Physical Implementation and Evaluation of
Ad Hoc Network Routing Protocols using
Unmodified Simulation Models

Amit Kumar Saha Khoa Anh To

Santashil PalChaudhuri

Shu Du David B. Johnson

Rice University
Departments of Computer Science and Electrical and Computer Engineering
6100 Main Street
Houston, TX 77005-1892 USA

{ amsaha, takhoa, santa, dushu, dbj } @cs.rice.edu

ABSTRACT

Simulation and physical implementation are both valuable tools
in evaluating ad hoc network routing protocols, but neither alone
is sufficient. In this paper, we present the design and implemen-
tation of a new system that allows existing simulation models
of ad hoc network routing protocols to be used —without modi-
fication — to create a physical implementation of the same pro-
tocol. We have evaluated the simplicity and portability of our
approach across multiple protocols and multiple operating sys-
tems through example implementations in our architecture of the
DSR and AODYV routing protocols in FreeBSD and Linuz using
the existing, unmodified ns-2 simulation models. We also illus-
trate the ability of the resulting protocol implementations to han-
dle real, demanding applications by presenting a demonstration
of this DSR implementation transmitting real-time video over a
multthop mobile ad hoc network including mobile robots being
remotely operated based on the transmitted video stream.

Categories and Subject Descriptors

C.5.0 [Computer Systems Organization]: Computer Sys-
tem Implementation—Miscellaneous

General Terms
Design

Keywords

Implementation, ad hoc networks, routing protocols, ns-2,
DSR, AODV, FreeBSD, Linux

1. INTRODUCTION

Ad hoc networking is currently a very active area of
research, yet evaluating the many proposed protocols for
ad hoc networks remains difficult. In an ad hoc network,
wireless nodes cooperate to form a network, forwarding
packets for each other to allow nodes not within direct wire-
less transmission range of each other to communicate. The
behavior of the system can be quite dynamic due to factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM ASIA WORKSHOP, April 12-14, 2005, Beijing, China.
Copyright 2005 ACM ISBN 1-59593-0302 ...$5.00.

such as node movement and variations in radio propagation
conditions, creating frequent changes in network topology,
differing concentrations in traffic load on the network, and
other challenges to the operation of the network protocols.

The most common method of evaluation, network simula-
tion, has many advantages. For example, simulation allows
repeatable experiments, for comparing one protocol or pro-
tocol version to another under identical workloads. Also, it
is generally easier than full physical implementation, since
it avoids the need for moving the nodes under test and can
evaluate systems for which the necessary hardware is not
available. However, simulation may fail to capture the pre-
cise behavior of the real system, as it is difficult to accurately
model the complexities of real radio propagation, realistic
node mobility, and application data traffic workload.

On the other hand, physical protocol implementation al-
lows the real system itself to be measured and can help to
validate simulations, but protocol evaluations using physi-
cal implementation are generally much more difficult than
simulation evaluations. For example, physical implementa-
tion must deal with real packet formats and application pro-
gramming interfaces, whereas such factors can be simplified
and abstracted in simulation. In addition, evaluations using
physical implementation are generally much more time- and
equipment-intensive than simulations, due to the use of real
hardware and real mobility and the exposure of the exper-
iments (and the experimenters) to the real environment in
which this mobility takes place.

Simulation and physical implementation are each valuable
as techniques in evaluating ad hoc network protocols, and
any complete evaluation should include both. However, this
approach normally requires two separate implementations of
the protocol, one for the simulation model and one for the
physical system, resulting extra effort in coding, debugging,
validation, and maintenance.

To address this conflict between simulation and physical
implementation, in this paper, we present the design and
implementation of a new system that allows existing sim-
ulation models of ad hoc network routing protocols to be
used — without modification —to create a physical imple-
mentation of the same protocol. The protocol on each node
runs entirely in a single user-level process, and our system
uses standard interfaces to transmit and receive packets from
the kernel, simplifying protocol debugging and making the

system highly portable between different host operating sys-
tems. Although the system is based on unmodified simula-
tion code, the resulting physical implementation is entirely
real, not simulated, running on real hardware, with real mo-
bility, real packets, and real wireless network interfaces. Our
current system is based on the ns-2 network protocol simu-
lator, but the techniques used in our system should also be
readily portable to other network simulation environments.

We have evaluated the simplicity and portability of our
approach across multiple protocols and multiple operating
systems through example implementations in our architec-
ture of the Dynamic Source Routing protocol (DSR) [10] and
the Ad hoc On-Demand Vector Routing protocol (AODV)
[19] on FreeBSD and Linux using the existing, unmodified
ns-2 simulation models. The user-level code is identical be-
tween our implementations on FreeBSD and Linux, and the
small amount of new operating system kernel support code
required by our system is identical for both protocols. We
also illustrate the ability of the resulting protocol implemen-
tations to handle real, demanding applications by presenting
a demonstration of our DSR implementation transmitting
real-time video over a multihop mobile ad hoc network in-
cluding mobile robots being remotely operated based on the
transmitted video stream. All video and robot control mes-
sages were transmitted over the ad hoc network running our
DSR implementation.

The rest of this paper is organized as follows. In Section 2,
we describe previous work in this field and how it differs
from our work. Following that, in Section 3, we describe
our system architecture, and in Section 4, we describe how
our architecture is portable across multiple routing proto-
cols and operating systems. We evaluated our architecture
performance in Section 5. We discuss several issues with our
architecture in Section 6, and we conclude in Section 7.

2. RELATED WORK

Simulation models of many ad hoc network routing pro-
tocols have been created in simulators such as ns-2 [7],
GloMoSim [28], OPNET [18], and QualNet [24], and sev-
eral of these protocols have also been implemented in phys-
ical environments. We concentrate here on the different ap-
proaches that have been attempted in merging simulation
and physical implementation efforts.

One approach in this area, for creating a new physical
implementation of some protocol, is to base the new imple-
mentation on the existing code of a simulation model of the
same protocol. For example, Royer and Perkins documented
their efforts in using an existing ns-2 simulation model of
the AODV routing protocol as the basis for a new physi-
cal implementation of the protocol on Linux [23]; like our
work, their implementation of the routing protocol runs in a
single user-level process with interfaces to the kernel. They
report that certain simplifications had to be made to the ex-
isting AODV simulation model. Their implementation also
is not directly portable between different operating systems
and supports only the AODV protocol. For example, they
suggest a new FreeBSD virtual device driver to replace a
Linux-only kernel interface used by the user-level process
for kernel routing table updates; their Linux kernel modi-
fications also interact closely with the kernel routing table
data structures, which are different in different operating
systems.

Another approach merging simulation and physical im-

plementation efforts is the use of an existing physical imple-
mentation of some protocol as the basis for a new simulation
model of the same protocol. For example, AODV-UU [15]
is a physical implementation of AODV, which can also be
executed within ns-2 as a simulation model of AODV. How-
ever, AODV-UU supports only the AODV protocol and does
not attempt to be portable to operating systems other than
Linux for which it was designed.

More general projects in this area, providing frameworks
that support arbitrary ad hoc network protocols rather than
a single specific protocol, include the Rooftop C++ Protocol
Toolkit (CPT) [22], the nsclick simulation environment [17],
and the work of Allard et al. [1]. In CPT, protocols must
be written within the proprietary CPT environment, which
provides its own simulator, plus platform wrapper functions
and device drivers for physical (and embedded) implemen-
tations. In msclick, protocols must be written using the
research Click Modular Router framework [13]; simulation
may then be done using ns-2, although nsclick replaces much
of the operation of ns-2 to support this simulation; the re-
sulting simulation does not, for example, support much of
the tracing otherwise available within ns-2. The nsclick sys-
tem also currently only supports CBR (UDP) traffic and
does not support features such as link-layer link breakage
detection. Allard et al. creates a new C++ framework for
ad hoc network routing protocol implementation and also
provides a new, integrated simulator for simple testing pro-
tocols implemented in this environment.

TOSSIM [14] provides a high fidelity simulation for
TinyOS and mote hardware, such that TinyOS applications
can be run in this simulation framework. The basic dif-
ference with our architecture is that TOSSIM was designed
from scratch with the objective of easy portability of TinyOS
applications from the simulation environment to the actual
mote hardware, whereas our framework is more generic and
provides for deploying any simulated ad hoc network rout-
ing protocol in ms-2. Moreover, unlike our architecture,
TOSSIM does not model CPU time, thereby leading to a
case in which code that runs in simulation will not run in a
real mote due to non-handling of interrupts.

EmStar [8] is a software environment for developing and
deploying wireless sensor network applications on Linux-
based hardware platforms like iPAQs. However, as with
TOSSIM, EmStar was designed from scratch to support easy
migration from simulation to implementation.

In contrast to each of these previous projects, our work
allows use of ezisting, unmodified protocol simulation mod-
els to create new physical protocol implementations. Unlike
network emulation systems [12, 25, 26], our resulting phys-
ical protocol implementations are entirely real, not simu-
lated. Whereas emulation systems simulate some aspects of
the network behavior, for example to make a collection of
stationary, wired nodes perform as if they were mobile and
wireless, the physical protocol implementations produced
from simulation code in our architecture run entirely on real
hardware, with real packets and real wireless network inter-
faces; when executed, no aspect of the network and protocol
performance is simulated, making the implementation suit-
able for detailed, realistic protocol testing and performance
evaluation or for even for possible production application.

Our system supports protocol models from the widely
used ms-2 network simulator, rather than requiring use of
new implementation environments, and thus retain all the

benefits of ns-2 simulation, such as rapid prototyping and a
widespread user community. Existing protocol modules can
easily be used to create new physical implementations, and
new protocols or modifications to existing protocols can eas-
ily be coded and tested in both simulation and physical im-
plementation. Additionally, our design is portable to other
protocol simulation systems.

3. SYSTEM ARCHITECTURE

Our architecture for creating physical protocol implemen-
tations from existing, unmodified simulation models consists
of two parts: a single user-level process and a small amount
of operating system kernel-level support. The user-level pro-
cess executes the actual protocol implementation using the
existing code for the simulation model for the protocol; we
created an environment in this process in which this proto-
col simulation model can run unmodified, acting as it would
if run inside the original simulator, but operating on real
packets. In order for this module to interface with the real
network, we introduce a small amount of kernel support that
acts as a conduit inside the kernel to connect the simulation
model in the user process to the physical network. The
user process uses only standard network API (Application
Programming Interface) calls to interface with this kernel
support.

The packet flow through a node implementing our archi-
tecture is illustrated in Figure 1, for several different packet
scenarios. A packet to be forwarded by the node is re-
ceived at the operating system kernel device driver of the
network interface hardware, and is then passed to the user
level routing protocol simulation model via the packet for-
mat converter; the routing protocol then passes the packet
back to the operating system kernel via the converter, and
the kernel finally passes the packet to the device driver for
transmission. For reception of a packet destined to an appli-
cation running on this node, the routing protocol simulation
model, after processing the packet, passes the packet back
to kernel, which transfers it to the user application through
the standard IP input function.

Although the description of our architecture is in terms
of the ms-2 network simulator, we discuss in Section 3.2.6
how this architecture can easily be applied to other net-
work protocol discrete event simulators as well, such as
GloMoSim [28], OPNET [18], and QualNet [24].

3.1 Kernel-Level Support

In order for the network to interact with the user-level
protocol module in the simulation environment, we used a
BSD Unix raw IP socket [27] for passing IP packets between
the physical network and user-level protocol engine. Raw
sockets pass the entire packet, including the IP header, in
and out of the kernel, allowing the routing protocol to ac-
cess and modify fields in the IP header as necessary. In ad-
dition, raw sockets provide queuing of packets between the
kernel and user level. Finally, use of raw sockets improves
portability of the resulting architecture, since they are a
standard facility provided by the common Berkeley sockets
interface available on many different operating systems in-
cluding BSD Unix versions (FreeBSD, NetBSD, OpenBSD),
Linux, Mac OS X, and Microsoft Windows [27, 20]; other
interfaces such as netgraph [5] and System V Streams [2] are
less widely available in different systems.

Changes in the kernel to support our system are small and

exist mainly in IP input and output processing routines in
order to interface with the raw socket inside the kernel.

For packets originated by an application running on an
ad hoc network node, the packet is intercepted at the kernel
IP output routine and passed back to IP input, where it is
then passed up to the user-level routing agent through the
raw IP socket. The routing protocol may then, for example,
add a protocol-specific header to the packet or modify ex-
isting packet header fields. The packet is then passed back
to the kernel through the raw IP socket, to be transmitted.
This pass through the routing protocol simulation model is
illustrated in Figure 1.

In order to determine the address of the next-hop node
to which to forward a packet, some ad hoc network routing
protocols do not use the traditional IP routing table. To
allow the user-level routing protocol itself to determine the
next-hop for a packet, the packet format converter may pass
this information to the kernel by appending the IP address
of the next-hop to the packet. If next-hop information is
present, this value is used by the kernel’s IP output han-
dling rather than using the existing kernel IP routing table
mechanism to determine the next-hop address. Appending
this information to the packet instead of passing it to the
kernel separately allows us to continue to use the widely
available standard Berkeley sockets interface, as discussed
above, and simplifies the implementation since the packet
and the next-hop address are passed together to the kernel.
The appended next-hop address is removed by the kernel
before the packet is transmitted over the network.

This mechanism can be used by DSR to indicate the next
hop of the source route for a packet, without the need for the
kernel to know the format of the source route header. Other
protocols such as AODV could use the kernel’s routing table
mechanism, but this creates problems for a user-level routing
protocol implementation, since the protocol cannot correctly
manage the contents of the kernel routing table by keeping
track of the last time that each table entry was used [23]. By
instead utilizing this new mechanism to allow the user-level
routing process to completely manage the routing decisions,
these problems can be avoided.

Also, many mobile ad hoc network routing protocols can
take advantage of received signal strength information, for
example to determine when the currently used route is about
to break. Based on this information, the protocol can ini-
tiate a search for a new route to the destination while the
current route is still active. This optimization, known as
preemptive Route Maintenance [9], reduces or even elimi-
nates latency in searching for a new route when the current
route breaks. To support this or other uses of receive signal
strength for a received packet, we modified the wireless net-
work interface driver to append the received signal strength
value to each incoming packet. This information is passed
up with the entire packet to the user-level routing process,
where the protocol can extract the signal strength informa-
tion and determine appropriate actions.

Finally, in order to a detect broken link to the next hop,
many mobile ad hoc network routing protocols take advan-
tage of link-layer acknowledgments that already exist at the
MAC layer. To support this, the device driver is modified to
pass the link-layer transmission status to the user-level pro-
cess. We discuss in Section 3.2.5 how the user-level process
utilizes this information.

[o e = Sender
. Routing protocol | — ==~ Receiver
| SImmL:)lgg?n § — Forwarder
ITAl
User -k R AS U User
Application [T Gonverter i Application
User level ! :
Kernel level v‘ E
o
P] P
output ! e input
I 2
| ©
! o
Device driver ERREEE Pi Device driver L
e S T T s— - put | IPoutput =l ouput [-

Figure 1: Flow of a Packet through a Node in our Architecture in Different Scenarios

3.2 User-Level Support

In our system, the entire routing protocol executes in a
single user-level process, running the unmodified ns-2 pro-
tocol simulation model to route real network packets.

3.2.1 Event Scheduler

In a discrete event simulator such as ns-2 [7], the simu-
lator maintains a queue of pending events to simulate, and
maintains a global variable giving the current virtual time
within the simulation. The event scheduler repeats a loop in
which it finds in the event queue the event that should oc-
cur at the earliest scheduled time, removes that event from
the queue, advances the global virtual time to the scheduled
execution time for that event, and simulates the event. The
time between event execution times is not simulated; rather,
the global virtual time immediately advances to the time at
which the next event is to occur.

We maintain that basic behavior, but we change the event
scheduler to instead execute each event only once the real
time (on the node itself) reaches the event’s scheduled exe-
cution time. The rest of the event scheduler, including the
event queue data structure and the interface to it, are not
changed in any way; the simulation code still maintains its
own queue of pending events to be executed, as if it were
running in a standard simulation environment.

A similar type of real-time event scheduler is also used by
network emulation systems [6, 12], as discussed in Section 2.
However, in our system, the event queue contains only events
that should occur at this node itself, whereas in network
emulation, the simulation of all nodes occurs together in a
single simulation, and the event queue is a common data
structure holding the pending events of all nodes in the
simulated system. Also, whereas the real-time event queue
execution in network emulation systems may degrade em-
ulation accuracy if the execution falls behind real time, no
similar problem exists in our system, since our event queue
schedules only software events that are part of the routing
protocol execution; these events do not have strict real-time
requirements, and the operation of the event queue simply
replaces the timer event queue normally used by network
protocol implementations inside the operating system [27].

3.2.2 Interaction with the MAC Layer

For wireless networks, ns-2 uses the Monarch Project
wireless extensions that provide a detailed simulation of the

physical, link, and routing layers of the network [3]; other
wireless simulators provide similar detailed lower layers, in
order to accurately model the complex behaviors of these
layers in real systems. In ns-2, when a packet is being sent
by a mobile node, the routing layer schedules the packet
to the link layer, which then schedules the packet to the
Medium Access Control (MAC) layer and finally transmits
the packet using the simulated physical layer. Similarly,
when a packet is received at a mobile node from the simu-
lated physical layer, the MAC layer schedules the received
packet to the link layer, which then schedules that packet to
the routing layer.

In our system, we do not use the simulated link layer,
MAC layer, or physical layer, since these functions are pro-
vided by the real system in the operating system and in the
real hardware. We explain the need for packet format con-
version in Section 3.2.4. Our converter also exports those
programming interfaces that the simulator expects, for ex-
ample so that the routing layer can still make calls to those
interfaces without knowing that it is running in our physical
implementation environment rather than inside the actual
simulator.

3.2.3 Reception of Packets

In addition to the basic event processing loop described
above in Section 3.2.1, adapted from the existing event sched-
uler behavior of ns-2, we needed to handle the reception
of packets from outside the simulation environment. Each
node in the physical implementation runs its own copy of
the simulation model of the ad hoc network protocol, and
packets sent by one node to another are sent over the real
network as real packets, rather than being handled internally
as a normal ns-2 event.

To integrate the reception of new packets from outside
the simulation environment, we allow the receipt of such
a new external packet to terminate the event scheduler’s
wait for the real time of the next scheduled event execution
time. Specifically, the event scheduler loop blocks itself with
the operating system until either the next scheduled event
execution time arrives or an external packet arrives at this
node that must be handled by the protocol.

When the kernel receives a packet that must be handled
by the simulated protocol, the kernel uses a raw IP socket to
send the packet to the packet format converter, which then
sends the packet to the user-level protocol module. The
handling of a received packet within the simulation code

can potentially generate other events that are inserted into
the scheduler’s event queue in the same way as other simu-
lated events (in fact, they are generated by simulation code
operating in the same way as if it were running inside the
normal simulator).

3.2.4 Conversion between Packet Formats

Most simulators, including ns-2, use an abstract, internal
packet format that is different from the native packet for-
mat, for ease accessing different packet headers and packet
header fields in writing the simulation code for a protocol.
For the simulator to work transparently in a physical im-
plementation with real packets and with the existing, un-
modified protocol simulation model code, an extra software
layer must convert between abstract and native packet for-
mats. On receiving an external packet from the kernel, this
converter changes the packet from native format into the
simulation abstract packet format; on transmitting a packet
outside the node’s simulation environment, this converter
changes the packet from the simulation abstract packet for-
mat into the native packet format.

3.2.5 Transmission of Packets

When the user level protocol module needs to transmit a
packet, the packet is received by the converter, which then
converts the format of the packet from ns-2 packet format to
native format (dependent on the host byte order). The con-
verted packet is then passed to the operating system kernel
using the raw IP socket (the processing of this packet by the
kernel is described in Section 3.1). Thus, the routing layer
simulation code never needs to know the native packet for-
mat and is oblivious of how the lower layers handle packets
that the routing layer sends or receives.

In addition, many ad hoc network routing protocols uti-
lize link-layer acknowledgements (e.g., as in IEEE 802.11)
to detect whether or not a transmitted packet is received by
the intended next-hop node. For example, DSR uses this
link-layer feedback for its on-demand Route Maintenance
function [10]. In the real hardware and operating system
device driver, this feedback is signaled from the hardware by
a packet transmission-complete interrupt that occurs asyn-
chronously after the packet has been transmitted. In our
system, we pass the important information from this inter-
rupt to the user-level protocol process, in a way that is com-
patible with the handling of this feedback by the simulated
routing protocol.

In particular, ns-2 passes to the simulated MAC layer
a pointer to the internal ns-2 packet data structure. If the
packet cannot be successfully delivered to the next-hop node
(as indicated by the link-layer feedback), this pointer is still
available for the routing layer to use to access the original
packet.

We maintain this same behavior, replacing the lower layers
as present in ns-2 with the real operating system and hard-
ware. When transmitting a packet, the packet format con-
verter passes the ns-2 packet pointer into the kernel along
with the packet through the raw IP socket, by appending
the pointer value to the end of the native packet format.
Inside the kernel, this ns-2 packet pointer is removed from
the packet and saved inside the kernel as an opaque value
(the kernel does not use the pointer as a pointer). The
attached packet pointer is not transmitted with the packet
when sending the packet over the wireless network interface.

When the packet transmission-complete interrupt is re-
ceived by the kernel, the kernel constructs an ACK (ac-
knowledgement) or NACK (negative acknowledgement)
packet to convey the success or failure status of this packet
back to the simulated environment. The kernel looks up the
saved (opaque) ns-2 packet pointer that corresponds to the
packet, appends that packet pointer value to the ACK or
NACK packet, and sends it to the simulation environment
through the raw IP packet in the same way as for other
received packets.

Once the ACK or NACK packet reaches the converter in
the simulation environment, the conversion routine calls an
ns-2 function that takes the appropriate action on the origi-
nal packet (indicated by the appended ns-2 packet pointer).
For an ACK, the simulation code deletes the ns-2 packet as
normal; for a NACK, the simulation code has a reference
to the packet, and the packet can be processed exactly as a
failed packet is processed in unmodified ns-2.

3.2.6 Application to Other Network Simulators

A number of different discrete event simulators exist and
have been used for simulating and evaluating ad hoc network
routing protocols. Among the more frequently used are ns-
2 [7], GloMoSim [28], OPNET [18], and QualNet [24]. In
Section 3.2, we described the implementation of our archi-
tecture for the ns-2 simulator; our architecture can be used
with other discrete event simulators as well, using the same
techniques.

In particular, any discrete event simulator has an event
scheduler loop similar to that discussed above, and the same
mechanism we have used for ns-2 can be used to modify
that loop to support our system. The simulator already has
its own data structures for maintaining the event queue, and
its own procedures for adding events to the queue, removing
events from the queue, and finding the next event to simulate
from the queue. None of this needs to be modified in any
way to apply our architecture to such a simulator.

Furthermore, network protocol simulators generally all
follow a layered structure based on the standard 7-layer OSI
network reference model and on the protocol layering in real
operating systems. This makes it possible to replace their
abstracted link-layer, MAC, and physical layers with the real
operating system and hardware, through our interface to the
kernel. If abstract packet formats are used in the simulator,
as in ns-2, the same type of packet format converter can be
used.

In general, since we have not disturbed the basic data
structures and mechanisms used by the simulator, no changes
are necessary within the source code for the protocol simu-
lation model; the protocol model can be executed in a user-
level process as we have done with ns-2 without the simula-
tion code being aware it is not running in the normal simula-
tor. Although some simulators can execute simulation code
on parallel machines to speed up simulation execution time,
such simulators can also run in single-threaded mode in a
single process. This is the only requirement for adapting the
simulator and thus its protocol models to our architecture.

4. ARCHITECTURE PORTABILITY

To demonstrate the simplicity, portability, and effective-
ness of our architecture, we present in this section an exam-
ple implementation of two popular ad hoc network routing
protocols, DSR and AODV, on two different operating sys-

tems, FreeBSD and Linux. We used the DSR and AODV
models from ns-2.26, although, as mentioned in Section 3.2.6,
our architecture can also be applied to other network pro-
tocol simulators.

The small amount of new kernel support required by our
system is protocol-independent and hence is unaware of the
actual protocol that is being implemented. Similarly, the
routing protocol implementation is independent of the un-
derlying operating system and hence is unaware of the oper-
ating system that the machine is running. For example, in
our example protocol implementations described here, the
user-level code for DSR and for AODV is identical between
our implementations on FreeBSD and Linux, and the new
kernel support code for FreeBSD and for Linux is identical
for the two different routing protocols.

4.1 Portability across Multiple Protocols

In this section, we demonstrate the simplicity of support-
ing multiple ad hoc network routing protocols in our archi-
tecture by describing our example implementations of two
popular protocols, DSR and AODV, and by discussing how
this support extends to other routing protocols simulated in
ns-2.

4.1.1 Example DSR Implementation

DSR [10] is an on-demand source routing protocol, with
each packet containing a source route header. The DSR
protocol consists of two mechanisms, Route Discovery and
Route Maintenance, both of which operate entirely on de-
mand. To perform a Route Discovery for a destination node
D, a source node S broadcasts a ROUTE REQUEST packet
that gets flooded through the network in controlled man-
ner. This request is answered by a ROUTE REPLY from
either D or some other node that knows a route to D. To re-
duce frequency and propagation of ROUTE REQUESTs, each
node aggressively caches source routes that the node learns
or overhears. Route Maintenance detects when some link
over which a data packet is being transmitted has broken,
and then returns a ROUTE ERROR to S. Upon receiving a
ROUTE ERROR, S can use any other route to D that it has
in its Route Cache, or S can initiate a new Route Discovery
for D.

Support for a new protocol in our architecture requires
only the addition of a new protocol-specific packet format
conversion. Kernel support is both protocol-independent
and simulator-independent, and the protocol module itself
already exists in ns-2. We describe below DSR-specific con-
siderations that the DSR conversion module needs to sup-
port.

The DSR source routing header follows the IP header, in-
dicated by the value in the protocol number field in the IP
header. To transmit a DATA packet, the converter needs
to insert a DSR header into the packet, with the transport
protocol header and its data becoming the payload following
the DSR header. The converter also changes the packet’s IP
protocol field from the original transport protocol number to
DSR, copying the original IP protocol value into the DSR
header. Before the DATA packet leaves the DSR network
or is delivered to the application at the final destination,
it needs to be sent up to the conversion module. The con-
version module removes the DSR header and reconstructs
the original IP packet with the original transport protocol
number as its IP protocol. Similarly, DSR control packets

also have their own DSR header following the IP header.
However, since DSR control packets are generated and freed
by the DSR routing module, there is no non-DSR packet to
modify. The converter only has to convert packets from ns-2
format to native packet format.

4.1.2 Example AODV Implementation

AODV [19] forms hop-by-hop routes rather than source
routes. When a source S needs a route to a destination D,
S broadcasts a ROUTE REQUEST to its neighbors, contain-
ing its last known sequence number for D. The request is
flooded throughout the network until it reaches a node that
has a route to D. In this process, each forwarding node cre-
ates a reverse route back to S. Upon reaching a node with a
route to D, the node replies back to S with a ROUTE REPLY
containing the number of hops that D is from itself and the
most recent sequence number for D known to the replying
node. When a node forwards this reply, it creates a forward
route to D by remembering the next-hop node towards D.

As with DSR, support for AODV in our architecture re-
quires only addition of an AODV-specific packet format con-
version module. However, AODV does not use its own pro-
tocol header; all AODV control packets are sent as UDP
packets, and AODV DATA packets use only the standard IP
header. Thus, the only requirement for the AODV conver-
sion module is to directly convert between ns-2 and native
packet formats. The protocol-independent support in the
kernel passes all packets arriving up to the conversion mod-
ule and the routing code, even for packets addressed to this
machine. This also allows the routing protocol to extract
useful information from the packet about the network, ei-
ther for protocol operation (such as for managing the routing
table) or for logging or statistics within the protocol simula-
tion code. After the AODV protocol module processes the
packet and determines next hop information from its rout-
ing table, next hop information is passed from the protocol
module to the converter to be sent to the kernel.

4.1.3 Support for Other ns-2 Routing Protocols

To be used with our architecture for creating physical
ad hoc network routing protocol implementations, the ns-
2 simulation code for the protocol must meet a few simple
requirements; these requirements are met by virtually all
existing ns-2 ad hoc network routing protocol models that
we are familiar with and are easily met by new ns-2 models.

For reception of unicast or broadcast packets, ns-2 re-
quires that the routing protocol module implements the
recv() function, called by the MAC layer in ns-2. Our con-
verter invokes the same function to pass packets to the pro-
tocol module.

In order to handle link layer transmission failures, ns-
2 requires the routing protocol simulation code to pro-
vide a callback function. For example, in the stan-
dard distribution of ms-2, DSR implements the function
XmitFailureCallback() and AODV implements the function
aodv_rt_failed_callback(). This callback function is required
only for those protocols that respond to link layer trans-
mission failures. If such a callback is provided, then the
converter invokes the callback as needed.

Some routing protocols operate the network interface in
promiscuous mode to overhear information contained in
packets for other nodes. For such routing protocols, ns-2
requires the routing protocol simulation code to implement

the tap() function. If this function is provided, the con-
verter invokes it to pass promiscuously received packets to
the protocol module.

Any ns-2 ad hoc network routing protocol simulation model
meeting the requirements above can be used unmodified in
our architecture. Other routing protocols that utilize ex-
ternal information, such as a geographic routing protocol in
which each node needs to know its own GPS coordinates, can
also be used with minor modifications; for example, some
mechanism must be added to make the current coordinates
from a hardware GPS receiver available inside the protocol
simulation code.

The only type of ns-2 ad hoc network routing protocol
simulation model that cannot be used with our architecture
(without larger modifications) is one that relies on global
knowledge present inside a simulation environment but not
available in the real world. For example, if a node using the
geographic routing protocol above also “magically” knows
inside the simulation the current GPS coordinates of other
nodes, by simply using the simulator’s global knowledge of
all nodes, then it will require modifications to adapt the
simulation code to our architecture. However, relying on
such global knowledge inside the simulation does not pro-
vide a complete simulation of the protocol and does not
allow for fully accurate performance evaluation using this
simulation. In this case, an additional protocol mechanism
must be added to exchange the GPS coordinate values for
other nodes using actual packets, and such an additional
mechanism would be needed for a physical implementation
of the protocol produced in any other way too.

4.2 Portability across Multiple Operating
Systems

Support for different ad hoc network routing protocols in
our architecture is OS-independent. User-level protocol code
interfaces with the kernel only through the standard Berke-
ley socket programming interface, common to many operat-
ing systems, including FreeBSD, NetBSD, OpenBSD, Linux,
Mac OS X, and Microsoft Windows. All OS-dependent fea-
tures reside in a small amount of kernel modifications, and
porting the implementation between different operating sys-
tems requires only changes to this code. We describe in this
section the simplicity of supporting these kernel modifica-
tions in different operating systems, thus demonstrating the
ability to port the architecture across operating systems.

In the FreeBSD kernel network protocol stack implemen-
tation, incoming IP packets from the link layer are processed
in the ip_input function. A small modification in this func-
tion passes all IP packets, regardless of their destinations,
through the raw socket to the user-level protocol module.
For outgoing packets, after the protocol module sends each
processed packet to the kernel with next-hop information,
a modification in the outgoing IP function, ip_output, fills
next-hop information with the value passed from the user-
level routing protocol. For an outgoing packet that orig-
inates from a local application, the packet is intercepted
at ip_output and redirected through ip_input to the raw
socket, where it is passed up to the user-level protocol mod-
ule for routing decision. In the Cisco 350 wireless LAN de-
vice driver (used in our implementation), where each out-
going Ethernet frame that encapsulates the packet is about
to be transmitted by an_start, we associate the Ethernet
frame identifier (ID) with the packet pointer (Section 3.2.5).

When a transmission-complete interrupt occurs in the device
driver, the an_treof function is called with the ID of the Eth-
ernet frame that has finished transmission. The frame ID
is converted to its corresponding ns-2 packet pointer, and a
status notification for this packet is passed up through the
raw IP socket to the user-level protocol process.

In the Linux kernel implementation, we made similar
modifications, although in different function calls due to
the differences in the Linux kernel. Incoming IP packet
processing logic in Linux is divided into multiple func-
tions. Specifically, a modification in ip_route_input treats
all IP packets, regardless of their IP destinations, as if
they were destined for the local node, so that they will
be passed to the local user-level protocol implementation.
The packet is then redirected to the raw socket interface
in dp_local_deliver_finish. Similarly, outgoing IP processing
logic in Linux is also divided into multiple functions. A
modification in ip_route_output assigns a next-hop address
for an outgoing IP packet. For an outgoing packet that
originates from a local application, the packet is intercepted
and passed up to the user-level protocol module for rout-
ing decision at the end of the outgoing IP processing logic,
in ip_finish_output. Modifications in the Cisco 350 wireless
LAN device driver in Linux happen in the same logical place
as in FreeBSD. Here, airo_interrupt and airo_do_xmit cor-
respond to functions an_treof and an_start, respectively, in
FreeBSD.

Our choice of FreeBSD and Linux to illustrate operating
system portability is due to the fact that they are popu-
lar operating systems with freely available kernel sources,
and not for any similarities between their codes. In fact,
the FreeBSD and Linux kernel networking codes evolved
from entirely different code bases. FreeBSD networking code
evolved from the original Berkeley Extensions. The Linux
networking stack, on the other hand, was intentionally sep-
arated from BSD code due to copyright issues with the BSD
stack at the time. The Linux networking stack was origi-
nally developed, lead by Ross Biro, in 1992 [4]. The Linux
networking stack, however, does share general similarities
with FreeBSD, due to the common protocol layering defined
by the standard protocols implemented.

S. SYSTEM DEMONSTRATION

We have tested our four example protocol implementa-
tions, for DSR and AODV on FreeBSD and Linux, for cor-
rect operation, and have verified that the resulting imple-
mentations are interoperable across the two operating sys-
tems. That is, our DSR implementation on FreeBSD func-
tions correctly when operating in a network together with
our DSR implementation on Linux, and likewise for our two
implementations of AODV. In this section, we demonstrate
that using our architecture with its user-level protocol imple-
mentation the resulting protocol implementations can sup-
port real-time applications with realistic traffic loads.

In order to validate the usability of our architecture for
building physical implementations of ad hoc network proto-
cols, and to demonstrate the resulting implementation of a
protocol, we constructed a test network of mobile and sta-
tionary nodes in our department building. Our test net-
work consisted of two mobile robots and four stationary
ad hoc network nodes, with the robots remotely controlled
based on real-time live video from each robot transmitted
over the ad hoc network, using standard Microsoft Windows

NetMeeting video [16]. All video and robot control messages
were transmitted over the ad hoc network with our protocol
implementation. We show here the operation of our imple-
mentation of DSR on FreeBSD and omit for brevity demon-
strations for configurations using AODV or Linux.

We now describe the design and operation of the different
components of this network.

5.1 Wireless Nodes

Our test network included six IBM ThinkPad X31 lap-
tops each running FreeBSD 5.1-RELEASE, modified as de-
scribed in Section 3.1. Each of these laptops used a Cisco
Aironet 350 IEEE 802.11b (11 Mbps) wireless LAN card as
the wireless interface; we disabled the built-in IBM wireless
LAN interface in each laptop and used the Cisco cards in-
stead, since these cards allow the transmit power level to
be modified. Of the six laptops, four were stationary, and
two were mobile. By moving the mobile nodes changing
multihop routes were created through a varying sequence of
the stationary wireless nodes and through the other mobile
node.

To create a multihop ad hoc network of more than a few
hops within the limited physical space of our building, we
reduced the transmit power level of the wireless network in-
terfaces to 20 mW rather than the default 100 mW (reducing
the transmission power level by a factor of 2 generally re-
duces the maximum transmission distance by at least a fac-
tor of 4) [21]. With this reduced transmit power level, our
network created multihop routes of up to 5 hops in length.
We validated during our demonstration that the traffic was
using multiple hops for substantial parts of the demonstra-
tion period.

Each mobile node in our network was implemented as a
robot, which we could control by software commands over
the ad hoc network. We used the Koala robot manufactured
by K-Team [11]. Each robot carried two laptops, one run-
ning Windows NetMeeting (with an attached camera) on
Microsoft Windows XP Professional for traffic generation,
and one running FreeBSD as the gateway to the ad hoc net-
work.

5.2 Data Traffic Generation

We decided to send live video from each robot over the
ad hoc network to a centralized control location. By watch-
ing the video from a robot there, it would be possible to re-
motely “drive” the robot by sending movement commands
back to the robot over the ad hoc network. In addition to ex-
ercising and demonstrating the network, this approach also
avoided the need to otherwise program intelligent control
directly into the robot for autonomous motion. By using
Windows NetMeeting for the video, we also demonstrate
compatibility of our implementation with standard, unmod-
ified IP-based applications, as we do not have the source
code for either Windows or NetMeeting.

NetMeeting sends all video data packets using UDP. How-
ever, when a call is first placed, it uses TCP to setup a con-
nection. Hence, we had to support both UDP and TCP data
over our ad hoc network.

5.3 Demonstration Evaluation

The use of video and remote control of the robots created
an engaging demonstration of our system’s capabilities. In
particular, in driving a robot, the user watches the video

2% 3%
<1%

Il Route Request
159 packets

] Route Reply

86 packets
[Route Error
25 packets 1.395 MB data bytes +
[Dat 0.075 MB source route
427% packets overhead bytes

95%

Figure 2: Packet Type and Overhead Distribution

display closely to avoid driving the robot into any obstruc-
tion. If the video stops or is not clear, or if movement com-
mands to the robot are not executed quickly (visible in the
video display), the user immediately notices. Throughout
the demonstration, the video display and robot control ap-
plications —and thus the ad hoc network and the protocol
implementation using our system — worked very well.

We collected measurements during one run of our demon-
stration network in order to evaluate its performance. For
simplicity, in this run, we used only a single robot, with the
live NetMeeting video and remote robot control both being
sent over the ad hoc network. During this run, the robot
was remotely driven around the perimeter of the floor of our
building and back to its starting position over a period of
13 minutes (780 seconds).

Figure 2 shows a summary of the types of packets trans-
mitted during the demonstration run and the number of
bytes of network overhead caused by each. Network over-
head includes all ROUuTE REQUEST, ROUTE REPLY, and
ROUTE ERROR packets, as well as the DSR source route
header in each data packet. In this figure, each transmis-
sion of an overhead packet (whether from the originator of
the overhead packet or from a forwarding intermediate node)
is counted separately.

Among ROUTE REQUEST, ROUTE REPLY, and ROUTE ER-
ROR packets, the number of ROUTE REQUESTSs is the great-
est, since these packets are flooded through the network.
The number of ROUTE REPLYs is greater than ROUTE ER-
RORs, since a Route Discovery is initiated from a single
ROUTE ERROR, but this may result in the return of more
than one ROUTE REPLY.

Figure 3 shows the Packet Delivery Ratio (PDR) for the
entire run of the demonstration. The PDR is defined as
the total fraction of application-level data packets origi-
nated that are actually received at the intended destination
node. The horizontal dashed line shows the overall PDR
for the entire demonstration run, and the solid line shows
the PDR separately for each 10-second interval. There is a
sharp dip in the PDR at around time 300 seconds, about
half way through the demonstration run. At this time, the
mobile robot was the farthest from the rest of the network
and thus was experiencing temporary wireless signal fading.
This behavior occurs in our physical implementation but is
not modeled accurately in most purely simulation evalua-
tions of ad hoc network protocols, since it depends on more
realistic physical layer radio modeling than is usually done.

L 4
©
o
> 4
[
=
© 4
[s]
g
S 0.7r q
o
0.65- 4
0.6 4
L —— 10s Interval PDR 4
0.55 - - Overall PDR
05
0 100 200 300 400 500 600 700 800

Elapsed Time (Seconds)

Figure 3: Packet Delivery Ratio

a

s

Packet Latency (millisec)
5
15

— 10s Packet Latency
= Overall Packet Latency
I 1

. . . . I
0 100 200 300 400 500 600 700 800
Elapsed Time (Seconds)

Figure 4: Packet Delivery Latency

Finally, Figure 4 shows the Packet Delivery Latency dur-
ing this demonstration run. Packet Delivery Latency is mea-
sured only for application packets, and is defined as the time
between originating a packet at the source node and re-
ceiving it at the destination node. The horizontal dashed
line shows the overall Packet Delivery latency for the entire
demonstration run, and the solid line shows it separately
for each 10-second interval. As with the PDR, the Packet
Delivery Latency is worse (increases) at around time 300
seconds when the robot was farthest away. This created
longer routes for packets to travel from the robot to the des-
tination node. Additionally, the weak signal strength at this
location can cause additional RTS/CTS retransmissions due
to dropped packets at the IEEE 802.11 MAC level, adding
to Packet Delivery Latency.

6. DISCUSSION
6.1 Alternative Approach

A simpler approach to our proposed architecture is to re-
move the conversion module (Section 3.2.4). In this ap-
proach, the entire simulation packet is packaged as data
inside an IP packet without being converted to its native
format. Next-hop information is still passed down to the
kernel and processed as specified in Section 3.1. When this
IP packet reaches the next-hop node and arrives at the user
process, the simulation packet is immediately available for

the simulation protocol module to process. By removing
the conversion module, new simulation protocol module can
quickly be implemented since there is no protocol-specific
implementation in either user or kernel space, aside from a
small effort to retrieve next hop information from the simu-
lation module to the kernel.

However, by not converting the simulation-specific for-
mat to native packet format, this approach prevents inter-
operability with other implementations of the same protocol.
More importantly, this approach will significantly affect pro-
tocol behaviors due to the fact that sizes of different native
packet types are replaced by sizes of simulation packets. In
many simulations, for instance ns-2, all packets are repre-
sented by a common structure with different flags for differ-
ent packet types. This common structure includes fields for
all packet types, making the structure much larger than each
native packet. Even in simulators where there are different
structures for each packet type, they are often represented
in formats such as a class or a struct with integer and ar-
ray fields that are not nearly as compact as native packet
formats. The effects of incorrect packet size on the proto-
col behaviors are especially magnified for wireless network
protocols where contentions for the medium and allocated
medium access greatly depend on packet sizes.

6.2 Applicability of the Architecture

Our architecture provides an effective way to validate ex-
perimental protocols on real physical networks. Since physi-
cal behaviors of wireless signals such as signal fading, multi-
paths, and delays are very difficult to model in simulations,
our architecture is most beneficial for testing wireless net-
work protocols. By employing a realistic wireless medium,
the architecture can uncover issues in the protocol design
related to the dynamic medium that cannot be accurately
modeled in simulations.

For this particular implementation of the architecture, we
focused on supporting routing protocols and implemented
kernel modifications for packet interceptions at the network
layer (IP layer). Thus, non-routing protocols cannot be used
with this specific implementation of our architecture. How-
ever, support for protocol modules at higher layers of the
networking stack (e.g., transport protocols) could be pro-
vided in a similar manner.

7. CONCLUSION

Typically network simulation and physical implementa-
tion of ad hoc network routing protocols are orthogonal to
each other. Our architecture allows the protocol code to be
written just once, and used in the simulation environment
as well as in the physical implementation. Although the
system is based on unmodified simulation code, the result-
ing physical implementation is entirely real, not simulated,
running on real hardware, with real mobility, real packets,
and real wireless network interfaces. This design saves im-
plementation effort for the physical implementation, avoids
introducing new bugs in the implementation, and eases later
maintenance of the code. New protocol features and options
can also be tested and evaluated first in simulation, and then
moved without modification into the physical environment.

In this paper, we have described the architecture and
created example implementations of DSR and AODV on
FreeBSD and Linux from their existing ns-2 models. The
user-level code is identical between our implementations on

FreeBSD and Linux, and the small amount of new operating
system kernel support code required by our system is iden-
tical for both protocols. We have also shown the feasibility
of our approach by presenting a demonstration of our DSR
implementation transmitting real-time video over a multi-
hop mobile ad hoc network including mobile robots being
remotely operated based on the transmitted video stream.
All video and robot control messages were transmitted over
the ad hoc network running our DSR implementation.

Throughout the paper, we have demonstrated the simplic-
ity and portability of our architecture. With this architec-
ture, experimental changes to the protocol can be quickly
implemented at the user level. Additionally, a single change
can be made in the simulation module that can be tested
in both the simulator and validated in the real physical en-
vironment. By sharing code with simulation modules, the
architecture retains many useful debugging and logging fea-
tures that are common in simulation code. We plan to pub-
licly release the source code for our system to allow other
ad hoc network researchers to easily experiment with a va-
riety of protocols in real physical implementations.

8. REFERENCES

[1] J. Allard, P. Gonin, M. Singh, and G. G. Richard. A User
Level Framework for Ad Hoc Routing. In Proceedings of the
27th Annual IEEE Conference on Local Computer Networks
(LCN 2002), pages 13—-19, November 2002.

[2] AT&T. Uniz System V Streams Programmer’s Guide.
Prentice-Hall, 1989.

[3] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun
Hu, and Jorjeta G. Jetcheva. A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing Protocols. In
Proceedings of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (Mobi-
Com’98), pages 85-97, October 1998.

[4] Terry Dawson and Alessandro Rubini. A brief history of
Linux Networking Kernel Development. Available at http:
//www.sgmltools.org/HOWTO/NET-3-HOWTO/t151 .html.

[5] Julian Elischer. The Netgraph Networking System. Available
at http://www.elischer.org/netgraph/.

[6] Kevin Fall. Network Emulation in the Vint/NS Simulator. In
Proceedings of the Fourth IEEE Symposium on Computers
and Communications (ISCC’99), July 1999.

[7] Kevin Fall and Kannan Varadhan, editors. The ns Manual
(formerly ns Notes and Documentation). The VINT Project,
UC Berkeley, LBL, USC/ISI, and Xerox PARC, November
2003. Available from http://www.isi.edu/nsnam/ns/doc/.

[8] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos
Stathopoulos, Nithya Ramanathan, and Deborah Estrin.
EmStar: a Software Environment for Developing and De-
ploying Wireless Sensor Networks. In Proceedings of the 200/
USENIX Technical Conference, 2004.

[9] Tom Goff, Nael B. Abu-Ghazaleh, Dhananjay S. Phatak,
and Ridvan Kahvecioglu. Preemptive Routing in Ad Hoc
Networks. In Proceedings of the Seventh Annual Internation
Conference on Mobile Computing and Networking (Mobi-
Com 2001), pages 43-52, July 2001.

[10] David B. Johnson and David A. Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. In Mobile Comput-
ing, edited by Tomasz Imielinski and Hank Korth, chapter 5,
pages 153—-181. Kluwer Academic Publishers, 1996.

[11] K-Team S.A. Koala Robot. http://wuw.k-team.com/
robots/koala/index.html.

[12] Qifa Ke, David A. Maltz, and David B. Johnson. Emulation
of Multi-Hop Wireless Ad Hoc Networks. In Proceedings of
the Seventh International Workshop on Mobile Multimedia
Communications (MOMUC 2000), October 2000.

[13] E. Kohler, Robert Morris, B. Chen, J. Jannotti, and M.F.
Kaashoek. The Click Modular Router. In ACM Transactions
on Computers Systems, pages 18(30):263-297, August 2000.

[14] Philip Levis, Nelson Lee, Matt Welsh, and David Culler.
TOSSIM: accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the first international confer-
ence on Embedded networked sensor systems, pages 126-137.
ACM Press, 2003.

[15] Henrik Lundgren and Erik Nordstr om. AODV-UU. http:
//user.it.uu.se/ henrikl/aodv/.

[16] Microsoft Corporation. Microsoft NetMeeting. NetMeeting
home page: http://www.microsoft.com/windows/
netmeeting/.

[17] Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick:
Bridging Network Simulation and Deployment. In Proceed-
ings of the the Fifth ACM International Workshop on Mod-
eling, Analysis and Simulation of Wireless and Mobile Sys-
tems (MSWiM 2002), September 2002.

[18] OPNET Technologies. OPNET Modeler. http://wwu.
opnet.com/products/modeler/home.html.

[19] Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On-
Demand Distance Vector Routing. In Second IEEE Work-
shop on Mobile Computing Systems and Applications, pages
90-100, February 1999.

[20] Bob Quinn and Dave Shute. Windows Sockets Network Pro-
grammaing. Addison Wesley, 1995.

[21] Theodore S. Rappaport. Wireless Commaunications: Princi-
ples and Practice. Prentice Hall, New Jersey, 1996.

[22] Rooftop Communications. The Rooftop C++ Pro-
tocol Toolkit (CPT). http://web.archive.org/web/
19980614083648/www.rooftop.com/rnd.shtml.

[23] Elizabeth M. Royer and Charles E. Perkins. An Implementa-
tion Study of the AODV Routing Protocol. In Proceedings of
the Second IEEE Wireless Communications and Networking
Conference (WCNC 2000), September 2000.

[24] Scalable Network Technologies. QualNet Family of Products.
http://www.scalable-networks.com/products/qualnet.
php.

[25] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan,
Dejan Kostic, Jeff Chase, and David Becker. Scalability and
Accuracy in a Large-Scale Network Emulator. In Proceedings
of the 5th Symposium on Operating Systems Design and Im-
plementation, December 2002.

[26] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb,
and Abhijeet Joglekar. An Integrated Experimental Environ-
ment for Distributed Systems and Networks. In Proceedings
of the 5th Symposium on Operating Systems Design and Im-
plementation, pages 255-270, December 2002.

[27] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated
Vol 2 The Implementation. Addison Wesley, 1995.

[28] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim:
A Library for Parallel Simulation of Large-Scale Wireless
Networks. In Workshop on Parallel and Distributed Simula-
tion, pages 154-161, 1998.

