Cons class that takes a single int argument
and initializes the rest field to Empty.ONLY.

Finger Exercise Write a definition for the OrdList composite class hierarchy
as described above. Test your code.

Exercise Load the sample program IntList into the Definitions pane. Define
a subclass OrdCons extending Cons that guarantees that first precedes rest.first
(assuming it exists). The rest field of a OrdCons node must be either Empty or
OrdCons. Define a sort method for the class IntList that sorts a list converting
all Cons nodes to OrdCons nodes. Test your code.

1.7 Interfaces

We have not yet discussed one of most important object-oriented features of Java,
namely the notion of an interface. In essence, an interface is a special lightweight
form of abstract class. We use the term lightweight to describe an abstract class
with no fields and no concrete methods; the only members are abstract methods.
The key difference between an interface and the corresponding abstract class is that
a class can have an unlimited number of immediate superinterfaces but it can only
have one superclass.

An interface definition has almost the same syntax as a class definition:

interface name {

... member declarations ...
}

The only significant difference is the keyword interface instead of class.
In this monograph, we will usually follow the convention that interface names

end with a capital“I”. Hence, “ListI” is the name of an interface, while “List” is
the name of a class. There is no generally accepted convention for distinguishing
interface names from class names in the Java programming culture. In the Java
libraries, for example, there is no way to tell a class from an interface based on its
name.

A class can implement an arbitrary number of interfaces. A class definition can
optionally include an implements clause immediately following the extends clause
(assuming one is present) in the class header. Sample programs using interfaces
appear in 1.8.
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1.7.1 Multiple Inheritance

Some object-oriented programming languages like C++ permit a class to have mul-
tiple superclasses. This form of inheritance, which is called multiple inheritance, is
very controversial. While clever uses of multiple inheritance abound, the semantics
of code and field inheritance with multiple superclasses is problematic because of
name clashes between members and, worse, the possibility of inheriting the same
class in more than one way. Recent programming language research suggests that
there are better approaches to inheritance that combine the flexibility of multiple in-
heritance with the simplicity of single inheritance, but they are currently the subject
ongoing research and experimentation.

Java supports multiple interface inheritance, which the most attractive proven
alternative to multiple inheritance. In multiple interface inheritance, a class can ex-
tend multiple lightweight abstract classes, but only one class that includes method
code and fields. Since no method code or fields appears in the lightweight abstract
classes, there is no problem with name clashes (since all interface methods are pub-
licly visible) or inheriting the same interface in multiple ways. We will illustrate the
utility of Java interfaces in the next section. At this point, all we can say is that the
abstract classes DeptDirectory and IntList could be declared as interfaces instead
if we were willing to make all of their methods public and delete the test method
from IntList.

Since the abstract class DeptDirectory above does not contain any members,
it could be trivially rewritten as follows:

interface DeptDirectoryI {}

We will follow the convention that interface names begin with the capital letter I

followed by a name capitalized like a conventional Java class. This convention is not
a commonly accepted standard, but it clearly distinguishes interfaces from classes.

This change forces a small change in the definition of any immediate subclass
of DeptDirectoryI: the word implements must be used in the header instead of
extends:

class Empty implements DeptDirectoryI ...

class Cons implements DeptDirectoryI ...

In short, a class implements an interface but extends a class.
We generally recommend using abstract classes as the root classes in compos-

ite hierarchies because they frequently need to introduce methods that should be
hidden (not public) and methods that are not abstract. On the other hand, some
programs involve multiple composite class hierarchies that share concrete subclasses.
In this case, you must define the root classes as interfaces or define two copies of
the “shared” classes.
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1.7.2 Implicit Polymorphism

A cardinal rule in program design is “Never repeat code”. If a program repeats es-
sentially the same code in two or more places, then the programmer failed to identify
a common abstraction that should only be written once. The repeated code sections
can be replaced by calls on a new abstraction that defines the repeated operation.
Any minor differences between the repeating code sections can be accommodated
by passing appropriate arguments that “fill in” the differing expressions.

This “code factoring” technique works extremely well in functional languages
where code is readily treated as data. It is equally applicable to Java but the nota-
tional details may be cumbersome in some cases because methods cannot be directly
passed as arguments. In addition, since Java is statically typed, code factoring may
introduce some imprecision is program typing.

Passing methods as arguments is such an important programming technique that
object-oriented programmers have developed a design pattern, called the command
pattern, that enables Java programs to indirectly pass methods as parameters by
embedding them in “dummy” objects called commands. This pattern is discussed
in the next subsection. The complicating effects of Java’s static type discipline are
illustrated by the following example.

Consider a program that manipulates lists of several different types of elements.
One approach is to define a separate composite class hierarchy for each kind of list.
But this approach requires replicating essentially the same code in the definition of
each class. To avoid this code replication, we can define a single composite class
hierarchy for lists of type Object. Since all Java object types are subtypes of Object,
such a list type can be used in place of any specific list type. However, when we
extract an element from such a list, we will generally have to cast it to the specific
type required by the context in which it is used. These casting operations clutter the
code and reduce the precision of static type checking. Nevertheless, the advantages
conferred by avoiding code replication usually outweigh these disadvantages.

Finger Exercise Load the sample IntList1 program into the DrJava Defi-

nitions pane. Convert it to a definition of a class ObjectList where the list ele-
ments have type Object instead of type int. Test this program and save it in a
file objectList.java for future use. Finger Exercise Load the program in your

saved file objectList.java into the Definitions pane. Define a method

ObjectList sort()

that sorts a list of Integer into non-descending order, akin to the sort method
on IntList that you defined in section 1.6. Your code will need to use casting
operations confirming that the elements in the receiver of a sort invocation have
type Integer. Test your code. What happens if you try to sort a list containing
elements that are not of type Integer?
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1.7.3 Interface Types

An interface identifies a program type independent of any specific class. This mecha-
nism enables Java to express computations in more abstract and flexible terms. Con-
sider the following example. Java includes a built-in interface named Comparable

with the following definition:

interface Comparable {

int compareTo(Object o);

}

All of the methods in an interface are automatically abstract and public. Let
us define a class CompList similar to IntList where list elements have the type
Comparable. An object has type Comparable iff it is an instance of a class that
implements the Comparable interface. Interface implementation is inherited: if a
class C implements an interface I then all subclasses of C implement I also.

In this context, we can define the class CompList as follows:

abstract class CompList {

abstract Comparable getFirst();

abstract CompList getRest();

abstract String toStringHelp();

}

class Empty extends CompList {

Comparable getFirst() { throw

new IllegalArgumentException("getFirst() requires a non-Empty CompList");

}

CompList getRest() { throw

new IllegalArgumentException("getRest() requires a non-Empty CompList");

}

public String toString() { return "()"; }

String toStringHelp() { return ""; }

}

}

class Cons extends CompList {

Comparable first;

CompList rest;

Cons(Comparable f, CompList r) { first = f; rest = r; }

Comparable getFirst() { return first; }

CompList getRest() { return rest; }

public String toString() {

return "(" + first + rest.toStringHelp() + ")";

}
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String toStringHelp() {

return " " + first + rest.toStringHelp();

}

}

Now assume that we want to modify the CompList class so that it implements the
Comparable interface. The compareTo method in the Comparable interface has the
following contract. Any class C that implements the Comparable interface must have
an associated binary relation that is totally ordered: for every pair of objects a and
b in C, either (i) a is less than b, (ii) a equals b, or (iii) a is greater than b. For any
instance o of the same class as this, compareTo(o) returns (i) a negative number
if this is less than o, (ii) zero if this equals o, and (iii) a positive number if this
is greater than o. If o belongs to a different class than this, compareTo(o) throws
a ClassCastException indicating an erroneous use of the compareTo method.

In the CompList class, we can impose a lexicographic total ordering on lists.
This ordering is a generalization of the familiar alphabetic ordering on strings. In
such an ordering, a precedes b iff either

• a is empty and b is not,

• the first element of a precedes the first element of b, or

• the first element of a equals the first element of b and the rest of a precedes
the rest of b.

Finger Exercise Load your saved file objectList.java int the DrJava Defini-

tions pane. Convert it to a definition of the class CompList given above. Modify this
CompList class to implement the Comparable interface as described above. Include
test examples in your code and run them to confirm that your program works in
these cases.

1.8 The Command Pattern

In a finger exercise in Section 1.4.3, we extended the DeptDirectory program by
writing a method findPhone(String name) to look up a person’s phone number.
We implemented findPhone in exactly the same way as findAddress, replicating
method code. A better strategy would be to implement a method

Entry findEntry(String name)

that returns the Entry matching a given name, and then to define both findPhone

and findAddress in terms of findEntry.
In this section, we will explore a far more general technique for eliminating code

replication called the command pattern. To accommodate returning different Entry
fields, we will define a method
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String findField(Operation f, String name)

that takes an Operation object as an extra argument specifying which field to re-
turn. This approach implements the well-known “code factoring” process described
above; repeated code patterns are abstracted into methods that take parameters
that “customize” the code appropriately. In many cases, these parameters are “com-
mand” objects representing methods.

Code factoring involving methods as parameters cannot be directly implemented
in Java because methods are not values that can be passed as arguments. Some
object oriented languages such as SmallTalk and Self classify methods as data values,
permitting code factoring to be implemented directly. Fortunately, it is not difficult
to get around this restriction by explicitly representing methods as objects. All
we have to do is introduce an appropriate abstract class Operation containing a
single abstract method execute( ... ) and define a separate concrete subclass
of Operation for each method that we want to pass as an argument. Each concrete
subclass defines the abstract method execute appropriately. In the general case,
the Operation subclasses may contain fields that correspond to the free variables
appearing in procedural arguments in functional languages. These free variables
must be bound when the Operation is constructed, exactly as they are in a language
supporting procedures as data values.

In the object-oriented design literature, this technique is called the command
pattern in homage to the dominant role that imperative operations have played in
object-oriented computation. Here we are using this pattern in a purely functional
fashion.

To illustrate the command pattern, let us continue our DeptDirectory example.
If we independently write findPhone and findAddress, they differ only in the field
name used in the return expression.

class Empty extends DeptDirectory {

...

String findAddress(String name) {

return null;

}

String findPhone(String name) {

return null;

}

}

class Cons extends DeptDirectory {

...

String findAddress(String name) {

if (name.equals(first.name))

return first.getAddress();
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else return rest.findAddress(name);

}

String findPhone(String name) {

if (name.equals(first.name))

return first.getPhone();

else return rest.findPhone(name);

}

}

We can “abstract out” this difference by writing a single findField method
embodying the common code in the methods findPhone and findAddress. To
accommodate differing choices for the returned Entry field, the method takes an
Operation that performs the appropriate field extraction on the Entry. The follow-
ing code includes a new mechanism for defining concrete subclasses, called anony-
mous classes, that we have not discussed before. We will explain anonymous classes
in detail below. In this example, anonymous classes are used to generate instances
of new subclasses of the interface OperationI; the static fields address and phone

are bound to objects of type Operation that define the execute method as the
method extracting the address and phone fields, respectively, of an Entry.

interface OperationI {

String execute(Entry e); // implicity public and abstract

}

abstract class DeptDirectory {

...

abstract String findField(OperationI c, String name);

String findAddress(String name) {

return findField(opddress, name);

}

String findPhone(String name) {

return findField(opPhone, name);

static OperationI opAddress = new OperationI() {

// ANONYMOUS class

public String execute(Entry e) { return e.getAddress(); }

}

static OperationI opPhone = new OperationI() {

// ANONYMOUS class

public String execute(Entry e) { return e.getPhone(); }

}

}

class Empty extends DeptDirectory {

...

String findField(OperationI c, String name) {

return null;
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}

}

class Cons extends DeptDirectory {

...

String findField(OperationI c, String name) {

if (name.equals(first.name)) return c.execute(first);

else return rest.findField(c,name);

}

}

Each brace construction

{ // ANON CLASS

public String execute(Entry e) { return e. ...; }

}

following a new OperationI() expression above defines a unique instance of a
new anonymous (unnamed) class implementing the interface OperationI. In Java,
anonymous classes are simply an abbreviation mechanism. The OperationI class
could have been written without anonymous classes as follows:

interface OperationI {

String execute(Entry e);

}

}

class AddressOperation implements OperationI {

public String execute(Entry e) {

return e.getOffice();

}

}

class PhoneOperation implements OperationI {

public String execute(Entry e) {

return e.getPhone();

}

}

abstract class DeptDirectory {

...

static OperationI opAddress = new AddressOperation();

static OperationI opPhone = new PhoneOperation();

}

at the cost of introducing the new class names AddressOperation and PhoneOperation.
In general, a single instance of a new class extending class (implementing inter-

face) C can be created using the notation:

new C(...) { ... members ...}

where C(...) specifies what superclass initialization should be performed on the
instance. If C is an interface, then the argument list in C(...) must be empty. No
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constructors can appear in the list of members because the class is nameless and
cannot be instantiated again. Any required initialization of fields inside the instance
can be specified directly in the code defining the class.

If we ignore the ugly notation, an anonymous class extending the abstract class
OperationI has a direct analog in functional languages, namely an anonymous
function or lambda-expression. In any situation in a functional language where it is
appropriate to use a lambda-expression, you can use an anonymous class in Java!
The failure to make such an identification is the single most glaring failure of most
expositions on Java.

If an anonymous class appears inside a dynamic method, it can contain references
to the fields of the enclosing class instance—akin to the free variables that can appear
in lambda-expressions. The only complication is the treatment of the variable this.
Since an anonymous class defines an instance of a new class, the variable this

inside an anonymous class refers to the new class instance. It does not refer to the
enclosing class instance. To refer to the “entire” enclosing class instance, Java uses
the notation C.this where C is the name of the enclosing class.

Exercises:

1. Add a map method to the IntList class that takes an OperationI and applies
it to each element of this to produce a new IntList with exactly the same
number of elements as this.

2. Assume that a vector
< a0, a1, a2, ..., an >

is represented by the list
(a0 a1 a2 ... an).

where the coefficient’s ai are objects of type Double. Add a method

double norm()

to IntList computes the norm by this.v by squaring the elements, adding
the squares together and taking the square-root of the sum. You can compute
the vector of squares using map and the define a method double sum() to
compute the sum.

3. Assume that a polynomial

a0x + a1x + a2x
2 + ... + anxn

is represented by the list
(a0 a1 a2 ... an)0

where the coefficient’s ai are objects of type Double. Write a method

double eval(IntList p, Double x)
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to evaluate the polynomial at coordinate x. Use Horner’ rule asserting that

a0 + a1x + a2x
2 + ... + anxn = a0 + x · (a1 + x · (a2 + ...x · an))

Remember to use the structural design pattern for processing lists (and by
association polynomials as we have represented them).

1.8.1 Static Members of Classes

In addition to (instance) members, a Java class can include static members that
are attached to the class rather than instances of the class. We have already seen
how static final fields provide a simple way to define constants.

The static members of a class are not included in the template used to create
class instances. There is only one copy of a static field for an entire class—regardless
of how many instances of the class are created (possibly none). Similarly, the code
in a static method cannot refer to this or to the fields of this because there is
no class instance to serve as the receiver for such an access./footnoteOf course, a
static method can invoke an instance method (or extract an instance field) of class
if it explicitly specifies a receiver for the invocation.

Static methods are useful because we occasionally need to write methods where
the primary argument is either a primitive value or an object from a class that
we cannot modify. For example, the library method Integer.toString(int i)

converts an int to the corresponding String. Since an int is not an object, there
is no int class to hold such a method.6 Consequently, the Java library provides a
static method toString(int i) in the class Integer.

Finger Exercise: In DrJava, try typing the followin expressions in the Interac-

tions pane:

Integer.toString(7)

Boolean.toString(true)

Math.abs(-10.)

Integer.toString(7) + Boolean.toString(true)

7 + Boolean.toString(true)

Why do the last two expressions return the same result? Java automatically inserts
the appropriate toString conversions on the argument of the + operator. This
conversion process, however, only works when Java can determine that you are
using + to denote string concatenation rather than addition. Try evaluating

7 + true

7 + 7

true + true

Integer.toString(7) + 7

Boolean.toString(true) + true

6Of course, any static method can be converted to an instance method in some class, but the

conversion is gratuitous since the static method code ignores this.
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If one of the arguments to + is a string, then Java interprets + as the string concate-
nation operator. One way to force this conversion is to include the empty string ""

in a concatenation sum. Try evaluating

"" + 7 + true

Static members are really familiar notions from C++ in disguise; static fields
behave exactly like ordinary global variables in C++ and static methods behave
like ordinary C++ procedures. Java forces these global variables and procedures to
be attached to classes in the guise of static fields and static methods.

Since static fields and methods (other than static final constants) are out-
side the realm of object-oriented computation, we will rarely use them. Finger

Exercise: Define a class MathUtil that includes a method

public static int max(IntList l)

that computes the maximum element of the IntList l. If the list is empty, what
should you return?

Optional Finger Exercise Add a method

public static int map(FunctionI f, IntList l)

to the MathUtil class where FunctionI is the interface

interface FunctionI {

int apply(int y);

}

The map method takes an FunctionI f and an IntList l and applies f to each
element of the list l, returning a new IntList of the same length as l.

1.8.2 Complete Java Programs

Every complete Java program must contain a root class where execution can begin.
A root class must contain a main method defined with the header

public static void main(String[] args)

To execute a Java program, a user must identify the name of the root class
for the program. In most Java computing environments, the command required to
execute the Java program with root class C is simply

java C

Note that a class may contain a main method even if it is not intended to be the
root class of an actual program. Of course, evaluating the DrJava expression

Motto.main(null);
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is equivalent to executing this conssoled. For the sake of programming convenience,
the DrJava Interactions pane accepts the command line syntax as well as the explicit
invocation of the main method shown above.

In batch programming environments that lack an Interactions pane like DrJava,
it is common practice to use main methods in non-root classes as test methods. Such
test methods can easily be executed from the command line by typing

java C

where C is the class being executed. We do not recommend this practice in DrJava
because DrJava can evaluate any program expression in the Interactions pane, the
testing process is even more convenient. For the moment, we recommend defining a
static method test() in each class that tests all of the methods of the class. Later,
we will revise this recommendation to describe a much more comprehensive testing
strategy.

When execution begins in the main method of a root class, no instances of the
root class exist. In fact, most Java programs never instantiate the root class because
it serves as a framework for organizing program execution rather than a definition
of a new form of data. Java classes really serve two distinct purposes: defining data
objects and organizing static methods and variables.

The args parameter of the main method in the root class is used to pass com-
mand line options to the Java program. We will not use this feature in this mono-
graph.

A Complete Java Program

The following simple program

class Motto {

public static void main(String[] args) {

System.out.println("Java rules!");

}

}

prints the String output

Java rules!

and stops when the Java program with root-class Motto is executed. Before any
Java program can be executed, it must be compiled into a form suitable for machine
execution called a class file Motto.class. The name of the class file generated for
a class C is simply C.class.

In DrJava, the Compile button applies the compiler to each open Java files and
write out the resulting class files to the file system—assuming that the files did
not contain any syntax errors. Each class file is stored in the same direcoty as the
corresponding source (.java) class.

Finger Exercise: Using DrJava, define the Motto class given above and execute
it as program.
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1.8.3 When to Use Static Methods

Static methods are necessary in Java for a variety or reasons including:

• defining operations on primitive types,

• defining operations on instances of library classes that cannot be modified or
extended such as String; and

• defining operations on arrays (which we will discuss later).

For example, the Integer class includes a static method

public String toString(int value);

that converts a primitive int value to its printable String form. Since int values
are not objects, this operation cannot be formulated in object-oriented style.

Similarly, an operation

public String squeezeWhiteSpace(String s);

that returns a String identical to s with all spaces and tabs removed must be
expressed as a static method because the library String class cannot be modified
or extended.

Finally, all operations on arrays must be expressed in static (procedural) form
because array types do not have conventional class definitions; they are built-in to
the Java virtual machine. We will discuss arrays in Chapter 2 when we address
imperative programming in Java.

1.9 Loose Ends

We have nearly finished covering the core “functional” subset of Java. Only a few
loose ends remain. They include:

• local variables;

• casts and static type checking;

• exceptions; and

• name and method overloading

1.9.1 Local variables

In Java, method parameters are simply local variables that are intitialized to the cor-
responding argument values. They are destroyed when the method returns. Within
a method, local variable definitions can be inserted as statements in any statement
sequence (such as a function body or compound statement). Each such variable is
accessible only in program text between its definition and the end of the statement
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sequence. The local variable is destroyed at the end of this statement sequence. In
general, ordinary local variables in Java function exactly like they do in C++

For example, it is convenient in writing a test method for a class to introduce
local variables to hold test data values. The following test method for the class
DeptDirectory relies on this technique.

public static void DDTest(){

Entry cork = new Entry("Corky","DH 3104","x 6042");

Entry matthias = new Entry("Matthias","DH 3106","x 5732");

Entry ian = new Entry("Ian","DH 3102","x 3843");

DeptDirectory dd = new Cons(ian, new Cons(cork,

new Cons(matthias, Empty.ONLY)));

System.out.println("ian " + dd.findAddress("ian") + " " +

dd.findPhone("ian"));

System.out.println("cork " + dd.findAddress("cork") + " " +

dd.findPhone("cork"));

System.out.println("matthias " + dd.findAddress("matthias")

+ " " + dd.findPhone("matthias"));

}

Java imposes an important restriction on the use of local variables in anonymous
classes. Any local variable mentioned in an anonymous class definition must be
declared final. In practice, this is not a significant restriction. In fact, most
attempted uses of non-final local variables in anonymous classes correspond to
errors in program logic. In any case where you need to mention a non-final local
variable in an anonymous class, you can simply introduce an extra final variable
with the required value. Ironically, this transformation often converts a logically
incorrect program in to a correct one! We will revisit this issue in later in the
monograph in connection with programming graphical user interfaces.

1.9.2 Casts and Static Type Checking

In Scheme every primitive operation dynamically checks that its arguments have
the appropriate form (type) as it executes. If an operation is applied to data of the
wrong form, Scheme aborts execution and prints an error message, much as Java
does when an exception is thrown and not caught.

Java also performs some argument checking during program execution (run-
time), but most argument checking is done statically by the compiler before a Java
program executes. A Java compiler enforces a syntactic discipline on program text
called static typing. The compiler uses a collection of type-checking rules to deter-
mine whether a program is well-typed or not. Programs that are not well-typed are
rejected with an explanation of which rules were broken.

The type-checking rules embody simple “common sense” inferences and consis-
tency checks. The rules assign a type to every program expression and subsequently
check that these type assignments are consistent. A Java compiler assigns types to
program expression as follows:
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1. every program constant has a type specified by the language definition;

2. every program variable (field, parameter, or local variable) has the type de-
clared in the program;

3. each method invocation has the declared return type of the method;

4. each application of an arithmetic operator (e.g., +, *) has the return type
stipulated by a table in the language definition;7

5. each application of a relational operator and instanceof test has type boolean;

6. each conditional expression

test ? consequent : alternative

has the more general type of the consequent type and alternative;8 and

7. the type of any cast expression

T e

is T.

Given these type assignments, a Java compiler checks their consistency by en-
forcing the following rules:

1. the type of the receiver of a field selection or method invocation includes the
specified field or method in its signature (a list of the member headers for the
class or interface);

2. the type assigned to each argument expression in a method invocation is a
subtype of the declared type of the corresponding parameter;

3. the type of the right-hand side of an assignment is a subtype of the type of
the left-hand-side; and

4. the type of each return expression in a method body is a subtype of the
declared return type of the method.

Note that Java type checking rules do not capture the logical consequences of
instanceof tests. As a result, Java program text often must include apparently
redundant casting operations in code following an instanceof test.

This phenomenon is illustrated in the following simple example. Consider the
following method which could be added to the IntList class above.

7The return types of arithmetic operators generally depend on the types of their arguments. For

some operator applications, the table immediately reports a type error.
8If neither arm of the conditional expression has a more general type, the program is not well-

typed.



CHAPTER 1. FROM C++ TO JAVA 57

static Object first(IntList l) {

if (l instanceof Cons) return ((Cons) l).first;

else throw

new ClassCastException("first requires a non-Empty IntList");

}

In the method, all occurrences of the parameter l have the same type, namely
IntList as declared in the method header. The

l instanceof Cons

test has no effect on type-checking. As a result, the occurrence of l preceding the
field extraction operation .first must be explicitly converted to type Cons using
the casting operation (Cons) written as a prefix in front of l. Since the field .first

is not defined in the abstract class IntList, the definition of the method first does
not type check if the casting operation (Cons) is omitted.

Applying a casting operation ( T ) to a Java expression e of some static object
type U has consequences for both program execution and compilation. First, it in-
serts a run-time check to confirm that the value of e belongs to the type T as claimed
by the casting operation. Second, it converts the static type of the expression e from
U to T .

1.9.3 Exceptions as Errors

Some operations on data are inherently partial. For example, there is no mathemat-
ically sensible definition for the result of integer division by zero. Similarly, there is
no sensible definition for the first element of an empty sequence. Java provides an
elegant mechanism for coping with this problem. Program operations can “throw” a
“run-time error” condition called an unchecked exception that aborts program execu-
tion and prints a diagnostic error message and a list, called a traceback, of the stack
of pending method calls. For example, attempting to divide any int by 0 generates
an ArithmeticException. Exceptions are ordinary Java data objects descended
from the built-in class called Exception. Unchecked exceptions are descendants of
the class RuntimeException extending Exception.

In Java, any method can “throw” an exception simply by executing the statement

throw e;

where e is any expression that evaluates to an object of type Exception. The classes
Exception and RuntimeException both include a zero-ary constructor and a unary
constructor. The latter takes an error message String as an argument. The string
argument is printed as a diagnostic message if it is provided.

The following Java code implements “functional” lists of objects:

abstract class List {

abstract Object first();
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abstract List rest();

abstract String toStringHelp();

// List -> String without enclosing parentheses and leading blanks

}

class Empty extends List {

Object first() {

throw new

ClassCastException("first requires a non-Empty List");

}

List rest() {

throw new

ClassCastException("rest requires a non-Empty List");

}

public String toStringHelp() { return "()"; }

String toStringHelp() { return ""; }

}

class Cons extends List {

Object first;

List rest;

Cons(Object f, List r) {

first = f;

rest = r;

}

Object first() { return first; }

List rest() { return rest; }

public String toString() { return "(" + first + rest.toStringHelp() + ")"; }

String toStringHelp() { return " " + first + rest.toStringHelp(); }

}

The class ClassCastException is a built-in Java class extending RuntimeException
that other built-in Java classes use to signal improper method applications where
this or some other argument belongs to the wrong class.

Exception objects that do not belong to the type RuntimeException are called
checked exceptions. We will discuss how they are used later in this monograph.

1.9.4 Name and Method Overloading

In Java, the same name can simultaneously be used for a local variable or method
parameter, different fields of the same object, and different methods of the same
object. Java uses context and type information to determine the meaning of a
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name. For example, many Java programmers would write the constructor for the
class Cons above as follows:

Cons(Object first, List rest) {

this.first = first;

this.rest = rest;

}

In this example, the names first and rest each have two different meanings. Java
resolves potentially ambiguous uses of names by using the innermost (most local)
definition of the name. Hence, the prefix this. is required to distinguish the first
and rest fields of this from the constructor parameters of the same name.

While the use of the same name for different kinds of program entities is widely
accepted as good programming practice, the use of one name for several different
fields or methods is more controversial. A Java subclass B can introduce a field
with exactly the same name n as a field in its superclass A. The inherited field is not
overridden (what would overriding mean in this context?); it is merely “shadowed”.
When the name n appears in a method of B, its meaning depends on the type of
the receiver. If the receiver is this, then the new field n introduced in B is meant.
But if the receiver has type A rather than B, then the old field n introduced in A
is meant. Warning: duplicate field names can be the source of insidious program
errors that are very difficult to diagnose. For this reason, we strongly recommend
against using them.

Duplicate method names are less controversial but can still be dangerous. In
a class, Java permits the same method name to be used for different methods as
long as their argument lists do not identical the same length and same types. The
practice of defining more than one method in a class with same name is called
method overloading. Java resolves overloaded method names using the types of the
argument expressions. When the Java compiler encounters a method invocation
involving an overloaded method, it determines the types of the method arguments
and uses this information to select the “best” (most specific) match from among the
alternatives. If no best method exists, the program is ill-formed and will be rejected
by the Java compiler.

We urge restraint in using the same name for different methods involving the
same number of arguments. Since static type information is used to resolve which
method is meant, program errors may be difficult to find because the programmer
may not infer the correct static type when reading the code.

1.10 The Visitor Pattern

The composite and interpreter patterns enforce an elegant discipline for writing
object-oriented functional programs. But this elegance comes at a price: every time
we need to define a new operation we must modify every class in the composite class
hierarchy to add a new method. As a result, program modification involving new
methods is painful. Moreover, we cannot use these patterns to define new operations
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if we do not control the source code for the composite class. Without access to the
source code, the only way we can define new methods is to write them in procedural
style as static methods in another class, losing all the benefits of object-oriented
organization.

In this section, we introduce a design pattern, called the visitor pattern, that
completely and elegantly solves the problem of adding new operations to composite
class hierarchies without modifying the text of either the composite class or its
variants.

Before delving into the technical definition of the visitor pattern, we present a
motivating example: an interpreter for arithmetic expressions.

1.10.1 Interpreting Arithmetic Expressions

An ArithExpr is either:

• Const(c)

• Sum(left right),

• Prod(left,right), or

• Neg( left)

where c is an int and left and right are ArithExprs.
As before, to represent this data type in Java, we employ the composite pattern.

We define an abstract class to represent the union of these types, and four concrete
subclasses, one for each of the different variants.

abstract class ArithExpr {

}

class Const extends ArithExpr {

/* fields */

private int value;

/* constructor */

Const(int v) { value = v; }

/* getters */

int getValue() { return value; }

/* toString */

public String toString() { return Integer.toString(value); }

}

}

class Sum extends ArithExpr {

/* fields */

ArithExpr left, right;
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/* constructor */

Sum(ArithExpr l, ArithExpr r) { left = l; right = r; }

/* getters */

ArithExpr getLeft() { return left; }

ArithExpr getRight() { return right; }

/* toString */

public String toString() {

// here we have recursive calls to toString,

// as we would expect in an inductively-defined type

return "(" + left + "+" + right + ")";

}

}

The two remaining classes, Prod and Neg, are defined similarly.
Next we need a way to evaluate our expressions. First, let’s try defining an eval

method that returns a constant for any ArithExpr.
We add the abstract method

abstract Const eval();

to the ArithExpr class. We could easily define eval to return an int, but we’ve
chosen to return a Const instead because it buys us a little flexibility later.

In the Const class, we add a concrete version of the abstract eval method:

Const eval() { return this; }

But now we encounter a minor problem: to evaluate products and sums, we need
to be able to multiply or add two instances of Const. Multiplication and addition are
not defined for instances of Const, but they are defined for the int values embedded
inside instances of Const. Thus, we can use the accessor getvalue() to retrieve the
value of a Const. To the class Prod, we add the method

Const eval() {

return new Const((left.eval().getValue()) * (right.eval().getValue()));

}

The eval methods for Sum and Neg are defined similarly.
Let us amplify this example by adding variables as a syntactic category to

ArithExpr. Writing down our revised data type in a shorthand form, we have

ArithExpr ::= Const(int)

| Sum(ArithExpr, ArithExpr)

| Prod(ArithExpr, ArithExpr)

| Neg(ArithExpr)

| Var(String)
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where the variant Var represents variables. The String field in a Var is the variable’s
name.

This notation is merely shorthand for the follow ing prose. An ArithExpr is
either:

• Const(c ),

• Sum(left,right ),

• Prod(left,right) ),

• Neg(left), or

• Var(s)

where c is an int, left and right are ArithExprs, and s is a String.
In order to evaluate expressions including variables, we introduce environments,

which store collections of bindings. A binding is simply a pair containing a variable
name and a value. We will also have to modify eval so that its signature becomes

Const eval(Environment env)

We can implement Environments using functional lists of string-value pairs. The
details of the implementation are left as an exercise. (Hint: look back at the de-
partmental directory example.)

The definition of eval will have to change accordingly for each of the exist-
ing concrete subclasses, but only the Var subclass will actually make use of the
environment parameter. For example, Sum.eval will become

Const eval(Environment env) {

return new Const(left.eval(env).getValue() + right.eval(env).getValue());

}

The parameter env is not used directly in the eval code for Sums, but it is passed
to the recursive calls to eval in case there is a Var further down in the expression.
It is only in class Var that we need to use the environment parameter to look up
the value of a variable:

class Var extends ArithExpr {

/* fields */

private String name;

/* constructor */

Var(String n) { name = n; }

/* accessors */

public String getName() { return name; }

/* toString */

public String toString() { return name; }
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Const eval(Environment env) { return env.lookup(name); }

}

Here env.lookup(name) fetches the Const value associated with name in the en-
vironment env (if there is no entry for name, lookup should raise some kind of
exception).

Having to pass the environment as a parameter to all of the eval methods, when
it is directly used in only one of them, is clumsy. As we shall see, there is a different
way to implement expression evaluation that avoids this problem.

1.10.2 Openness in Data Design

Recall our definition for an arithmetic expression without variables:

ArithExpr := Const(int) | Sum(ArithExpr, ArithExpr) ....

Our implementation of this data definition using the composite pattern would
be more robust and more flexible if we could define new operations on ArithExprs
without modifying any existing code. Fortunately, there is a clever design pattern
called the visitor pattern that lets us do this. The idea underlying the visitor pattern
is to bundle the methods defining the new operation for each concrete subclass
together in a new class called a visitor class. An instance of such a class is called a
visitor.

First, we will define a new interface Visitor that specifies what methods must
be included in every visitor class for ArithExpr:

interface Visitor {

int forConst(Const c);

int forSum(Sum s);

...

}

Notice that each method takes an instance of the class that it processes. This
argument, called the host, is needed to give it access to all the information that
would be available through this if the method were defined inside that class, e.g.,
the values of the object’s fields returned by accessors.

Now we will create a new concrete class EvalVisitor to hold all the methods
for evaluation of an ArithExpr:

class EvalVisitor implements Visitor {

int forConst(Const c) {

return c.getValue();

}

int forSum(Sum s) {

return s.left().accept(this) + s.right().accept(this);

}

...

}
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We need to install a hook in each subclass of ArithExpr to execute the corresponding
visitor method. The hook is a new method, accept, which takes a visitor as an
argument and calls the appropriate method in that visitor.

abstract class ArithExpr {}

abstract int accept(Visitor v);

}

class Const {

...

int accept(Visitor v) {

return v.forConst(this);

}

}

class Sum {

...

int accept(Visitor v) {

return v.forSum(this);

}

...

To evaluate an arithmetic expression, we simply call

a.accept(new EvalVisitor())

If we wish to add more operations to arithmetic expressions, we can define new
visitor classes to hold the methods, but there is no need to modify the existing
subclasses of ArithExpr.

Notice that, since a visitor has no fields, all instances of a particular visitor class
are identical. So it is wasteful to create new instances of the visitor every time we
wish to pass it to an accept method. We can eliminate this waste by using the
singleton design pattern which places a static field in the visitor class bound to an
instance of that class.

class EvalVisitor {

static ONLY = new EvalVisitor();

...

}

Then, instead of

accept(new EvalVisitor()),

we may simply write

accept(EvalVisitor.ONLY).
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Another elegant way to define visitors is to define each visitor as an anonymous
class. Since an anonymous class definition defines only one instance of the new class,
it produces results similar to the singleton pattern. The principal difference is that
the new class has no name; the unique instance must be bound to a local variable
or field declared in the enclosing program text.

Recall that an anonymous class has the following syntax:

new className(arg1, ..., argm) { member1; ...;membern }

In most cases, the class className is either an abstract class or an interface, but
it can be any class. The argument list arg1, ..., argm is used to call the constructor
for the class className; if className is an interface, the argument list must be
empty. The member list member1; ...;membern is a list of the member definitions
for the new class separated by semicolons.

For example, to create an instance of a visitor that evaluates an arithmetic
expression, we write:

new Visitor() {

int forConst(Const c) {...}

int forSum(Sum s) {...}

...

}

Since we generally want to use a visitor more than once, we usually bind the anony-
mous class instance to a variable, so we can access it again! The statement:

visitor ev = new Visitor() {

int forConst(Const c) {...};

int forSum(Sum s) {...};

...

};

binds the variable ev to our anonymous class instance.

1.10.3 Polymorphic Visitors

In our application of the visitor pattern above, the for methods of the visitor classes
and the accept methods for the ArithExpr classes returned values of type int. This
convention is acceptable as long as all the computations we ever want to perform
over ArithExprs have integer results. But if not, we are forced to declare a new
interface visitor type and new accept methods for each distinct result type. Since
the whole point of the visitor pattern is to avoid having to modify a data type
every time we wish to perform some new computation over it, we have a potential
problem.

We can address this problem by redefining the for and accept methods so that
they return a more general type. Before getting into the details, let’s step back and
give visitors a more general definition.

A visitor is an object containing
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• a concrete description of an operation on composite data, with a separate
method for processing each alternate form of the data; and

• the argument values required by the operation.

The properties common to all visitors for a particular composite type are col-
lected in corresponding the visitor interface. Any arguments that are processed by a
particular visitor are typically stored in fields declared in the corresponding visitor
subclass to avoid compromising the generality of the interface. A typical visitor
interface has the form

interface Visitor {

// a "for" method for each concrete

// subclass of the visited class

Object forC1(...);

.

.

.

Object forCn(...);

}

We use Object as the return type of the for methods so that we can accommo-
date concrete visitor classes that produce almost any type of result. This convention
exploits the polymorphism inherent in class inheritance: every object belongs to all
of the types associated with its superclass, super-superclass, etc. Since the class
Object is perched at the root of the class hierarchy, all objects belong to the type
Object, and support the operations defined in class Object. The only types that
do not belong to Object are the primitive types like int. Fortunately, we can get
around this by using the corresponding wrapper classes (e.g. Integer instead of
int). In the event we want a visitor operation to have a void return type, we can
either return the null reference or the only instance of a singleton class VoidType.9

Let us return to our ArithExpr example. We can generalize our visitor class as
follows:

abstract class AE { // AE is short for ArithExpr

abstract Object accept(Visitor v);

}

class Const extends AE {

/* fields */

int value;

/* constructor */

Const(int v) { value = v; }

9The Java libraries include a Void class, but it cannot be instantiated, so we must define our

own VoidType.
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/* getters */

int getValue() { return value; }

/* toString */

public String toString() {

return Integer.toString(value);

}

Object accept(Visitor v) {

return v.forConst(this);

}

}

. . .

The code for the Sum and Prod ares nearly identical except for the fact that
the accept methods in those classes respectively invoke the forSum and forProd,
methods of the Visitor argument v. They all have Object as their return type.

1.10.4 Polymorphic Visitors with Arguments

To make our visitor example more interesting and realistic, let us include variables
in the type ArithExpr.

class Var extends ArithExpr {

String name;

Var(String n) {

name = n;

}

public String toString() {

return name;

}

Object accept(Visitor v) {

return v.forVar(this);

}

}

Then the visitor interface for ArithExprs has the form:

interface Visitor {

Object forConst(Const c);

Object forSum(Sum c);

Object forProd(Prod p);

Object forVar(Var v);

}

The concrete visitor class that implements expression evaluation is:
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class EvalVisitor implements Visitor {

Env env; // an environment for looking up variables

EvalVisitor(Env e) { env = e; }

Object forConst(Const c) { return c; }

Object forSum(Sum s) {

return new Const( ((Const)s.left.accept(this)).value +

((Const)s.right.accept(this)).value );

}

Object forProd(Prod p) {

return new Const( ((Const)p.left.accept(this)).value) *

((Const)p.right.accept(this)).value));

}

Object forVar(Var v) { return env.lookup(v.name); }

}

The environment env, which was an explicit parameter of the eval method in our
method-based implementation for evaluation, is now a field of the visitor. As before,
it is directly used only for evaluating instances of Var, but now we don’t need to
explicitly pass the environment through method argument lists.

Since we are programming in a functional style, the forConst method need only
return its argument as the result, rather than allocating a copy. The forSum and
forProd methods are mostly straightforward, evaluating the subexpressions first
and combining the results. The only subtlety is that since accept now returns an
instance of Object rather than an int, we need to perform an explicit type cast
to get the values for the left and right subexpressions. For example, to obtain the
value for the left subexpression in a Sum, we have

((Const)s.left.accept(this)).value

The expression

s.left.accept(this)

computes a Const whose value field is the value of the expression s.left. But the
declared return type for accept is Object, and since an Object has no field named
value, we cannot extract the value directly. Since we know that the Object is in
fact a Const, we can insert an explicit type cast to Const, and then extract the
value.

The forVarmethod looks up the value of the variable in the current environment.
The environment is passed in when an EvalVisitor is created, and is presumably
given bindings for the existing variables beforehand.

Finger Exercise Finish the visitor-based implementation of expression evalua-
tion, including the definition of the Environment class, by yourself. Can you think of
other operations on expressions that the visitor pattern might help you implement?
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1.11 Unusual Situations versus Runtime Errors

In this section, we study Java exceptions, a language construct to process unusual
situations and run-time errors. In the process, we will identify the limitations of
checked exceptions.

Many production programs have to detect erroneous input, report it to the user,
and in some cases recover to handle more input. Since handling erroneous input
deviates from the expected flow of program control, Java provides a mechanism
called exception handling that is tailored for this purpose. To be more specific,
let us consider an example based on the arithmetic expression evaluator from the
previous section.

1.11.1 A Motivating Example

Recall the visitor class for evaluating arithmetic expressions with variables:

class evalVisitor implements Visitor {

Env e;

Object forConst(Const c) {return c; }

Object forSum(Sum s) {

Const l = (Const)(s.left.accept(this));

Const r = (Const)(s.right.accept(this));

return new Const(l.value + r.value);

}

Object forVar(Var v) { return env.lookup(v.name); }

}

The casting operations (Const) ... in the body of the forSum method are re-
quired by the Java type checker. The Java type system is too imprecise to determine
that the recursive invocations of the visitor in forSum will never return any value
other than a Const. The Java type system simply uses the declared return type for
a method as the type of invocation of that method.

You might wonder why the designers of Java adopted such a simple, imprecise
type system. Precise type systems have two crippling disadvantages. First, they
perform a complex inference process that is difficult to understand. If a programmer
makes a type error, it is difficult to determine what program revisions are required
to satisfy the type checker. Second, precise type inference is expensive. The time
complexity of very precise type checking (depending on the specific algorithm) may
grow with the square or cube of program size or worse.

Now let us augment Arithmetic Expressions with a variable binding operator
let. For example, we might want to evaluate the expression:

let x = 17 in x + y

in an environment where y is bound to 10 to produce the value 17. This extension
is reflected in the definition for data type ArithExpr by adding a Let form to the
list of variants:
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ArithExpr ::= Const(int)

| Sum(ArithExpr, ArithExpr)

| ...

| Let(Var, ArithExpr, ArithExpr)

Similarly, in the object-oriented implementation of ArithExpr, we must add the
variant class

class Let extends ArithExpr {

Var bindVar;

ArithExpr bindExpr;

ArithExpr body;

...

Object accept(Visitor v) { v.forLet(this); }

}

To define operations for our generalized Arithmetic Expressions using visitors,
we need to define a new visitor interface with for methods for all of the variants:

interface Visitor {

Object forConst(Const c);

Object forSum(Sum c);

Object forProd(Prod p);

Object forVar(Var v);

Object forLet(Let l);

}

Since the evaluation of a Let form involves extending the environment, let us
write the code for manipulating environments:

class Env {

abstract Const lookup(String name);

}

class Empty extends Env {

Const lookup(String name) {

return null;

}

}

class Cons extends Env {

String firstName;

Const firstVal;

Env rest;

Cons(String name, Const val, Env env) {

firstName = name;

firstVal = val;

rest = env;

}

Const lookup(String name) {
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if (name.equals(firstName)) return firstVal;

else return rest.lookup(name);

}

}

To evaluate generalized Arithmetic Expressions, we must define an appropriate con-
crete class extending Visitor:

class EvalVisitor implements Visitor {

Env env;

Object forConst(Const c) { return c; }

...

Object forLet(Let l) {

Const bv = (Const) l.bindExpr.accept(this);

return l.body.accept(

new evalVisitor(new Cons(l.bindingVar.name, bv, env));

}

}

Notice the cast to Const in the definition of bv. Java requires this cast operation
because the declared return type of accept is Object. But the value we bind to a
variable to in a let expression must be a Const. What happens if we try to evaluate
a Var that is not bound in the environment? To explain how Java will behave in a
such a situation, we need to discuss Java exceptions in more depth.

1.11.2 Using Java Exceptions

A Java exception is an object of type Exception, which is a built-in Java class. There
are two basic forms of exceptions that can occur during Java program execution:

1. Unchecked exceptions, which extend the class RuntimeException, usually sig-
nal a program coding error.

2. Checked exceptions, which extend the class Exception but not the class RuntimeException,
signal unusual but legal conditions that require deviation from the normal flow
of control.

When an EvalVisitor encounters a Var not bound in Env, it has detected an
error in the input expression. If the Arithmetic Expression evaluator is being used
in a larger program that can prompt the user for corrected input, then such an input
error should be handled as part of valid program execution. It does not indicate a
coding error in the Arithmetic Expression evaluator. Hence, when an EvalVisitor

encounters an unbound exception, it should throw a checked exception, which the
larger program can intercept and interpret, printing an error message such as

I’m sorry, that’s not a valid expression

and prompt the user for corrected input with a message like
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Please enter a valid expression:

Java requires an explicit throws clause in the header for any method that can
generate a checked exception, directly or indirectly by invoking another method.
The EvalVisitor class defined above will return null or generate a

NullPointerException

if it encounters an unbound variable. The lookup method will return null as the
value of an unbound variable. Any subsequent attempt to use such a value as a
Const (e.g., in computing a Sum) will generate a

NullPointerException

. Since this exception is unchecked, it does not need to be declared in throw clauses.
If we rewrite lookup to throw a checked UnboundException instead of returning

null, the change has a dramatic impact on the rest of the program. The revised
code appears below:

class UnboundException extends Exception {

UnboundException(String name) {

super("Variable " + name + " is unbound");

String varName = name;

}

}

class Env {

abstract Const lookup(String name) throws UnboundException};

}

class Empty extends Env {

Const lookup(String name) throws UnboundException} {

throw UnboundException(name);

}

}

class Cons extends Env {

String firstName;

Const firstVal;

Env rest;

Cons(String name, Const val, Env env) {

firstName = name;

firstVal = val;

rest = env;

}

Const lookup(String name) throws UnboundException} {

if (name.equals(firstName)) return firstVal;

else return rest.lookup(name);
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}

}

class EvalVisitor implements Visitor {

Env env;

Object forConst(Const c) { return c; }

Object forSum(Sum s) throws UnboundException { ... };

Object forProd(Prod p) throws UnboundException { ... };

Object forVar(Var v) throws UnboundException { ... };

Object forLet(Let l) throws UnboundException { ... };

}

}

interface Visitor {

Object forConst(Const c) { return c; }

Object forSum(Sum s) throws UnboundException;

Object forProd(Prod p) throws UnboundException;

Object forVar(Var v) throws UnboundException;

Object forLet(Let l) throws UnboundException;

}

The preceding code cleanly handles input errors, but it pollutes the signatures of
nearly all of the for methods in the class Visitor and its descendants. In this case,
an unchecked exception is preferable. The code for this variation is identical the code
above except for the extends clause in the definition of class UnboundException

and the elimination of all throws clauses in for methods.
Checked exceptions and polymorphic programming do not mix well. Conse-

quently, it should not be surprising that the Java libraries use unchecked exceptions
far more than they use checked exceptions. Our advice is use checked exceptions to
signal unusual conditions in code that does not involve polymorphism. If polymor-
phism is present, use unchecked exceptions instead.

1.11.3 Exception Handling

If the evaluation of a Java statement generates an exception, that exception can
be caught (consumed) and processed by an appropriate handler associated with the
statement. The handler typically restores the program to a recoverable state.

The Java construct for associating exception handlers with program statements
is called a try-catch block. It has the following syntax

try {
statement1;
...
statementm;

}
catch(ExceptionType1 e) { handler1 }
... catch(ExceptionTypen e) { handlern }
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This statement associates the handlers described by handler1, ..., handlern with
the statements in the sequence

statement1; ...statementm;

If any statement in this sequence generates an exception e, it is matched against
the types ExceptionType1, ..., ExceptionTypen in order. The handler code for
the first type containing e is executed and the exception e is consumed. Then
execution resumes at the statement immediately following the try-catch block. If
no type in the catch clauses matches the generated exception e, program execution
searches back up the chain of pending method calls until it finds the next “youngest”
pending try-catch block with a matching catch clause. If this search exhausts the
chain of pending method calls, the Java Virtual Machine prints an error message,
a traceback of method calls from the point of exception generation, and aborts
program execution.

Since the exception is consumed by the matching catch clause, the program
text surrounding the try-catch block does not see the exception. More generally,
if a try-catch block includes a catch clause for exception type E, the surrounding
program text can never see an exception of type E emerge from the try block. As a
result, if the exception type E is checked, the containing method need not declare a
throws clause for type E unless other code, unshielded by an enclosing try-catch

block, can generate exceptions of type E.
A try/catch block can optionally be followed by a finally clause

finally {
cleanUp
}

This clause is always executed when the try block terminates (including any re-
quired handler code). It typically contains code to perform any clean up that might
be necessary after executing the statement sequence enclosed by the try/catch

block, regardless of whether the statement sequence generates an exception. In other
words, the finally clause is always executed (assuming the statement sequence
does not loop infinitely). The most common usage of the finally clause is to release
a explicitly allocated resource such as an opened file.

We illustrate the use of the try-catch-finally block by the following example.
Suppose the main method of the ArithExpr class contains test code for expression
evaluation. The main method can protect itself from the exceptions eval might
throw by enclosing its invocation in a try-catch block as follows:

ArithExpr a = ...; // set the expression

Env.e = ...; // set up the environment

...

try { // try the operation that might fail

...

result = a.eval(e);
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...

}

catch (UnboundException u) { // handle any error that occurred

System.out.println ("Unbound exception thrown: " + u.varName +

" is undefined.");

}

finally { // optional clean-up

...

}

... // continue with processing

The operation that might throw the exception, eval, is placed inside a try block,
and the handling code for the exception appears in a following catch block. There
may be more than one catch block, each for a different type of exception. The
type and a name for the caught exception is declared at the top of the catch block,
and the code in the block can use the exception’s fields to perform some kind of
error recovery. Here this recovery is simply printing a message that describes the
problem.

The finally clause would be useful if the try block read each expression a from
a separate file and eval could throw other exceptions besides UnboundException.
In this case, the finally clause could close the file regardless of how execution of
the try block terminated.

If the code in the try block raises no exceptions, or raises an exception that
matches a catch clause, execution continues immediately after the try-catch block
and optional finally clause. Of course, the finally clause is executed as part of
the try-catch block.



Chapter 2

Object-Oriented Data
Structures

The traditional programming curriculum focuses far more attention on efficient al-
gorithms than on clean program design. Nearly all existing books on data structures
including those that use C++ and Java fail to apply good object-oriented design
principles in presenting interesting data structures. In this chapter, we will show
how to formulate some of the most common data structures in an object-oriented
design framework. Enjoy!

2.1 Sequences

The first data structures that we will discuss are the common representations for
sequences of elements. A sequence is an ordered collection s0, s1, s2, ..., sn, n >= 0
of data objects drawn from some base data type D. Sequence representations can be
classified based on the set of operations that they support. In Java, it is convenient
to describe these various sets of operations as Java interfaces.

We have already used a common representation for sequences, namely functional
lists, in many of our examples of functional programming in the preceding chapter.
Before we explore general representations for sequences, we need to discuss a par-
ticular formulation of sequences called arrays, which are built-in to Java as they are
in nearly all other programming languages.

2.1.1 Arrays

An array is an indexed sequence s0, s1, s2, ..., sn, n >= 0 of data values of fixed
length. In contrast to more general representations for sequences an array object
cannot grow or shrink. It has a specific length n >= 0 when it is created and retains
this length during its entire lifetime. Java arrays are very different than C++ arrays;
they are much closer to APArray objects in the AP Computer Science libraries. A
Java array is an object that supports the the same high-level operations on arrays

76
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as C++.
Every array in Java has a declared type T[] asserting that all elements of the

array have type T . All of the primitive operations on arrays in Java preserve the
declared types attached to arrays. Given an array a of type T[], the expresssion
a[i] extracts the ith element of the array, which is a value of type T . Array indexing
begins with the integer value 0 as in C++. Hence, an array of length n has valid
indices of 0, 1, ..., n − 1.

Finger Exercise Enter the following array defintion in the DrJava Interactions

pane.

int[] a = new int[]{0, 1, 2, 3};

This statement defines an int array a containing four elements: 0, 1, 2, 3. Now
evaluate the following expressions:

a

a[0]

a[3]

a[4]

Did you get the results that you expected? The printed value for a is not very
informative since it prints a cryptic abbreviation for the type of a (the ’[’ symbol
means “array-of”l and ’B’ means int) followed by the hashcode for the object.1

Unfortunately, Java array classes do not override the toString()method to produce
more readable printed output.

The assignment operator = is used to update array elements. Given an array a

of type T[], the statement

a[i] = e;

updates the value of the ith element to the value of the expression e. The values of
all other elements of a remain unchanged.

Finger Exercise Continue the preceding exercise by entering the following
statement in the interactions window (assuming that a has been defined as shown
above):

a[0] = 17;

Now type the expression

a[0]

Did you get the answer that you expected?
In Java, arrays of every type are built into the language. If you define a class

or interface C, then the array type C[] is automatically supported by Java. Every
array type is a subtype of type Object, but array types cannot be extended.

1Every Java object has an associated hashcode which can be obtained using the method

hashCode().
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If a Java variable has type T[] for some primitive or object type T then it can
only be bound to arrays of type U[] where U is a subtype of T. In the common case
the types T and U are identical. Primtive types have no proper subtypes, so an exact
match is required in this case.

Every Java array has a int field length that contains the length of the array.
Finger Exercise Continue the preceding exercise by evaluating the following

expression in the Interactions pane:

a.length

Did you get the answer that you expected?
Since Java arrays are objects, a Java array value is actually a reference to an

array. Hence, a variable of type T[] in Java can have the value null. A variable of
type T[] can appear on the left-hand side of an assignment

a = e

where e is any expression of type T .
Since array values are references to arrays, two variables can be bound to exactly

the same array. If array variables a and b are bound to the same array object, then
updating the array a

a[i] = e;

changes the value of b[i].
Finger Exercise Continue the preceding exercise by entering the following

sequence of statements and expressions in the Interactions pane:

int[] b = a;

b[0]

b[0] = 5;

a[0]

Did you get the resulsts that you expected?
Arrays are allocated in Java using the new statement just like other objects. The

array form is

new T[length]

where T is any type and length is an expression that evaluates to a non-negative
int. Arrays can have length 0. Each element of the array is set to the ‘zero” value
of the declared type T. If T is an object type, the initial value of each element is
null. Hence, the expression

new String[1000]

allocates an array of 1000 String elements all bound to null.
Java has alternate form for constructing an array called an anonymous array.

The expression
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new T[] {v0, ...vn−1}

allocates an array of length n of type T containing the specified sequence of elements.
Java uses two mechanisms to enforce the declared type T[] of an array object.

First, when an array T[] is allocated, all of the initial element values must be of
type T. Second, when an array object a of type T[] is updated by an assignment

a[i] = e

Java confirms that the the new value e for the ith element belongs to the type
T. During program execution, the Java virtual machine confirms the the value e
belongs to type T each time that the assignment is executed.

The array-assignment check must be performed at run-time because an array
object of type S[] can be stored in a local variable or field of type T[] where S is a
subtype of T. Hence, in the preceding array assignment, the declared (static) type T
of e could match the declared type T[] of the array variable a, yet the assignment
could fail at run-time because the value of a is an array of type S[] where S is a
proper subtype of T.

The Java type system permits an array variable of type T[] to be bound to
an array A of type S[] provided S is subtype of T. This property of the Java type
system is called covariant subtyping. Note that covariant subtyping implies that the
array type Object[] is a supertype for all object array types, which permits arrays
to be treated polymorhically in many situations.

Recipes for Processing Arrays

Arrays do not have the same internal structure as lists: an array of length n does
not contain an array of length n-1 as a component. Hence, the structural design
recipes for processing lists do not directly apply to lists. But it is easy to mimic the
structural decomposition of lists as follows. Given an array

A = a0, . . . , an−1

we define the slice A<k,l> where k ≥ 0 and l ≤ n as the sequence of elements

ak, . . . , al−1

Since array slices are not arrays, we cannot pass them to helper functions as array
values. Instead we must pass three values in the general case: the array A, and
the two int bounds k and l. Fortunately, in most list processing recipes one of two
bounds is always fixed (either k at 0, or l at n), so we only need to pass two values.

Assume that we want write a static method int sum(int[] a) that returns the
sum of the elements of a. If we were summing the elements of a list instead of an
array, we could use the interpreter pattern on lists to reduce summing a compound
list (a Cons) to summing its tail (the rest component of the list). (See Section
1.5.2.) We can use exactly the same scheme to sum an array provided that we
use array slices instead of array values. To process slices, we must write a helper
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method sumHelp that takes arguments a and k of type int[] and int respectively
and returns the sum of the elements in the array slice a<k,n> where n is the length
of the array a. An empty slice corresponds to the case where k ≥ n. A compound
slice corresponds to the case where k < n.

The following Java code implements the sum method

class ArrayUtil {

public static int sum(int[] a) {

// returns a[0] + ... + a[a.length-1]

return sumHelp(a,0);

}

public static int sumHelp(int[] a, int k) {

// given 0 <= k < a.length

// returns a[k] + ... + a[a.length-1]

if (k >= a.length) then return 0;

else return a[k] + sumHelp(a, k+1);

}

}

From the standpoint of computational efficiency, neither the natural recursion
program or the equivalent program on array slices written above is optimal because
neither one is tail-recursive. A method definition is tail-recursive if recursive calls
only appear in tail-position, the last operation before returning from the method. In
a functional programming language like Scheme, the standard recipe for converting
such a computation to tail recursive form involves writing a “help” function with an
accumulating parameter and summing the elements in the opposite order (left-to-
right instead of right-to-left). We can convert our array slice solution to tail-recursive
form using essentially the same transformation.

The following Java code implements a tail-recursive solution using array slices:

class ArrayUtil {

public static int sum(int[] a) {

return tailSumHelp(a,0,0);

}

public static int tailSumHelp(int[] a, int k, int accum) {

// given 0 <= k < a.length

// returns accum + a[k] + ... + a[a.length-1]

if (k >= a.length) then return accum;

else return tailSumHelp(a, k+1, accum+a[k]);

}

}

In languages that do not support the efficient translation of tail-recursive pro-
cedures to machine code, tail recursive (also called iterative) computations must
be expressed in the more restrictive framework of for and while loops to produce
efficient code. A tail-recursive procedure is a more general framework for expressing
iterative computations than structured loops! In contrast to structured loops, tail-
recursive procedures gracefully accommodate iterations with exit conditions; each
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procedure return clause that is not a tail-recursive call is an exit. To translate the
an iterative program expressed using tail recursion to one expressed using a loop,
the corresponding loop construction must have multiple exit jumps (implemented
as break or go to).

Java has three familiar looping constructs: while loops, do ... while loops,
C-style for loops. The first two constructs are completely standard. A while loop
has syntax:

while (test) do statement

where statement is usually a block. A block is simply a sequence of local variable
declarations and statements enclosed in braces. The test expression must have
boolean type. A do while loop has syntax:

do statement while (test);

The only different between the two looping constructs is the obvious one. In a while

loop the test is executed before the loop body is executed. In a do while loop the
loop body is executed before the test expression is evaluated.

The Java for loop is borrowed from C. It has the form

for (init-expr; test; incr-expr) statement

which simply abbreviates the following code fragment containing a while loop:2

init-expr;

while (test) { statement;

incr-expr; }

Let us return to our tail-recursive Java program that sums the elements of an
array. Fortunately, we can translate this tail-recursive procedure directly to a simple
while loop. All that we have to do is replace the recursive call a block of code
that updates the procedure parameters to reflect values passed in the tail call3 and
jumping back to the beginning of the procedure instead performing the tail call.

class ArrayUtil {

public static int sum(int[] a) { return tailSumHelp(a,0,0); }

public static int sumHelp(int[] a, int k, int accum) {

// given 0 <= k < a.length, accum = accum’

// returns accum’ + a[k] + ... + a[a.length-1]

while (true) {

if (k >= a.length) return accum;

// accum == accum’ + a[0] + ... + a[k-1]

accum = accum + a[k];

k = k+1;

// assignment to accum depends on k; k must be modified last

}

}

2With one minor exception involving the use of continue in the loop body. Since our Java

subset does not include continue, it is not an issue.
3Taking care to avoid interference from side effects!
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This single exit loop can be rewritten as a conventional for loop and folded back
in the sum method as follows:

class ArrayUtil {

public static int sum(int[] a)

returns a[0] + ... + a[a.length-1]

int accum = 0;

for (int k = 0; k < a.length; k++) {

// accum == a[0] + ... + a[k-1]

accum = accum + a[k];

}

return accum;

}

}

The expression k++ is an abbreviation for

k = k+1;

The resulting program uses the most attractive idiom in imperative programming:
the for loop. This form of processing forms the basis for the most commonly used
imperative design pattern: the iterator pattern. We will discuss this pattern in
detail in Section 2.1.7.

We now turn our attention to more general data representations for sequences
that accommodate operations that change sequence length.

2.1.2 Lists

By convention, linked representations of sequences are called lists. This represen-
tation of sequences is so pervasive that the terms sequence and lst are often used
interchangeably (conflating the abstraction and the implementation). A particularly
important distinction between sequence interfaces is whether or not an interface in-
cludes operations that mutate (destructively modify) the object this. For example,
if a sequence object x contains the Strings "Corky" and "Matthias", does any
operation on the object x permit the contents of x to be modified, i.e., changing,
adding, or subtracting elements? Operations on x that construct new sequences
that incorporate the contents of x are not mutators because the object x is left
unchanged.

Immutable data types are easier to define, to use, and to implement than mu-
table data types, but they they have two important limitations. First, they do not
support some computations efficiently. Second, object mutation plays a critical role
in the natural modeling of some computational problems. The functional model of
computation that we studied in Chapter 1 is exclusively concerned with immutable
data. The term “functional list” is synonymous with “immutable list”.

We will focus first on immutable sequences and their representations. Then we
will investigate what adjustments must be made to support mutation.



CHAPTER 2. OBJECT-ORIENTED DATA STRUCTURES 83

2.1.3 Immutable Sequences

All of the sequence classes presented in this monograph—immutable and mutable—
support the operations in the following Seq interface

interface Seq {

Seq empty();

// returns Seq that is empty

Seq cons(Object newElt);

// returns the Seq with elts newElt, s[0], ..., s[n]

Object first(); // returns the element s[0]

Seq rest(); // returns an object representing s[1], ..., s[n]

Object eltAt(int i); // returns the element s[i]

boolean isEmpty(); // returns n == 0

public Object execute(SeqVisitor host); // applies the visitor code host

}

interface SeqVisitor {

Object forEmpty(Seq host);

Object forCons(Seq host);

}

The contracts for all of these operations stipulate that they do not modify the
observable state of a sequence object.

Immutable sequence classes also support the two additional functional operations
in the following interface:

interface FinalSeq extends Seq {

Seq updateFirst(Object val); // returns val,this[1], ...,this[n]

Seq updateRest(Seq r);

// given r[0],...,r[m] returns this[0],r[0], ..., r[m]

}

These two operations return new sequence values; they do not modify this.
There are two widely used representations for immutable sequences: linked and

contiguous.

Linked Representation

In the linked representation, a sequenceis a (reference to) an object, which is either
an empty node, representing the empty sequence, or a cons node with a field of type
T containing the first element of the sequence and a field of type Seq containing
a pointer to the first node in the rest of the sequence. This data representation,
which is often called a linked list, directly corresponds to the standard inductive
definition of sequences. We defined this sequence representation in Section 1.9.3 as
the class List, but that definition did not support all of operations listed above.
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The following modification of the List composite class hierarchy from Section 1.9.3
defines a linked representation for lists of objects; it includes all of the FinalSeq

operations:

abstract class List implements FinalSeq {

/* function methods */

public Seq empty() { return EMPTY; }

public Seq cons(Object first) { return new Cons(first, this); }

public abstract Object first();

public abstract Seq rest();

public abstract Object eltAt(int i);

abstract public boolean isEmpty();

/* mutators */

public abstract Seq updateFirst(Object f);

public abstract Seq updateRest(Seq r);

abstract String toStringHelp();

// List -> String without any parentheses and leading blanks

static final Empty EMPTY = new Empty();

private static class Empty extends List {

/* constructor */

private Empty() {}

/* methods */

public Object first() {

throw new IllegalArgumentException("first() applied to empty list");

}

public Seq rest() {

throw new IllegalArgumentException("rest() applied to empty list");

}

public int isEmpty() { return true; }

public Seq updateFirst(Object o) {

throw new IllegalArgumentException("updateFirst() applied to empty list");

}

public Seq updateRest(Seq s) {

throw new IllegalArgumentException("updateFirst() applied to empty list");

}

public Object eltAt(int i) {

throw new IllegalArgumentException("out-of-bounds index in List.eltAt");

}

public Object execute(SeqVisitor v) { return v.forEmpty(this); }

public String toString() { return "()"; }

public String toStringHelp() { return ""; }

}
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class Cons extends List {

/* fields */

private final Object first;

private final List rest;

/* constructor */

Cons(Object f, List r) {

first = f;

rest = r;

}

/* methods */

public Object first() { return first; }

public Seq rest() { return rest; }

public int isEmpty() { return false; }

public Object eltAt(int i) {

if (0 == i) return first;

else return rest.eltAt(i-1);

}

public Object execute(SeqVisitor v) { return v.forCons(this); }

public Seq updateFirst(Object o) { return rest.cons(o); }

public Seq updateRest(Seq r) { return r.cons(first); }

public String toString() { return "(" + first + rest.toStringHelp() + ")"; }

String toStringHelp() { return " " + first + rest.toStringHelp(); }

}

}

The definition of the List class contains nested class definitions for the classes Empty
and Cons. The static attribute identifies these classes as nested classes rather than
inner classes. Nested classes are identical to conventional “top-level” classes except
for two minor differences.

• First, nest classes have qualified names (of the form containing-class-name.nested-
class-name).4 The full names for the classes Empty and Cons are List.Empty

and List.Cons, respectively. Within the body of the List class, the unquali-
fied names Empty and Cons are synonymous with the qualified names.

• Second, nested classes can be declared as private, making their names in-
visible outside the body of the containing class. Hence, the classe names
List.Empty and List.Cons are not defined outside of the body of the List

class. If we removed the private attribute for the Empty class above, then
the classes

4Since classes may be nested to any depth, multiply nested classes have multiple qualifiers, one

for each level of nesting.
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In contrast to instances of inner class, instances of nested classes do not have en-
closing instances. Section 2.1.6 discusses nested and inner classes in more detail.

The for.. methods in the SeqVisitor interface all take a host argument of type
Seq because the implementation is not constrained to use the composite pattern to
represent immutable sequences. The following visitor class implements sequence
concatenation:

class Append implements SeqVisitor {

// returns sequence host || that

/* fields */

Seq that;

/* constructor */

Append(Seq t) { that = t; }

/* methods */

public Object forEmpty(Seq host) { return that; }

public Object forCons(Seq host) {

return host.updateRest((Seq) host.rest().execute(this));

}

public static void main(String[] args) {

Seq s1 = List.EMPTY.cons("B").cons("A");

Seq s2 = List.EMPTY.cons("C");

System.out.println("s1 = " + s1);

System.out.println("s2 = " + s2);

System.out.println("s1 * s2 = " + s1.execute(new Append(s2)));

}

}

The following figure shows a picture of linked list of integers.

In the figure, the nodes with two fields are Cons instances, and the crossed-box is
an Empty instance. References (pointers) are represented by the heavy arrows. The
reference fields in the cells are in fact memory addresses. In Java, these addresses
are always interpreted as references to objects. Java only supports operations on
references that are consistent with this abstraction, e.g. you cannot perform arith-
metic on a reference. In lower-level languages like C and C++, references (pointers)
can be manipulated as ordinary integers.
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Finger Exercise Write a SeqVisitor class to reverse a Seq. Test your code us-
ing DrJava. Hint: introduce a helper visitor with an extra parameter to accumulate
the result.

Contiguous Representation

In the contiguous representation, a sequence is represented by a reference to an
immutable array of fields of type T. An immutable array is an array that, once
initialized, is never modified. Java doesn’t directly support immutable arrays, but a
Java program can enforce immutability by defining a wrapper class for arrays (akin to
the Integer class for wrapping ints in objects) with a single private field holding
the embedded array and a collection of public methods that do not mutate this
field. A lighter weight but less robust protocol for supporting immutable arrays is
to use comments to indicate which arrays are immutable and to follow the discipline
of never modifying arrays documented as immutable. In either case, a new array
object generally must be created whenever an element of the represented sequence
is changed, added, or removed. Creating an array object is a costly operation
proportional in time and space to the number of elements in the new array.

In the linked representation of sequences, every operation in the collection listed
above except eltAt can be performed in constant time. On the other hand, the
eltAt operation takes time proportional to the length of the sequence in both the
worst case and the typical case. The List implementation of sequences given in
chapter 1 has this property.

The performance trade-offs embodied in the immutable array implementation are
very different. In this implementation, the operations empty, first, length, eltAt,
can be performed in constant time. (In the Java array implementation, length is
stored in a separate “field” in the block of storage holding the array.) With the
exception of the rest operation, the remaining operations all take time proportional
to the length of the sequence. The running time of the rest operation depends on an
interesting implementation detail. If immutable arrays are implemented as instances
of a “wrapper” class, then the rest operation can be performed in constant time
at the cost of making an extra field reference in the implementation of eltAt. A
wrapper object can store an integer offset that is added to the index passed as an
argument to eltAt. In this scheme, the rest operation constructs a new wrapper
object containing a pointer to the same array object as this but an increased
offset (by one). If immutable arrays are implemented directly by Java arrays,
then rest operation must construct a completely new array one element shorter
than the original.

Finger Exercise Construct two implementations of an ImmutArray wrapper
class that represents sequences as arrays. Do not include an offset field in the
first implemenation. Include a offset field in the second implementation. Test the
Append and Reverse visitors written in the context of the linked representation
above and your contiguous implementations. Conduct some experiments to measure
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the performance impact of including the offset pointer. For each implementation,
can you devise a test program that favors it?

In practice, array representations of immutable sequences are generally not used
in computations that make extensive use of the cons and empty operations to con-
struct new sequences. The repeated copying of arrays required to support these
operations is very inefficient (proportional to the square of the length of the con-
structed array!)

Finger Exercise Let n be the length of a sequence host represented either as
a linked list or an array. Prove that the computation

host.execute(new Append(host.empty()))

runs in time O(n) in the linked representation, O(n2) in the contiguous representa-
tion (with or without an offset field).

The usual way to avoid this source of inefficiency is to include an operation in
the immutable array class that constructs an array representation for a sequence
given either a corresponding linked representation or mutable array representation.
The Java Foundation classes include both the immutable string (sequence of char)
class String and the mutable string class StringBuffer for this reason.

The array implementation of immutable sequences is a good choice when new
sequences are generally built from scratch rather than constructed by applied opera-
tions to existing sequences. For this reason, many computations involving immutable
sequences of characters (strings) rely on the array representation. The Java String

class implements the array representation for immutable sequences of characters (the
primitive type char in Java). Note that Java includes an operation for converting
mutable strings (represented by the Java class StringBuffer) to immutable strings
(represented by the Java class String). Strings can be incrementally constructed
from characters far more efficiently using the StringBuffer class that they can be
using the String class.

2.1.4 Mutable Sequences

A sequence implementation is mutable if it includes operations that modify the
value of this. A class representing mutable sequences implements a subset of the
following operations:

interface SeqObject extends Seq {

void setFirst(T f); // this = this.updateFirst(f)

void setRest(Seq r); // this = this.updateRest(r)

void set(Seq v); // this = v

void setEltAt(int i, T val); // changes s[i] in this to val

void insert(Object o); // inserts o in front of s[0] in this

void remove(); // removes s[0] from this

}
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As with immutable sequences, there are two basic implementation schemes for mu-
table sequences: linked and contiguous. Mutation complicates the implementation
of linked representations, which we examine in detail below.

Singly-linked Mutable List Representation

The various linked mutable list representations that we will study are all derived
from the standard linked representations for immutable sequences. A particularly
simple approach to sequence mutation is to represent a mutable sequence as a vari-
able x of immutable list type and implement mutation by assigning a new value to
the variable, e.g.

List x = empty();

.

.

.

x = cons(0,x);

But this approach fails to represent mutable lists as objects and to encapulate list
mutation as an ordinary method. This representation cannot implement the insert
method given above. In the list container representation, the insert operation
modifies the program variable representing the mutable sequence, but variables are
not objects! When we pass an immutable lists represented by an assignable variable
as a method arguments, we can only pass the immutable list value to which the
variable is bound.

Finger Exercise Try to write an insert method for mutable sequences repre-
sented by variables bound to immutable sequences. What goes wrong?

2.1.5 List Containers

A better approach is to define a container class with a single field that holds an
immutable sequence. Then we can update the mutable sequence by modifying the
contents of the field in the container object. For example, suppose we have a class
List that defines a list representation for immutable sequences. The following
container class works for any implementation of the Seq interface:

class ListBox implements SeqObject {

private static Seq prototype = new ...;

// any instance of the class implementing Seq

/* fields */

private Seq value; // contents of ListBox: s[0],s[1],...,s[n-1]

/* constructors */

ListBox() { value = prototype.empty(); }

ListBox(Seq v) { value = v; }
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/* visible accessor methods */

public Seq empty() { return new ListBox(); }

public Seq cons(Object newElt) { return new ListBox(value.cons(newElt)); }

public Object first() { return value.first(); }

public Seq rest() { return value.rest(); }

public Object eltAt(int i) { return value.eltAt(i); }

public boolean isEmpty() { return value.isEmpty(); }

/* visible mutator methods */

public void setFirst(Object o) { value = value.updateFirst(o); }

public void setRest(Seq r) { value = value.updateRest(r); }

public void set(Seq v) { value = v; } // set contents of box to v;

public void setEltAt(int i, final Object val) { // changes s[i] to val

return execute(new UpdateEltAt(i), val);

}

public void insert(Object o) { value = value.cons(o); }

// changes contents of this from s[0],...,s[n] to o,s[0],...,s[n]

public void remove() { value = value.rest; } // removes s[0] from the sequence

public Object execute(SeqVisitor v) { return value.execute(v); }

// apply visitor v to value and return result; value is UNCHANGED

/* inner classes */

private class UpdateEltAt implements SeqVisitor {

/* fields */

int index; // index of element to be updated

Object eltValue; // new value for updated element

/* constructor */

UpdateEltAt(int i, Object e) { index = i; eltValue = e; }

/* visit methods */

Object forEmpty(Seq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");

}

Object forCons(Seq host) {

if (index == 0) return new Cons(val, host.rest());

else return host.rest().execute(new UpdateEltAt(i-1));

}

}

The variable holding the Seq instance is now wrapped inside an instance of a class
(ListBox above) implementing the SeqObject interface. A method that accepts a
SeqObject as an argument can modify it.

In the preceding example, the use of the inner class UpdateEltAt warrants care-
ful study. This inner class is a private member of the ListBox class and hence
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inaccessible outside of the class body. Since the inner class referenced only within
the setEltAt method, we could have placed the definition of UpdateEltAt as a
declaration inside the body of this method! In this case, the UpdateEltAt class
would have been visible only within the method setEltAt But such an embedded
inner class definition can be hard to read, so we elected to make a private member
of the ListBox instead.

We have already seen a special case of inner classes, namely anonymous classes
that appear inside dynamic methods. The only difference between an inner class
and a conventional class is that every instance of an inner class has an enclosing
instance of the class C that textually contains its definition. The free variables in
the inner class refer to this class. In addition, the notation C.this refers to the
“entire” enclosing instance. Inner classes impose exactly the same restrictions on
references to local variables of the enclosing instance as anonymous classes do: any
such local variable must be declared final. Inner classes are discussed in more
detail in Section 2.1.6.

In ListBox class, the methods insert, remove, and set modify the receiver of
the method invocation, so there is no need for them to return values. Consequently
they have return type void. Mutator methods typically have the return type void

because they embody commands that modify objects rather than functions that
compute new values based on the value of this.

The “lists as containers” representation of mutable lists is a very simple example
of the state pattern. In the state pattern, a mutable object contains a field of union
type (denoted by an abstract class or interface) representing the state of the object.
The object can easily change “shape” by updating the field to contain an instance of
a different class in the union. In the ListBox class, an empty list object can mutate
to a non-empty list object (or vice-versa) by modifying the contents of the value

field containing a Seq, which is a union type.
Since the SeqObject interface extends the Seq interface, it inherits the visitor

interface from the immutable Seq interface. As a result, no visitor class implement-
ing the SeqVisitor interface can mutate a SeqObject! In particular, to mutate
fields of a ListBox object, we must use explicit assignment. Given a ListBox l

and SeqVisitor v that returns a ListBox, the assignment

l = (ListBox) l.execute(v);

updates l to the new value returned by the visitor operation.
The efficient operations on ListBox objects are precisely the efficient operations

on the underlying functional List class, namely, adding and removing elements at
the front of the list. Mutable lists in which elements can only added or removed at
the front are called stacks or LIFO (”last in, first out”) lists. Representing mutable
lists as containers holding immutable list values is well-suited to this form of usage.
The operations first, insert, and pop precisely match the usual operations push,
top, and pop on stacks.

The “container” representation for mutable lists is simple and easy-to-use but it
is poorly suited to many applications because it fails to support certain list opera-
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tion efficiently. This representation forces list nodes (Cons objects) to be recopied
whenever the list is changed. To modify the list element with index i or insert and
element in front of the list element with index i, a computation must construct a
new List, copying the elements from the old List with indices less than i. We
can avoid this recopying process and avoid the potentially confusing distinction be-
tween immutable list values and mutable list objects by using a mutable variant of
functional lists developed by Dung Nguyen and Steve Wong.

2.1.6 Quasi-Functional Lists

From the perspective of the public interfaces, quasi-functional lists differ from lists
as containers in two respects. First, quasi-functional lists require the list argu-
ments for setRest and set to be mutable list objects rather than immutable list
values. Second, quasi-functional lists support visitor operations that mutate list
structure in addition to the “purely functional” visitor operations corresponding to
the SeqVisitor interface. To capture these differences in the Java type system, we
introduce two new interfaces: a new mutable sequence interface called MutSeq:and
a mutable visitor interface called MutSeqVisitor:

interface MutSeq extends Seq {

void setFirst(Object f); // changes this.first = f

void setRest(MutSeq r); // changes this.rest = r

void set(MutSeq m); // changes this = m

void setEltAt(int i, Object val); // changes this[i] = val

void insert(Object o); // changes this.first,this.rest = o,this

void remove(); // changes this = this.rest

Object execute(MutSeqVisitor m); // applies visitor operation m to this

}

interface MutSeqVisitor {

Object forEmpty(MutSeq host);

Object forCons(MutSeq host);

}

The MutSeq interface stipulates that the arguments to the operations setRest and
set must be list objects, (objects of type MutSeq) rather than the list values (ob-
jects of type Seq) given in the SeqObject interface. The MutSeq interface also
introduces an execute operation to support visitor operations (objects of type
MutSeqVisitor) that mutate list structure. The MutSeqVisitor interface differs
from the SeqVisitor interface in one key respect: the host object must be a muta-
ble list (object of type MutSeq) rather than a list value (object of type Seq) enabling
a visitor to destructively modify the host. This MutSeqVisitor interface is not ap-
plicable to lists as containers because the component rest fields embedded in the
immutable list value are not mutable! The pivotal difference between the QuasiList
and ListBox classes is the type of the rest field. A MutSeqVisitor can destruc-
tively modify both the first and rest fields of the host by using MutSeq mutator
methods setFirst and setRest.
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class QuasiList implements MutSeq {

/* fields */

public static final Empty EMPTY = new Empty();

private List value;

/* constructor */

QuasiList() { value = new Empty(); }

private QuasiList(List v) { value = v; }

/* visible methods */

Seq empty() { return new QuasiList(); }

Seq cons(Object newElt) { return new QuasiList(value.cons(newElt)); }

Object first() { return value.first(); }

Seq rest() { return value.rest(); }

// rest returns a MutSeq (QuasiList) but the Seq interface mandates

// the weaker type!

Object eltAt(int i) { return value.eltAt(i); }

boolean isEmpty() { return value.isEmpty(); }

void insert(Object o) { value = new Cons(o, new QuasiList(value)); }

public String toString() { return value.toString(); }

void setFirst(Seq v) { value = value.updateFirst(v); }

void setRest(MutSeq m) { value = value.updateRest(m); }

void set(MutSeq m) { value = m.value; }

void setEltAt(int i, final Object val) {

/* inner class */

class UpdateEltAt implements MutSeqVisitor {

/* fields */

final int index; // index of element to be updated

/* constructor */

UpdateEltAt(int i) { index = i; }

/* visit methods */

Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");

}

Object forCons(MutSeq host) {

if (index == 0) return host.setFirst(val);

else return host.rest().execute(new UpdateEltAt(index-1));

}

}

execute(new UpdateEltAt(i));

}

void remove() { value = value.rest(); }
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Object execute(SeqVisitor v) { return value.execute(v); }

// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) { return value.execute(v,this); }

// apply visitor v to value and return result; value may be CHANGED

/* inner classes */

private interface List {

abstract String toStringHelp();

// List -> String without any parentheses and leading blanks

}

private class Empty extends List {

/* constructor */

private Empty() {}

/* methods */

Object first() {

throw new IllegalArgumentException("first() applied to empty list");

}

MutSeq rest() {

throw new IllegalArgumentException("rest() applied to empty list");

}

Object eltAt(int i) {

throw new IllegalArgumentException("out-of-bounds index in List.eltAt");

}

Object execute(SeqVisitor v) { return v.forEmpty(this); }

Object execute(MutSeqVisitor v) { return v.forEmpty(QuasiList.this); }

public String toString() { return "()"; }

public String toStringHelp() { return ""; }

}

private class Cons extends List {

/* fields */

private final Object first;

private final MutSeq rest;

/* constructor */

Cons(Object f, List r) {

first = f;

rest = r;

}

/* functional methods */

Object first() { return first; }

Seq rest() { return rest; }

/* MutSeq is the correct output type but Java does not support it */

Object eltAt(int i) {

if (0 == i) return first;

else return rest.eltAt(i-1);

}
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/* mutator methods */

void setFirst(Object o) { first = o; }

Object execute(SeqVisitor v) { v.forCons(this); }

Object execute(MutSeqVisitor v) { v.forCons(QuasiList.this); }

public String toString() {

return "(" + first + rest.toStringHelp() + ")"; }

String toStringHelp() { return " " + first + rest.toStringHelp(); }

}

}

The QuasiList implementation given above uses the state pattern to represent
each tail (rest component) of the list. Each tail is a quasilist object that can
mutate between two forms: empty and non-empty. Since each tail is a mutable
object supporting the state pattern, a MutSeqVisitor can modify the state of any
tail in the process of traversing a list.

The QuasiList code uses inner classes to hide the classes implementing the state
of a QuasiList and to eliminate passing the QuasiList host as an extra parame-
ter to the execute(MutSeqVisitor v) methods in the Cons and Emtpy subclasses
of List. If the List class is moved outside of QuasiList, the QuasiList object
containing a given List object is not accessible to the List object.5

Nested Classes vs. Inner Classes

A nested class is a class whose definition appears inside the definition of another
class, as if it were a member of the other class. For example, if a program contains

class A {

class B {

// fields, methods of class B...

}

// fields, methods of class A...

}

then class B is a nested class of class A. Code outside of the methods of class A can
refer to class B by calling it A.B, using the same dot notation as for field and method
references. Within the methods of class A class B can be used without qualifying the
name. B could be hidden from code outside of class A by declaring it private, just
as with fields and methods.

A nested class like B is known as an inner class. An inner class has access to the
fields of an instance of its enclosing class. For this reason, an instance of B can only
be created in association with an instance of A, using the expression

5Another alternative is add an owner field to the abstract class List that refers to the containing

QuasiList object but this approach complicates the form of the constructors for Cons and Empty,

which must take an additional argument to initialize the owner field.
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/it instanceA.new A.B(...)

outside of A’s methods, where instanceA is an instance of A, and

new B(...)

inside of A’s methods. The new instance of B also knows about the enclosing instance
of A and can refer to it using the expression

A.this

We can think of an instance of an inner class as having two this references, one
for itself and one for its enclosing instance. An inner class may be nested within
another inner class, so an inner class can even have multiple levels of this references.
Nesting inner classes more deeply than one level is quite uncommon, however, and
should usually be avoided.

A nested class can be declared static, in which case it has reduced access to
its enclosing class. For example, if B were declared static above, it could no longer
access the instance variables of A, and there would be no associated instance A.this.
Static nested classes are known as nested top-level classes, because they are exactly
like classes declared outside any other class, except for the way they are named.
Instances of a static nested class are created using regular new, as in

new A.B(...)

We’ll see uses for both static nested classes and inner classes when we present
the full implementation of imperative lists.

Mutable Visitors

Quasi-functional lists are more flexible than lists as containers because the MutSeq
interface includes support for visitor operations that mutate the structure of a list.
The following visitor implements the operation of destructively inserting an element
at the rear of the sequence:

class InsertRear implements MutSeqVisitor {

/* given the embedded Object elt and a host with elements s[0], ... s[n],

host.execute(this) destructively updates host so that host =

s[0],..., s[n],elt */

/* field */

private Object elt;

/* constructor */

InsertRear(Object e) { elt = e; }

Object forEmpty(MutSeq host) {

host.insert(elt);
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return null; /* dummy return value; this operation has return type void!

}

Object forCons(MutSeq host) {

((MutSeq) host.rest()).execute(this);

return null; /* dummy return value; the return ‘‘type’’ is void!

}

}

class MutAppend implements MutSeqVisitor {

/* given the embedded MutSeq tail with elements t[0], ..., t[n] and a host

with elements s[0], ... s[n], host.execute(this) destructively

updates host so that host = s[0],..., s[n],tail[0],...tail[m] */

/* field */

private MutSeq tail;

/* constructor */

MutAppend(Object t) { tail = t; }

Object forEmpty(MutSeq host) {

host.set(tail);

return host; /* dummy return value; this operation has return type void!

}

Object forCons(MutSeq host) {

return ((MutSeq) host.rest()).execute(this);

}

}

The primary disadvantage of quasi-functional lists is that sharing list tails be-
tween two list objects can produce unexpected results when list objects are mutated.
Mutating a shared list tail changes all of the list objects that share that tail! In the
programming literature, the sharing of mutable data objects is often called “alias-
ing”.

2.1.7 Extended Mutable Lists

Both of the preceding representations of mutable sequences—lists as containers and
quasi-functional lists—are inefficient at inserting elements at the rear of a sequence.
In each of these representations, the code for the operation must scan the entire
sequence to reach the end. The container representation is particularly inefficient
in this regard because the entire sequence must be reconstructed starting with a
singleton List containing the new element.

Mutable sequence implementations that efficiently support adding elements at
rear of the list and removing them from the front are important because this access
protocol, called a queue or a FIFO (first in, first out) list, frequently arises in prac-
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tice. Procedural formulations of linked lists discussed in traditional textbooks on
data structures provide constant-time access to the end of the list by maintaining a
“pointer” to the last node of the list. This strategy is conceptually simple but prone
to coding errors because the empty list state requires special treatment. Moreover,
the traditional procedural approach to representing lists exposes the concrete data
structures (nodes and links) used in the implementation. We can exploit the same
strategy in an object-oriented representation of lists that hides the concrete data
structures in private object fields—provided that we deal carefully with the poten-
tially troublesome “boundary” cases in the definition of list operations that involve
the empty list.

Formulating Traditional Linked Lists as Objects

The quasi-list representation of mutable sequences includes an extra level of object
nesting in the representation of list tails beyond what is present in the conventional
“singly-linked list” representations that are widely used in procedural programming.
A major disadvantage of this data representation is the extra memory required to
hold the extra object allocated for each node. The basic singly-linked list represen-
tation avoids this extra overhead; it relies on the exactly same data representation
as the “lists as containers” representation given in Section 2.1.5 with one critical
modification: the first and rest fields of Cons objects are mutable. The follow-
ing Java code implements the MutSeq interface using conventional singly-linked lists
rather than quasi-lists.

class MutList implements MutSeq {

/* fields */

static final Empty EMPTY = new Empty(); // singleton empty list

List value;

/* constructors */

MutList() { value = EMPTY; }

private MutList(List v) { value = v; }

/* visible methods */

Seq empty() { return new MutList(); }

Seq cons(Object newElt) { return new MutList(value.cons(newElt)); }

Object first() { return value.first(); }

// returns the element s[0]

Object rest() { return MutList(value.rest()); }

// returns a MutList containing elements s[1],...,s[n-1]

Object eltAt(int i) { return value.eltAt(i); }

// returns the element s[i]
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boolean isEmpty() { return value.isEmpty(); }

// yields the number of elements in the sequence

void insert(Object o) { value = value.cons(o); }

// returns new MutList with elts o, s[0], s[1], ..., s[n]

void setFirst(Object o) { value = value.setFirst(o); }

void setEltAt(int i, final Object val) { // changes s[i] to val

class UpdateEltAt implements MutSeqVisitor {

/* fields */

int index; // index of element to be updated

/* constructor */

UpdateEltAt(int i) { index = i; }

/* visit methods */

Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");

}

Object forCons(MutSeq host) {

if (index == 0) {

host.setFirst(val);

return null;

}

else host.rest().execute(new UpdateEltAt(i-1));

}

value = execute(new UpdateEltAt(i));

}

void remove() { value = value.rest; }

// removes s[0] from the sequence

Object execute(SeqVisitor v) { return value.execute(v); }

// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) {

// apply visitor v to this; value may CHANGE

if (value == EMPTY) then return v.forEmpty(this)

else return v.forCons(this);

}

private static abstract class List implements Seq {

abstract void setFirst(Object o};

abstract List cons(Object o};

abstract Object first();

abstract Seq rest();
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abstract boolean isEmpty();

}

private class Empty extends List {

public void setFirst(Object o) {

throw new IllegalArgumentException(setFirst() applied to empty list");

}

public List cons(Object o} { new Cons(o,MutList.this); }

public Object first() {

throw new IllegalArgumentException("first() applied to empty list");

}

public Seq rest(); ???

throw new IllegalArgumentException("rest() applied to empty list");

}

public int length() { return 0; }

}

private static class Cons extends List { ... }

}

Note that we have defined the List classes as inner classes to hide them from clients
of MutList. This feature distinguishes our representation of basic linked lists from
the traditional representation used in procedural languages. By embedding the Node
class hierarchy inside the definition of the MutList class, we have completely hidden
the fact that we are using a conventional linked list representation! To client code,
MutList is semantically indistinguishable from QuasiList!

What have we gained? First, the MutList class is a more efficient implementation
of the MutSeq interface corresponding to quasi-lists because it allocates only one
object for each list node instead of two. Second, we can easily expand the MutList

class to include constant-time methods for adding and element to the end of a list
and appending to lists. The extended class maintains a reference to the subsequnce
containing last element The following ExtMutList class provides these new methods.
Since the implementation relies on maintaining references to both the first and
last nodes of the list (value and last, the changes to MutList required to create
ExtMutList are non-trivial.

class ExtMutList implements ExtMutSeq {

/* fields */

static final Empty EMPTY = new Empty(); // singleton empty list

List value;

/* constructors */

MutList() { value = EMPTY; }

private MutList(List v) { value = v; }
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/* visible methods */

Seq empty() { return new MutList(); }

Seq cons(Object newElt) { return new MutList(value.cons(newElt)); }

Object first() { return value.first(); }

// returns the element s[0]

Object rest() { return MutList(value.rest()); }

// returns a MutList containing elements s[1],...,s[n-1] where n=length(this)

Object eltAt(int i) { return value.eltAt(i); }

// returns the element s[i]

int length() { return value.length(); }

// yields the number of elements in the sequence

void insert(Object o) { value = value.cons(o); }

// returns new MutList with elts o, s[0], s[1], ..., s[n]

void setFirst(Object o) { value = value.setFirst(o); }

void setEltAt(int i, final Object val) { // changes s[i] to val

class UpdateEltAt implements MutSeqVisitor {

/* fields */

int index; // index of element to be updated

/* constructor */

UpdateEltAt(int i) { index = i; }

/* visit methods */

Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");

}

Object forCons(MutSeq host) {

if (index == 0) {

host.setFirst(val);

return null;

}

else host.rest().execute(new UpdateEltAt(i-1));

}

value = execute(new UpdateEltAt(i));

}

void remove() { value = value.rest; }

// removes s[0] from the sequence

Object execute(SeqVisitor v) { return value.execute(v); }
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// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) {

// apply visitor v to this; value may CHANGE

if (value == EMPTY) then return v.forEmpty(this)

else return v.forCons(this);

}

private static abstract class List implements Seq {

abstract void setFirst(Object o};

abstract List cons(Object o};

abstract Object first();

abstract Seq rest();

abstract int length();

}

private class Empty extends List {

public void setFirst(Object o) {

throw new IllegalArgumentException(setFirst() applied to empty list");

}

public List cons(Object o} { new Cons(o,MutList.this); }

public Object first() {

throw new IllegalArgumentException("first() applied to empty list");

}

public Seq rest();

throw new IllegalArgumentException("rest() applied to empty list");

}

public int length() { return 0; }

}

private static class Cons extends List { ... }

}

interface ExtMutSeq extends MutSeq {

void insertRear(Object e);

void mutAppend(ExtMutSeq t);

}

class ExtMutList extends MutList implements ExtMutSeq {

/* fields */

Node value;

Node last;

/* relies on default constructor that calls super() */

/* visible methods */
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Object first() { return value.first(); }

Seq rest() { return value.rest(); }

Object eltAt(int i) { return value.eltAt(i); }

// returns the element s[i]

int length() { return value.length(); }

// yields the number of elements in the sequence

void insert(Object o) { value = value.cons(o); } /* last ?? */

// returns new ExtMutList with elts o, s[0], s[1], ..., s[n]

void setFirst(Object o) { value = value.setFirst(o); }

void setEltAt(int i, final Object val) { // changes s[i] to val

class UpdateEltAt implements MutSeqVisitor {

/* fields */

int index; // index of element to be updated

/* constructor */

UpdateEltAt(int i) { index = i; }

/* visit methods */

Object forEmpty(MutSeq host) { throw

new IllegalArgumentException("out-of-bounds index in UpdateEltAt");

}

Object forCons(MutSeq host) {

if (index == 0) {

host.setFirst(val);

return null;

}

else host.rest().execute(new UpdateEltAt(i-1));

}

value = execute(new UpdateEltAt(i));

}

void remove() { value = value.rest; }

// removes s[0] from the sequence

Object execute(SeqVisitor v) { return value.execute(v); }

// apply visitor v to value and return result; value is UNCHANGED

Object execute(MutSeqVisitor v) {

// apply visitor v to this; value may CHANGE

if (value == EMPTY) then return v.forEmpty(this)

else return v.forCons(this);

}
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private static abstract class Node {

abstract void setFirst(Object o};

abstract void cons(Object o};

abstract Object first();

abstract Node next();

abstract Object eltAt(int i);

abstract int length();

}

private static class Empty extends Node { ... }

private static class Cons extends Node { ... }

}

Spaghetti References (akin to spaghetti code)

We strongly endorse the slogan ”pointers are the root of all evil.” In the 1970s,
structured programming was developed, which placed a discipline on the control
flow of programs. Up until that point, languages (and programmers) had been
very liberal in their use of the notorious goto statement or unconditional branch.
Undisciplined use of goto statements to programs whose control flow is almost
impossible to trace by hand (spaghetti code), and which are hence almost impossible
to debug. In his Turing Award Lecture in the early 1970s, C.A.R. Hoare asserted
that multiple references to the same data in a program can introduce a similar form
of complexity if that data can be mutated through those references. With multiple
references to mutable data in a program, we can stumble into serious trouble when
one part of our program modifies an object when another part is unaware of or
unprepared for the modification.

Even in programs written and maintained by a single programmer, the unre-
stricted use of pointers is foolhardy and invites disaster. A programmer almost
certainly does not remember the precise reasoning used involved in writing every
section of a significant application. As a result, mistakes are inevitable. Just as
structured programming placed constraints on the control flow in programs, we will
place constraints on when and where mutable data can be changed. This is why we
hide mutable nodes inside a list container.

The Iterator Pattern

Before we present a complete implementation of singly-linked imperative lists, we
describe a new pattern which allows us to process lists similarly to arrays. The
pattern is called the Iterator pattern, and consists of two interfaces, an abstract list,
with methods for building and modifying lists

interface ItSeq extends {

void insertFront(Object o);

void insertRear(Object o);

boolean isEmpty();

void remFront(); // remove the first element

}
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and an abstract iterator, with methods for traversing a list and examining its con-
tents

interface Iterator_I {

void front(); // move to first element

void next();

boolean atEnd(); // test whether past the last element

Object currentItem(); // contents of current element

}

The iterator’s atEnd method returns true if and only if the iterator has moved
past the last element of the list. When the iterator is in this state, the currentItem
method will throw an exception.

With such a list and such an iterator we could easily implement a queue, since
we can remove from the front and add at the back.

It would be nice if the list were more flexible however. For example, we may
wish to sort a list. We can already do this in a functional style, by building a new
list while using insertion sort, but since this is a mutable list we should ideally be
able to sort the list without copying the nodes, changing it from an unsorted list
into a sorted one. We can implement such a sort if we add two more methods to
the Iterator I implementation:

void insertBefore(Object o); // add new element before current

void remove(); // remove current

A given list may have more that one iterator active on it at one time, so the
remove and insertBefore methods must be used with some care.

The definition of an iterator class implementing the Iterator I involves two
subtle issues: First, for an iterator to remove the current element, it must have a
reference to the element immediately before the current element.

Second, we can treat the empty list like any other list if we include a dummy
node which is always at the head of the list. This dummy node simplifes the im-
plementation of element removal when that element is the last element of the list.
When the list is empty, the last field refers to dummy node.
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2.1.8 An Implementation

All of our implementation sketches of the last few sections now culminate in the
following real list implementation. Notice that we make use of both static nested
and inner classes in an effort to hide imperative details.

// (Singly-Linked) Mutable Lists

// The ListI interface includes a method newIterator that creates

// a new iterator for a list. The List Class implementing ListI

// hides the Iterator class implementing ListI. As a result,

// invoking newIterator is the only way to create new iterators.

interface ListI {

ListI newList();

int length();

void insertFront(Object o);

void insertRear(Object o);

void remFront();

boolean isEmpty();

Iterator_I newIterator();

}

interface ReadIterator_I {

// interface for processing both mutable and immutable lists

void first();

void next();

boolean atEnd();

Object currentItem();

}

interface Iterator_I extends ReadIterator_I {

/* Destructive operations */

void insert(Object o);

// inserts before current item; when atEnd(), does insertRear(o)

void remove();

}

// Exception classes for Lists and Iterators

class ListException extends RuntimeException {

ListException(String s) { super(s); }

}

class IteratorException extends RuntimeException {
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IteratorException(String s) { super(s); }

}

class List implements ListI {

// ** fields **

private Node head = new Node(); // allocate header node

private Node last = head;

private int length = 0;

// ** constructors **

// relying on default constructor

// ** toString() **

public String toString() {

Iterator_I i = new Iterator();

String result = "(";

for (i.first() ; ! i.atEnd(); i.next())

result = result + " " + i.currentItem();

return result + " )";

}

// ** methods of ListI **

public ListI newList() { return new List(); }

public int length() { return length; }

public void insertFront(Object o) {

Node oldSucc = head.succ;

Node newNode = new Node(o,oldSucc);

head.succ = newNode;

if (last == head) last = newNode;

length++;

}

public void insertRear(Object o) {

Node newNode = new Node(o,null);

last.succ = newNode;

last = newNode;

length++;

}

public void remFront() {

if (isEmpty()) throw new

ListException("remFront() applied to EmptyList");

else {

Node newSucc = head.succ.succ;

head.succ = newSucc;
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if (newSucc == null) last = head;

length--;

}

}

public boolean isEmpty() { return head == last; }

public Iterator_I newIterator() {

return new Iterator();

}

// ** hidden classes Node and Iterator **/

private static class Node {

/* fields */

Object item;

Node succ;

/* constructors */

Node(Object i, Node s) {

item = i;

succ = s;

}

Node() { // allocate header

item = null;

succ = null;

}

// fields are accessed directly by code in List class

}

private class Iterator implements Iterator_I {

// NOTE: Iterator points to predecessor of current item.

// Hence, current item is pred.succ

/* fields */

Node pred;

/* Constructors */

Iterator() {

pred = head;

}

/* methods in Iterator_I interface */

public void first() {

// reposition cursor to refer to first item (if one exists)
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pred = head;

}

public void next() {

// advance cursor

if (atEnd()) throw new

IteratorException("No next element in Iteration");

pred = pred.succ;

}

public Object currentItem() {

// returns current item

if (atEnd()) throw new

IteratorException("No current element in " + List.this);

return pred.succ.item;

}

public boolean atEnd() { return pred == last; }

// returns true iff cursor points to imaginary element beyond last

public void insert(Object o) {

// pre: current is either a list element or an imaginary

// element just beyond the last element

// post: Node containing o is inserted before current item,

// current is unchanged (pred is changed, last may be)

Node oldSucc = pred.succ;

Node newNode = new Node(o, oldSucc); // allocate new node

pred.succ = newNode; // insert it

pred = newNode; // update current

if (oldSucc == null) last = newNode; // update last if needed

length++;

}

public void remove() {

// pre: pred != last (current is valid)

// post: pred.succ becomes pred.succ.succ

if (atEnd()) // no element available to remove!

throw new IteratorException(

"Iterator.remove() applied at end of List");

Node deadNode = pred.succ;

pred.succ = deadNode.succ;

if (last == deadNode) last = pred;

length--;

}

}
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}

BiLists and Their Iterators

The lists of the last few sections can be efficiently scanned in only one direction,
starting at the front and proceeding element by element to the end. We would now
like to develop a more general form of list that supports both forward and backward
traversal. The new list implementation will use doubly-linked lists, and we will call
the new lists BiLists and their iterators BiIterators.

As with our previous lists, we define a pair of interfaces, BiListI for lists, and
BiIterator I for iterators. Since BiLists and BiIterators will support all the
same operations as Lists and Iterators, we will make these interfaces subinterfaces
of BiListI and BiIterator I.

BiListI supports an additional operation for removing nodes at the rear of the
list, and provides an additional factory method for producing BiIterator Is.

interface BiListI extends ListI {

void remRear();

BiIterator_I newBiIterator();

}

BiIterator I supports backward traversal of lists, and so requires methods for
moving to the end of a list, moving back an element, and a test for whether the
iterator is at the front of the list.

interface BiIterator_I extends Iterator_I {

void last();

void prev();

boolean atBeginning();

}

Since a BiIterator I is also necessarily an Iterator I, a BiIterator I instance
can be substituted for an Iterator I instance. Thus the newIterator and newBiIterator

methods can share the same implementation.
An implementation of BiList and BiIterator is given below. In contrast to

the List implementation of the last section, all the classes are top-level, and so
imperative operations are not as well hidden. The BiIterator must now have a
field to record the BiList it operates on, and this must be initialized at construction
time. As an exercise, try converting the implementation so it uses nested and inner
classes as in the List case.

The underlying list structure is doubly-linked and circular. The dummy node
acts as both a marker for the beginning and the end of the list. Since nodes have
pointers to both next and previous nodes, the insertion and deletion methods are a
little more tricky and require more elaborate pointer juggling. When implementing
doubly-linked lists yourself, it helps to draw diagrams that show what points to
what at each stage of one of these operations.
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In the following code defining the interface BiListI class BiList the interfaces
ListI, ReadIterator, and Iterator I and classes ListException and IteratorException

are identical to those in the code for the (singly-linked) class MutList.

interface BiListI extends ListI {

// Extra operation required for bi-directional traversal

// Standard implementation uses double linking

void remRear();

BiIterator_I newBiIterator();

// duplicate of newIterator() with more precise return type

}

interface BiIterator_I extends Iterator_I {

// extended iterator for BiListI

void last();

void prev();

}

class BiList implements BiListI {

// ** fields **

Node head = new Node(); // allocate circularly linked header node

int length = 0;

// ** constructors **

// relying on default constructor

// ** toString

public String toString() {

BiIterator_I i = new BiIterator(this);

String result = "(";

for (i.first() ; ! i.atEnd(); i.next())

result = result + " " + i.currentItem();

return result + " )";

}

// ** methods in Interface BiListI

public ListI newList() { return new BiList(); }

public BiListI newBiList() { return new BiList(); }

public int length() { return length; }

public void insertFront(Object o) {
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Node oldSucc = head.succ;

Node newNode = new Node(o,head,oldSucc); // allocate new Node

// insert new Node

head.succ = newNode;

oldSucc.pred = newNode;

length++;

}

public void insertRear(Object o) {

Node oldPred = head.pred;

Node newNode = new Node(o,oldPred,head); // allocate new Node

// insert new Node

head.pred = newNode;

oldPred.succ = newNode;

length++;

}

public void remFront() {

if (isEmpty())

throw new ListException("remFront() applied to EmptyList");

else {

Node newSucc = head.succ.succ;

head.succ = newSucc;

newSucc.pred = head;

length--;

}

}

public void remRear() {

if (isEmpty())

throw new ListException("remRear() applied to EmptyList");

else {

Node newPred = head.pred.pred;

head.pred = newPred;

newPred.succ = head;

length--;

}

}

public boolean isEmpty() { return head == head.succ; }

public Iterator_I newIterator() {

// weaker typing for BiIterator when viewed as Iterator

return new BiIterator(this);

}

public BiIterator_I newBiIterator() {

return new BiIterator(this);

}
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}

// Implementation classes (not hidden!)

class Node {

// ** fields **

Object item;

Node pred,succ;

// ** constructors

Node(Object i, Node p, Node s) {

item = i;

pred = p;

succ = s;

}

Node() { // allocate header

item = null;

pred = this;

succ = this;

}

}

class BiIterator implements BiIterator_I {

// ** fields **

BiList listThis;

Node current;

// ** constructors **

BiIterator(BiList l) {

listThis = l; // associated List instance

current = listThis.head.succ; // current is first item (if one exists)

}

// ** methods in BiIterator interface **

public void first() {

current = listThis.head.succ; // current is first item (if one exists)

}

public void last() {

current = listThis.head.pred; // current is last item (if one exists)

}

public void next() {

current = current.succ; // wraps around end

}

public void prev() {



CHAPTER 2. OBJECT-ORIENTED DATA STRUCTURES 114

current = current.pred; // wraps around end

}

public Object currentItem() {

if (current == listThis.head) throw

new IteratorException("No current element in " + listThis);

return current.item;

}

public boolean atEnd() { return current == listThis.head; }

public void insert(Object o) {

// pre: true

// post: Node containing o is inserted before current item,

// current is unchanged

Node oldPred = current.pred;

Node newNode = new Node(o, oldPred, current); // allocate new node

current.pred = newNode; // insert it

oldPred.succ = newNode;

listThis.length++;

}

public void remove() {

// pre: current is valid

// post: current becomes current.succ

if (current == listThis.head) throw

new IteratorException(

"BiIterator.remove() applied at end of BiList " + listThis);

Node cPred = current.pred;

Node cSucc = current.succ;

cPred.succ = cSucc;

cSucc.pred = cPred;

current = cSucc;

listThis.length--;

}

}

2.1.9 Alternate Representations of Lists

So far we have focused on linked lists, but these are not the only possible implemen-
tations.

Arrays

Here is a sketch of how we might implement the BiList interface using arrays.
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1. newList: allocate a new array and initialize the elements in order (O(n))

2. isEmpty: trivial if along with the array we maintain a count of how many
elements are actually in use (O(1))

3. insertFront: expensive. If the front is already occupied, we have to shuffle
all the contents one place further down the array (O(n);

4. insertRear: cheap (O(1));

5. remRear: cheap (O(1));

6. newIterator: we don’t present an implementation, but the details are not
hard. The iterator need only keep the index of the current element. But note
that inserting or deleting from the middle now requires shuffling elements
(O(n) average case).

If we run out of room we can resize the array used to store the list elements. If
we double the size of the array at each resizing, then the average number of times
an element is copied due to resizing is approximately 1. To prove this, let the initial
size of the array be I, and suppose that the final size of the array is N, and there
were k resizes. Then

N = I · 2k

and we observe that

1. the first I elements move k times;

2. the next I elements move k-1 times;

3. the next 2I elements move k-2 times;

4. ...

5. the last N/2 = 2k−1 · I elements move 0 = k − k times.

Using some summation facts we can show that the total number of array element
copy operations is exactly N − I. Thus the average number of copy operations per
element in the final array is (N − I)/N which is always less than 1, and approaches
1 in the limit as N gets much larger than I (i.e. as the number of resizings gets
large). We say that the amortized cost of copying array elements is (bounded by a)
constant. The strategy of doubling the size of the array on each resize operation
appears to be an efficient one.

Exercise: Suppose that instead of doubling the array size, we increased it by
some constant amount. That is, after k resizings, the size of the array is I + k · J
for some constant J. What would the amortized cost of element copying be then?
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2.1.10 Hybrid Representations of Sequences

For some application such as a text editor the best representation of sequences may
be a hybrid of linked and sequential allocation, sometimes called a rope implementa-
tion. Such a hybrid links together sequentially allocated blocks of elements (arrays).
If the size of blocks is bounded by a constant, then the asymptotic complexity of
sequence operations in the hybrid implementation is identical to the correspond-
ing singly or doubly linked list implementation. But the leading constant in the
polynomial approximating the running time may be much lower.



Chapter 3

Graphical User Interfaces

Nearly all contemporary software applications have a graphical user interface. A
well-designed graphical interface is far more expressive and easier to use than a text
based interface. In this section, we will show how to write simple graphical user
interfaces in Java.

3.1 GUI Programming

Graphical user interface programming is inherently more complex than ordinary
applications programming because the graphical interface computation is driven by
a stream of graphical input actions. All of the input actions performed by a program
user including moving the mouse, clicking a mouse button, and typing a keystroke
are processed by code in the computer operating system. This code determines
when an input action of potential interest to the application occurs. Such an input
action is called an “event”. Typically mouse movement alone does not constitute an
event; the operating system updates the position of the cursor on the screen as the
mouse is moved. When a mouse button is clicked or a key is typed, the operating
system interrupts the application program and informs it that the specified event has
occurred. The Java virtual machine includes an event monitor that processes these
interruptions. This event processing code filters input events just as the operating
system code filters inputs. For some events such as typing a key (other than return),
the Java event monitor simply echoes the character on the screen in the appropriate
place. For other events such as a mouse click on a button, the Java event monitor
generates a program Event object that it places on a queue of pending Events for
processing by the running Java program.

Every Java program that creates graphical components has an extra thread
of execution that processes the program Event objects in the event queue. For
each program Event object, the thread calls the “listener” method that has been
registered by the Java program for handling this kind of program event.

117
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3.1.1 Model-View-controller Pattern

A well-organized graphical application has three components:

• a model consisting of the application with no external interface;

• a view consisting of one or more graphical frames that interact with the user
and the application; and

• a controller consisting of the “main” program that constructs the model and
the view and links them together.

A model is a “raw” program module with a programming interface consisting
a collection of publicly visible methods or procedures. In Java, the application
is typically a single object (containing references to many other objects) and the
programming interface is the collection of methods supported by that object.

When a program with a graphical interface starts, the controller

1. creates the model (application),

2. creates the view consisting of one or more graphical frames and attaches com-
mands to the graphical input controls (buttons, text boxes, etc.) of the view,

3. activates the graphical components in the view, and

4. terminates.

Of course, program execution continues after the controller terminates because the
extra thread of execution that processes program events is still running. After the
controller terminates, all program execution is triggered by user input actions.

The commands attached to the graphical input controls are operations on the
model implemented using the model’s programming interface. Recall the command
pattern from Section 1.8. In Java, each of the graphical input controls in the graphics
(AWT/Swing) library has an associated command interface that the installed
commands implement. In the Java graphics library, these commands are called
“listeners” because the are dormant until a graphical input event occurs (e.g., a
button is “pressed”). In the programming literature, these commands are often
called “callbacks” because they call methods “back” in the model which is logically
disjoint from the code running in the view.

To explain how to write programs using the model-view-controller pattern, we
will explore a simple example, namely a click-counter application that maintains
and displays a simple integer counter ranging from 0 to 999. The graphical display
will show the current value of the counter and include three buttons: an increment
button, a decrement button, and reset button.

We will start with the problem of writing the view components of the application.
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3.1.2 How to Write a View

Most view components have a small number of distinct states that determine how
the view is configured and how it will respond to the next program event. As a
result, view component programs typically consist of:

• a constructor than initializes the view,

• a registration method for each program event source (e.g., a button) that
takes a callback (command) argument and registers this callback as the listener
for this event source, and

• a setter method for each distinct view state that sets the fields of the view to
the appropriate values.

The controller uses the registration methods to attach callbacks to program event
sources in the view. The callbacks use the setter methods to change the state of the
view in response to program events.

For our click counter example, the view will have the following format:

which we decompose into three possible states:

1. the Min state where the DEC and 0 buttons are deactivated because the
counter has its minimum value of 0.

2. the Counting state where are three buttons are activated, and

3. the Max state where the INC button is deactivated because the counter has
reached its maximum value.

The listener must take into account the state of the model to update view.
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Warning Most introductory books are written by authors who do not understand
the model-view-controller pattern and the proper use of callbacks. Callbacks are not
supported in C or C++ because there is no concept of procedures as data objects
(simply passing a pointer to a procedure does not work!). As a result, textbook
authors with a C/C++ background are accustomed to using ugly alternatives to
callbacks which they continue to use in the context of Java. A common and par-
ticularly onerous abuse of the Java callback interface is implementing the requisite
listener interfaces by methods in the main viewer class, which is typically a frame
or an applet. This approach limits each event category to a single callback, e.g, one
callback method for all buttons which is coded in the main viewer class.

This approach has four serious disadvantages.

• First, to determine which component produced a given event, the viewer class
must uniquely label each event source (or maintain a table of event references).

• Second, when the listener receives an event, it must classify the event source
using a sequence of tests or look it up in a table to determine what block of
code should be used to process the event.

• Third, the code to process the event embedded in the view relies on the in-
terface provided by the application, corrupting the model-view-controller de-
composition.

• Fourth, if another graphical component in the same category is added to the
view (e.g, a new button) then the code for the callback method for that event
category must be modified.

Since the command pattern (procedures as data objects) completely eliminates
this mess, the “view class as listener” approach to event processing is indefensible.
Nevertheless, it is widely taught even by some reputed “experts” on Java program-
ming. In fact, I am familiar with only one popular Java book that teaches good
programming practice in conjunction with GUI programming, namely Thinking in
Java by Bruce Eckel.

Coding the View Class The following code defines a view class that supports
the schematic display given above:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

import javax.swing.*;

class ClickCounterView {

// ** fields **

private JButton incButton;

private JButton resetButton;
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private JButton decButton;

private JLabel valueDisplay;

// ** constructors **

public ClickCounterView(JApplet itsApplet) {

JPanel controlPanel = new JPanel();

itsApplet.getContentPane().setLayout(new BorderLayout());

valueDisplay = new JLabel("000", JLabel.CENTER);

itsApplet.getContentPane().add(valueDisplay, "Center");

incButton = new JButton("+");

resetButton = new JButton("0");

decButton = new JButton("-");

controlPanel.add(incButton);

controlPanel.add(resetButton);

controlPanel.add(decButton);

itsApplet.getContentPane().add(controlPanel, "South");

}

// ** methods **

public void setValueDisplay(String setTo) {

valueDisplay.setText(setTo);

}

public void addIncListener(ActionListener a) {

incButton.addActionListener(a);

}

public void addDecListener(ActionListener a) {

decButton.addActionListener(a);

}

public void addResetListener(ActionListener a) {

resetButton.addActionListener(a);

}

public void setMinimumState() {

incButton.setEnabled(true);

resetButton.setEnabled(false);

decButton.setEnabled(false);

}

public void setCountingState() {

incButton.setEnabled(true);

resetButton.setEnabled(true);

decButton.setEnabled(true);
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}

public void setMaximumState() {

incButton.setEnabled(false);

resetButton.setEnabled(true);

decButton.setEnabled(true);

}

}

The structure of this program is very simple. Most of the length is due to Java’s
wordy syntax and long variable names. What does it do?

The Java AWT/Swing library includes a large number of classes for defining
graphical components that can be displayed on the screen. The AWT library relies
on the window manager of the underlying operating system to implement common
graphical components like windows, menus, and buttons. The Swing extension to
the AWT library provides “pure Java” equivalents of these graphical elements, elim-
inating the vagaries in graphical style among window systems. For every graphical
component class C in the AWT library, the Swing extension includes an equivalent
“pure Java” component class JC. For example, the AWT library includes a compo-
nent class Button to represent a button in a graphical window. Hence, the Swing
extension includes the corresponding class JButton. With a few exceptions, each
Swing component class can be used in place of the corresponding AWT class.

All of the component classes in AWT/Swing are all descendants of the AWT
abstract class Component (surprise!). The ClickCounterView class mentions three
of these component classes, namely JPanel, JButton, and JLabel which are all sub-
classes of the Swing abstract class JComponent (which is a subclass of Component).
A JPanel object is simply a rectangular region that can be incorporated in a graph-
ical container (such as the JFrame class in the Swing library) which is subsequently
displayed on the screen. A panel typically contains other graphical elements (e.g.
buttons, drawing canvases, text, pictures) which are displayed as part of the panel.
(A blank panel is not very interesting!) A JButton is a graphical button and a
JLabel is a single line of text that can be used as a graphical component.

In AWT/Swing library, graphical components that can contain other graphical
components are called containers and belong to type Container. Within a container,
the layout of the graphical components inside it is determined by a layout manager,
a Java object of type LayoutManager. One of the important tasks in programming
a user interface is determining which layout manager and combination of parameter
values to use. A good layout policy will produce an attractive logical layout for a
variety of different frame shapes and sizes.

The layout manager BorderLayout used in ClickCounterView uses compass
points to constrain the relative position of graphical components. The four com-
pass points, "North", "East","South", and "West" plus the "Center" position
are supported by the layout manager as directives when graphical components are
installed within the panel that it manages.
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In the program text above, the ClickCounterView object constructor creates
panels within the frame provided by the JApplet object that is passed to it. An
applet is a “top level” container; the browser that is executing the applet provides it
with a blank area of the screen in which it can paint its various graphical elements.
The constructor for ClickCounterView creates a JLabel displayValue text line to
hold the current click count and a JPanel controlPanel containing three buttons,
incButton, resetButton, and decButton with adorning String labels +, 0, and
-, respectively. The displayValue is placed in the center of the Applet and the
three buttons are placed in the controlPanel using the default layout manager
FlowLayout. This layout manager places graphical components in rows from left-
to-right just like a text editor places characters when you type text into a buffer.

The ClickCounterView class defines seven public methods to access and update
its components:

• the setValueDisplaymethod update the valueDisplay to the specified String;

• the methods addIncListener, addDecListener, and addResetListener at-
tach their command arguments to the buttons incButton, resetButton, and
decButton, respectively; and

• the methods setMinimumState, setCountingState, and setMaximumState

which enable and disable the buttons appropriately for each of the three states
described above.

3.1.3 How to Write a Simple Model

From the perspective of GUI design, the critical issue in developing a model is defin-
ing the interface for manipulating the model. This interface should be as transparent
as possible, without making a commitment to a particular user interface.

In our click counter example program, the model class is utterly trivial. In accor-
dance with the model-view-controller pattern, it is does not presume any particular
user interface. The only feature of the counter targeted at supporting a user inter-
face is the toString method which pads the output String with leading zeroes to
produce the specified display width of 3 digits.

class ClickCounter {

// ** fields **

private static final int MAXIMUM = 999;

private static final int MINIMUM = 0;

private static final int STRING_WIDTH = 3;

private static int count = MINIMUM;

// ** constructor

public ClickCounter() {}

// ** methods
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public boolean isAtMinimum() { return count == MINIMUM; }

public boolean isAtMaximum() { return count == MAXIMUM; }

public int inc() {

if (! this.isAtMaximum()) count++;

return count;

}

public int dec() {

if (! this.isAtMinimum()) count--;

return count;

}

public void reset() { count = MINIMUM; }

public int getCount() { return count; }

// ** toString() **

public String toString() {

StringBuffer buffer =

new StringBuffer(Integer.toString(count));

while (buffer.length() < STRING_WIDTH) buffer.insert(0,0);

return buffer.toString();

}

}

3.1.4 How to Write a Controller

From a programming perspective, the controller is the most interesting part of this
example. It glues together the model and view using callbacks and then terminates.
Of course, whenever the view receives an event, it invokes callbacks, code defined in
the controller, to process them. The controller’s callback code performs whatever
updates are required to the model an to the view.

public class ClickCounterControl extends JApplet {

// ** fields **

private ClickCounter counter;

private ClickCounterView view;

// ** constructors **

// relying on default constructor

// ** methods **

// relying on inheritance from JApplet

public void init() {
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counter = new ClickCounter();

view = new ClickCounterView(this);

view.setMinimumState();

view.setValueDisplay(counter.toString());

view.addIncListener(new ActionListener(){

public void actionPerformed(ActionEvent event) {

if (counter.isAtMaximum()) return;

if (counter.isAtMinimum()) view.setCountingState();

counter.inc();

view.setValueDisplay(counter.toString());

if (counter.isAtMaximum()) view.setMaximumState();

}

});

view.addDecListener(new ActionListener(){

public void actionPerformed(ActionEvent event) {

if (counter.isAtMinimum()) return;

if (counter.isAtMaximum()) view.setCountingState();

counter.dec();

view.setValueDisplay(counter.toString());

if (counter.isAtMinimum()) view.setMinimumState();

}

});

view.addResetListener(new ActionListener(){

public void actionPerformed(ActionEvent event) {

counter.reset();

view.setMinimumState();

view.setValueDisplay(counter.toString());

}

});

}

}

3.2 What is Concurrent Programming?

Until now, we have been exclusively concerned with sequential programs that ex-
ecute a single stream of operations. Even the GUI programming in the previous
section avoided concurrent execution by terminating the controller as soon as it fin-
ished setting up the model and view. Concurrent computation makes programming
much more complex. In this section, we will explore the extra problems posed by
concurrency and outline some strategies for managing them.

In a concurrent program, several streams of operations may execute concurrently.
Each stream of operations executes as it would in a sequential program except for
the fact that streams can communicate and interfere with one another. Each such
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sequence of instructions is called a thread. For this reason, sequential programs are
often called single-threaded programs. When a multi-threaded program executes,
the operations in its various threads are interleaved in an unpredictable order sub-
ject to the constraints imposed by explicit synchronization operations that may be
embedded in the code. The operations for each stream are strictly ordered, but the
interleaving of operations from a collection of streams is undetermined and depends
on the vagaries of a particular execution of the program. One stream may run
very fast while another does not run at all. In the absence of fairness guarantees
(discussed below), a given thread can starve unless it is the only “runnable” thread.

A thread is runnable unless it executes a special operation requiring synchro-
nization that waits until a particular condition occurs. If more than one thread
is runnable, all but one thread may starve (make no progress because none of its
operations are being executed) unless the thread system makes a fairness guarantee.
A fairness guarantee states that the next operation in a runnable thread eventually
will execute. The Java language specification currently makes no fairness guarantees
but most Java Virtual Machines guarantee fairness.

Threads can communicate with each other in a variety of ways that we will
discuss in detail later in this section. The Java programming language relies pri-
marily on shared variables to support communication between processes, but it also
supports an explicit signaling mechanism.

In general, writing concurrent programs is extremely difficult because the mul-
tiplicity of possible interleavings of operations among threads means that program
execution is non-deterministic. For this reason, program bugs may be difficult to
reproduce. Furthermore, the complexity introduced by multiple threads and their
potential interactions makes programs much more difficult to analyze and reason
about. Fortunately, many concurrent programs including most GUI applications
follow stylized design patterns that control the underlying complexity.

To demonstrate some of the subtle problems that arise with this sort of program-
ming, consider the following example. We have two threads, A and B, that both
have access to a variable ct. Suppose that, initially, ct is 0, but there are places in
both A and B where ct is incremented.

A B
... ...
ct++; ct++;

To increment a variable x, (i) the value v of x must be fetched from memory,
(ii) a new value v’ based on v, and (iii) v’ must be stored in the memory location
allocated to variable x. These are three separate actions, and there is no guarantee
that no other thread will access the variable until all three are done. So it’s possible,
for instance, that the order of operations from these two threads occurs as follows:

A fetches ct = 0
B fetches ct = 0
A computes the value ct++ = 1
A stores the value 1 in ct
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B computes new value ct++ = 1
B stores the value 1 in ct

With this order of the operations, the final value for ct is 1. But in other possible
orderings (e.g., if A performs all of its actions first), the final value would be 2.

A simple strategy for preventing this form of interference (often called a race
condition) is to make the entire access/modify/store cycle for updating shared vari-
ables atomic, despite the fact that the cycle is performed using several machine
instructions. Atomic operations appear to execute as a single machine instruction
because all other threads are forced to pause executing while the atomic operation
executes. As a result, it is impossible for another thread to observe the value of the
updated variables while the operation is in progress. A block of code that requires
atomic execution is called a critical section. Some programming languages that
support concurrency include begin/end brackets for enclosing critical sections.

The critical section mechanism works well in the context of running multi-
threaded programs on a computer with a single processor (a uniprocessor) since
it reduces to ensuring that a critical section is not interruptible (permitting another
thread to run). But it is clumsy and inefficient on a multiprocessor because it forces
all processors but one to stop execution for the duration of a critical section. (Ex-
isting virtual machines treat new operations that force garbage collection as critical
sections.

A much better mechanism for preventing interference in concurrent programs
that may be executed on multiprocessors is locking data objects. When a data
object is locked by a thread, no other thread can access or modify the data object
until the locking thread releases it. In essence, locking relaxes the concept of atomic
execution so that it is relative to a particular object. Threads can continue executing
until they try to access a locked object.

Java relies on object locking to prevent interference. An object can be locked for
the duration of a method invocation simply by prefixing the method declaration with
the work synchronized. For instance, to define a synchronized increment method,
we would write:

synchronized void inc() { ct++; }

We can also declare static methods to be synchronized, which locks the class
object (which contain all of the static variables of the class) rather than an instance
object.

An unusual feature of Java’s lock mechanism is the fact that locking an object
only inhibits the execution of operations that are declared as synchronized. Meth-
ods that are not declared as synchronized will be executed even when an object is
locked! There is a strong argument for this capability: it supports the definition
of classes that partition operations in two groups: those that require synchroniza-
tion and those that do not. But it also invites subtle synchronization bugs if the
synchronized modifier is inadvertently omitted from one method definition.

Of course, concurrency only arises in Java when a program uses more than one
thread. To support the explicit creation of new threads, Java includes a built-in
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abstract class Thread, that has an abstract method run(). We can make a new
thread by (i) defining a class extending Thread that defines the method run(), (ii)
constructing a new instance of this class, and (iii) calling the start()method on this
new instance. The start() method actually creates a new thread corresponding to
the receiver object (a Thread) and invokes the run() method of that thread, much
as the main() method is invoked in the root class when you run a Java Virtual
Machine. For example,

class Foo extends Thread {

// must have

public void run() {

...

}

}

When a constructor for Foo is called, all of computation for the object allocation
and constructor invocation is performed in the current thread; a new thread is not
created until the start() method is invoked for a Thread() object. To create and
start a new Foo thread, the current thread can simply execute the code

Thread t = new Foo();

t.start();

Alternatively, the current thread can execute the run() method of the Thread object
t simply by performing the operation

t.run()

instead of

t.start()

Assume that a new Foo thread t has been created and started. At some point in
the execution of the original thread (now running concurrently with thread t) can
wait for thread t to terminate by executing the method invocation:

t.join();

// waits for the thread object to terminate.

So we can view the relationship of the two threads of control as follows:

main

|

t.start

|\

| \

| |

| /

|/

t.join

|

|
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Synchronizing multiple threads does incur some overhead. For example, consider
the following Java code:

class PCount extends Thread {

// ** fields ***

static int sharedCtr = 0;

static final int cntPerIteration = 100000;

static final int noOfIterations = 10;

int id;

// ** constructors **

PCount(int i) { id = i; }

// ** methods **

void inc() {

sharedCtr++;

}

public void run() {

for (int i = 0; i < cntPerIteration; i++) inc();

System.out.println("Iteration #" + id +

" has completed; sharedCtr = " + sharedCtr);

}

public static void main(String[] args)

throws InterruptedException {

Thread[] tPool = new Thread[noOfIterations];

for (int j = 0; j < noOfIterations; j++) {

tPool[j] = new PCount(j);

}

for (int j = 0; j < noOfIterations; j++) {

tPool[j].start();

}

for (int j = 0; j < noOfIterations; j++) {

tPool[j].join();

}

System.out.println("Computation complete. sharedCtr = "

+ sharedCtr);

}

}

In each iteration, main creates a new thread. Afterwards, all are synchronized
and a final value is determined.

The counter is not locked in this example, and so updates may be lost because of
the problems described above. The likelihood with which update losses may occur
varies depending on the number of threads. For example, in a test that I ran a few
months ago

• for 1 million iterations, the program 65
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• for 100,000 iterations, the program lost none.

Apparently, even with 100,000 threads, each iteration occurred within a single time
slice.

Synchronizing the threads fixes the problem of lost updates, but it really slows
the program down; even for 100,000 iterations.

In modern event-handling models such as those in Java, we have a single event
handler that executes events serially. This protocol saves the overhead of synchro-
nization and eliminates potential deadlocks (which we will discuss later).

Synchronized methods and statements

We’ve already discussed synchronized methods above. We can likewise declare syn-
chronized blocks of statements using the following syntax:

synchronized(expr) {

...

}

where ¡tt¿expr¡/tt¿ must evaluate to a reference type (i.e. for most purposes, an
object reference). The code between the braces needn’t have any connection to
¡tt¿expr¡/tt¿, although this would be perverse in most situations.

For an example, consider implementing a bounded buffer protocol. Bounded
buffers are used in Unix to allow interprocess communication via ¡em¿pipes¡/em¿.
When the output of one process is piped to the input of another, a bounded buffer
is set up between the processes. The first process writes into the buffer, and the
second process reads from it.

When the second process attempts to read data but there is none for it to read,
it must wait until data is available. There are two general schemes that can be used
to implement this waiting:

• busy-waiting: the reader process executes a loop in which it tests whether there
is any data waiting for it. This approach works but is undesirable because the
reader is allocated CPU time just to test if it can do useful computation;
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• blocking: the operating system provides the routines for reading from and writ-
ing to the buffer. When the reader process attempts to read from an empty
buffer, it is ¡em¿blocked¡/em¿. The operating system marks the reader as
unable to run until data is available in the buffer, and removes it from the col-
lection of currently runnable processes. When the writer process writes data,
the system ”wakes up” the reader process and makes it one of the runnable
processes again. In this way, very little CPU time is expended on coordinating
the writer and reader processes.

Naturally, Unix uses the second approach. Note that a symmetric situation
occurs when the writer process attempts to write to the buffer and it is full: the
writer is blocked pending the availability of space in the buffer. The writer may be
reawakened when the reader reads some data and the routine for reading from the
buffer determines that there is available space for more data to be written.

We can program a Java thread so that it busy waits on a locked object, but this
is almost always a bad programming practice. Fortunately, Java provides a facility
that enables us to avoid busy-waiting. There are two primitives,

• wait()

• notify()

which can be used inside synchronized methods and blocks. wait() puts the calling
thread to sleep on a queue of threads that are waiting for some change in the status
of a locked object. The thread can only be awakened if some other running thread
calls notify() on the same locked object. When notify() is invoked for the locked
object, a check is done to see whether any change has been made to it, and then
some waiting thread from the associated queue is allowed to run. (Notify arbitrarily
picks one thread).

The awakened process will, if prudently written, check whether the condition it
is waiting for actually holds. If it does, the thread proceeds, and otherwise it should
suspend itself again with another call to wait(). Usually, this is implemented in
a loop. This may look a bit like busy-waiting, but because wait() suspends the
calling thread until something of interest happens, most of the time the thread is
idle.

There is also a notifyAll() method, which works just like notify() except
that all waiting threads are allowed to run.

3.2.1 Deadlock

In the preceding subsection, we showed how object locking can be used to prevent
interference. Unfortunately, locking is not a panacea. The excessive use of locking
can severely degrade system performance or, even worse, lock up the system so that
all computational progress halts until the program is terminated. The essence of
concurrent programming is organizing computations so that neither interference or
deadlock can occur.
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To illustrate deadlock, let us consider a classical problem called The Dining
Philosophers in the theory of concurrent programming. It is unrealistic and fanciful,
but the synchronization behavior that it models can happen in real systems.

A collection of N Philosophers sits at a round table, where N > 1. N forks are
placed on the table, one between each pair of adjacent philosophers. No philosopher
can eat unless he has two forks and he can only use the two forks separating him
from his two neighbors. Obviously, adjacent philosophers cannot eat at the same
time. Each philosopher alternately eats and sleeps, waiting when necessary for the
requisite forks before eating.

Our task is to write code simulating the dining philosophers so that no philoso-
pher starves. An obvious protocol that each philosopher might follow is:

while (true) {

grab left fork;

grab right fork;

eat;

release left fork;

release right fork

sleep;

}

Now assume that actions of the philosophers are perfectly interleaved: the first
philosopher grabs his left fork, then the second philosopher grabs his left fork, and
so on until the Nth philosopher grabs his left fork. Then the first philosopher tries
to grab his right fork, the second philosopher tries to grab his right fork, and so on.
They all have to wait because no right fork is available and they all starve.

Theoretical computer scientists have proven that there is no deterministic uni-
form solution to this problem. (By uniform, we mean that every philosopher executes
exactly the same code with no access to identifying state information such as the
name of the “current” philosopher.) But many non-uniform solutions exist. For
example, we could number the philosophers around the table from 0 to N. Even
numbered philosophers ask for the left fork first, odd numbered ones ask for the
right fork first.

Another common solution to this sort of deadlock is to order the resources (in
this case forks) and force the processes (philosophers) to grab forks in ascending
order. This solution is very general and is widely used in practice.

Consider the case where we have three philosophers: P1, P2, P3 and three forks
F1, F2, F3 where P1 sits between F1 and F2, P2 sits between F2 and F3, and P3
sits between F3 and F1. We can order the forks in the obvious ascending order F1,
F2, F3.
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Now, no matter what, all the philosophers will be able to eat because the linear
ordering prevents cycles in the “is waiting for” relation among philosophers. (Finger
exercise: prove it!) For instance, if P0 gets F0, and P1 gets F1, P2 must wait until
F0 is free. So P1 will get F2 (since there will be no contention), and finish eating.
This will release F1 and F2, allowing P0 to get F1 and finish eating. Finally, this will
release F0, allowing P2 to get F0 and F2 (since there will be no further contention)
and finish eating.



Chapter 4

Appendix: Java Mechanics

4.1 Notation and Syntax

Java programs are constructed from statements. Statements are program phrases
that do not have values; they contribute to a larger computation by changing the un-
derlying program state. Since many Java statements contain embedded expressions,
let us look briefly discuss Java expressions.

4.1.1 Java Expressions

In Java, arithmetic, boolean, and String expressions are written in conventional
mathematical infix notation, adapted to the standard computer character set (called
ASCII). For example, the Scheme expression

(and (< (+ (* x x) (* y y)) 25) (> x 0))

is written in Java as

(x*x + y*y > 25) && (x > 0)

The syntax of Java expressions is patterned after the C programming language. Like
C, Java uses the symbol && for the “and” operation on boolean values (true and
false) and the symbol == for the equality operation on numbers. (Warning: the
symbols & and = are used in C and Java for other purposes.)

The following table lists the major infix operators provided by Java:

134
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+ addition and String concatenation
- subtraction
* multiplication
/ division
% mod (remainder from integer division)
< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
!= not equal
&& and
|| or

The Java arithmetic operators all perform the indicated operations using com-
puter arithmetic instead of genuine arithmetic. Computer arithmetic does not ex-
actly conform to the standard mathematical conventions. Calculations involving real
numbers (Java types float and double) are approximate; the computer rounds the
true result to the nearest real number expressible using the number of digits provided
in the standard machine representation (scientific notation with a fixed number of
digits for the fraction and exponent). Integer calculations are done exactly provided
that the answer is an integer and that it can be represented using 31 binary digits
plus a sign.1 Note that integer division always produces integer answers (unless you
try to divide by zero which is an error). For example, the expression

5/3

produces the result

1

which is the quotient of 5 divided by 3. Integer division truncates the true rational
result, dropping the digits to the right of the decimal point. Similarly, The expression

5%3

produces the result

2

which is the remainder of 5 divided by 3. In Java program text, spaces between
symbols are ignored; the expression

5 / 3

is equivalent to the expression

5/3

1As we will explain shortly, Java supports several different sizes of integer representation; 31

binary digits plus sign is the default for integer constants.
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All of the binary infix operators in Java are either arithmetic, relational, or
boolean except for + when it is used in conjunction with strings. If either argument
to + is of String type, then Java converts the other argument to a String. Object
values are coerced to type String using their toString()methods. As we explain in
Section 1.3.4, every object has a toString() method. The concatenation operator
converts primitive values to strings using built-in conversion routines that we will
discuss later.

Note that the order in which arguments appear and the use of parentheses in
mixed integer and string expressions constructed from int and String values affects
the conversion process. For example, the expression

9 + 5 + 1 + "S"

evaluates to the String "15S" while the expression

9 + (5 + (1 + "S"))

evaluates to the String "951S". The association rules for Java expressions are
explained in Section 4.2.

Java also supports the unary prefix operators - (arithmetic negation) and !

(boolean “not”) used in conventional mathematical notation. Parentheses are used
to indicate how expressions should be decomposed into subexpressions. All of the
binary infix operators in Java are either arithmetic, relational, or boolean except
for + when it is used in conjunction with strings. If either argument to + is of
String type, then Java converts the other argument to a String. Object values are
coerced to type String using their toString() methods. As we explain in Section
1.3.4, every object has a toString() method. The concatenation operator converts
primitive values to strings using built-in conversion routines that we will discuss
later.

Note that the order in which arguments appear and the use of parentheses in
mixed integer and string expressions constructed from int and String values affects
the conversion process. For example, the expression

9 + 5 + 1 + "S"

evaluates to the String "15S" while the expression

9 + (5 + (1 + "S"))

evaluates to the String "951S". The association rules for Java expressions are
explained in Section 4.2.

Java also supports the unary prefix operators - (arithmetic negation) and !

(boolean “not”) used in conventional mathematical notation. Parentheses are used
to indicate how expressions should be decomposed into subexpressions.

The only pure expression form in Java that deviates from conventional mathe-
matical notation is the conditional expression notation

test ? consequent : alternative
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borrowed from C. This expression returns the value of consequent if test is true and
the value of alternative if test is false. It corresponds to the Scheme expression

(cond [test consequent] [else alternative])

Note that when test is true, alternative is not evaluated. Similarly, when test is
false, consequent is not evaluated. Hence, the expression

(2 < 0) ? 2/(1 - 1) : 0

does not divide 2 by 0. The test expression must be a boolean value, true or false.

Finger Exercise: In the DrJava Interactions pane, try evaluating the following
expressions:

(2 < 0) ? 2/(1 - 1) : 0

(0 < 1) ? "foo" : "bar"

17 ? true : false

The last example produces a syntax error because 17 is not a boolean value.

4.2 Precedence of Operations

Since Java uses conventional infix notation for expressions it relies on the notion of
precedence to determine how expressions like

12 * 5 + 10

should be interpreted. The Java operations given in the preceding subsection are
divided into the following precedence groups:

prefix operators - !

multiplicative * / %

additive + -

relational < > >= <=

equality == !=

logical and &&

logical or ||

conditional ? ... :

from highest to lowest. A higher precedence operator has greater “binding power”.
For example, the expression

72. - 32. * 1.8

is equivalent to

72. - (32. * 1.8)

because * has higher precedence than infix -.
All of infix operators listed above are left-associative: when infix operators of

equal precedence are chained together, the leftmost operator has precedence. For
example,
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72. - 30. - 12.

is equivalent to

(72. - 30.) - 12.

Parentheses can be used to override the built-in precedence and associativity of
operators. Hence,

(72. - 32.) * 1.8

equals 40*1.8. Similarly,

72. - (30. - 12.)

equals

72. - 18.

It is a good idea to use parentheses if you have any doubts about the precedence
relationship between consecutive operators. The judicious use of parentheses makes
complex expressions easier to read.

4.3 Java Statements

In Java, computations are expressed as sequences of statements. The most common
form of Java statement is an assignment statement

type var = expr ;

where type is a Java type name, var is a Java variable name, and expr is an expression
of type compatible with the type of var. The assignment statement

int x = 5;

asserts that “the variable x has value 5”.

4.3.1 Variable Names and Type Names

Java variable names and type names must be identifiers. An identifier is any se-
quence of “alphanumeric characters” (letters, digits, and ) beginning with a letter
or —except for the following keywords, which are reserved and may not be used as
variable names or type names:

abstract default if private throw

boolean do implements protected throws

break double import public transient

byte else instanceof return try

case extends int short void

catch final interface static volatile

char finally long super while

class float native switch

const for new synchronized

continue goto package this



CHAPTER 4. APPENDIX: JAVA MECHANICS 139

Java is case-sensitive; the variable X is distinct from the variable x. There are three
kinds of variables in Java: fields, method parameters, and local variables. Fields and
method parameters are discussed in detail in the next subsection. We will defer a
discussion of local variables until Section 1.9.1.


