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Abstract
Many peer-to-peer (p2p) system designs assume cooperative en-
vironments, with all clients correctly running the same software.
Any client who modifies its software may be able to unfairly ben-
efit. This paper considers such fairness issues in the context of
p2p multicast streaming services. We present mechanisms that can
distinguish nodes with selfish behavior and reduce the quality of
service experienced by these selfish nodes from their peers. The
peers make their judgments strictly by observing the behavior of
their upstream peers. We only require that the multicast trees be
periodically rebuilt, increasing the likelihood that a freeloading
node’s downstream peers will later be upstream of the freeloader
and can retaliate by refusing to serve the offender.

1 Introduction

P2p multicast systems [2, 15] have demonstrated that
streaming media applications can scale to reliably support
large numbers of nodes without the need for the costly
server and network infrastructure. Unfortunately, these sys-
tems assume that all the peers are correctly following the
protocol. If a node was to refuse to transmit data to its
downstream peers, or if that node was to simply refuse to
accept any downstream peers, it could “freeload” on the
system. If every node were to follow a similar policy, the
system as a whole would collapse.

One way to solve the freeloading problem is to design
incentives-compatible policies. We wish to build applica-
tions such that nodes maximize their utility by correctly
following the prescribed protocol. A number of incentives-
compatible p2p systems have been built, generally follow-
ing a variety of tit-for-tat strategies. These systems are in-
tended to provide fair sharing of disk storage [5, 17] or net-
work bandwidth while downloading large files [3]. Mul-
ticast applications represent a related problem, but exist-
ing tit-for-tat mechanisms do not map cleanly onto multi-
cast systems, where (relatively) static distribution trees are
constructed once and used forever. We need a way to de-
tect misbehaving peers and refuse to grant them service.
This paper describes some simple mechanisms that use only
first-hand observations, thus avoiding many thorny trust is-
sues. Nodes remember when their upstream peers fail to
provide them with good service. By requiring the multicast
trees to be periodically rebuilt, the upstream relationships
can reverse, giving nodes a chance to refuse service to the
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now downstream freeloaders.

Section 2 discusses the threat model and provides some
background. Section 3 describes different approaches to
implementing fairness policies in p2p multicast systems.
We present our experimental results in Section 4. Finally,
Section 5 discusses related work and Section 6 concludes.

2 Model

While the ideas in this paper are general enough to be ap-
plicable for almost any tree-based multicast systems (e.g.,
Bullet [15]), for concreteness we will discuss our system in
terms of SplitStream [2]. SplitStream supports application-
level multicast above Pastry [20], a p2p routing substrate.
The key idea behind SplitStream is to split the original con-
tent stream into k stripes and to multicast each stripe using a
separate multicast tree. Nodes subscribe to k different trees,
with the roots spread uniformly around the Pastry ring. Ev-
ery node will (most likely) be an interior node in exactly
one tree and will be leaf node in the remaining k− 1 trees.
Thus, the forwarding load is distributed among all partici-
pating peers. If each node supported a fan-out to k children,
then the total in-degree and out-degree would be equal.

The splitting strategy also provides robustness against
packet loss. Audio and video stream types could poten-
tially be split using media-specific codecs that allow lower-
quality media streams to be partially reconstructed with
only part of the data. Stripes for general-purpose data could
also benefit by using error correcting codes.

Of course, this leaves room for a variety of freeloading be-
haviors. A node could falsely claim its outgoing bandwidth
is fully utilized and refuse to accept a new child. A node
could likewise accept a new child but refuse to send it any
data. A node might avoid joining the one tree where it
would be an interior node, only joining the k−1 trees where
it’s a leaf. Nodes might even form a conspiracy if coopera-
tion helps them to freeload. This paper addresses such self-
interested behaviors, but does not address malicious behav-
ior, where a node’s goal might be to deliberately prevent
distribution of the streaming media or to otherwise damage
the Pastry routing or SplitStream service. Castro et al. [1]
discuss a number of techniques that might limit the damage
a malicious node can cause to a p2p network; many of those
ideas could be applied here.



3 Designs

In this section, we first describe a naı̈ve approach and ex-
pose some of its problems. Then we will discuss the
space of possible mechanisms that might be used to detect
freeloaders and how they might be combined together to
form a robust incentive-compatible policy.

3.1 A naı̈ve approach

A selfish node can always claim that it could not receive the
stream from its parent, and therefore be unable to forward
the data stream. Assuming the multicast trees are always
constructed in a “fair” manner according to the prescribed
protocol, a naı̈ve approach to solve this problem might be
to require each node, when it fails to receive the desired
data from its parent, to send (random) data of size equal to
the expected stream to all its children. Since every node is
required to transmit something, it might as well transmit the
correct data.

This approach has two obvious problems. One is that it
wastes bandwidth, potentially causing legitimate traffic to
be dropped when the underlying network is suffering con-
gestion. Furthermore, nothing in this approach prevents
nodes from claiming to already have enough children and
thus refusing to accept any more. Even in a legitimate mul-
ticast tree construction, some nodes may, depending on the
protocol and by good chance, become leaves, without any
requirement to retransmit content. Differentiating between
good luck and freeloading will require more effort.

3.2 Fairness mechanisms

We need mechanisms that can distinguish selfish nodes
from nodes that are following the protocol correctly. We
wish to focus on mechanisms that individual nodes can fol-
low, based strictly on information they observe about their
peers, as well as information they might infer about nodes
between themselves and the root of any given tree.

Debt maintenance When node A forwards a stream data
packet to a node B, both nodes can track that B owes A a
debt of one packet. If the debt exceeds some threshold, A
might refuse to send further data to B.

Periodic tree reconstruction If multicast trees are con-
structed randomly, some nodes may be stuck in unfair or
unfavorable positions if there are freeloaders. A lucky node
might happen to be a leaf, where an unlucky node might
happen to be downstream from a selfish node that is refus-
ing to forward data to its children. By periodically recon-
structing the multicast tree, a node will only ever benefit or
suffer from such situations for at most a fixed time period.
New multicast trees can be constructed concurrently while
existing trees are in use. We require only that the new mul-
ticast tree be sufficiently different from the old one that a
leaf node will be unlikely to have the same ancestral nodes
after the old tree is replaced. There will remain a trade-off

between the bandwidth overhead of tree reconstruction and
the desire for smaller time steps. Smaller time steps allow
nodes to respond more rapidly when they detect that a node
is being selfish.

Parental availability When a node joins a multicast tree
and is refused service by its prospective parent, it has no
way to determine if the prospective parent is genuinely serv-
ing its maximum number of children or if it is freeloading
on the system. A freeloader can always claim to be serv-
ing its conspiring peers. If service is refused once, it could
just be bad luck. If, after numerous tree reconstructions,
the prospective parent has demonstrated a history of refus-
ing service to its children, then the child can legitimately
refuse to serve the freeloader if and when their parental
roles become reversed. The ability of a child to measure
this parental availability will depend on the specific details
of how multicast trees are constructed in any given system.

When a node joins a SplitStream tree, for example, it routes
a message toward the root of that tree. The first node that
receives the message is most likely to become the joining
node’s parent. If this node refuses the connection, saying it
has enough children already, the joining node must search
for another parent. It will first search the children of the
failed parent, and then its siblings and grandparent, recur-
sively. If SplitStream nodes are operating correctly, these
searches will be unlikely to occur, and service will most
likely be found with one of the failed parent’s immediate
children. As such, any parent that consistently refuses to
accept a node as a child is highly likely to be a freeloader.

Reciprocal requests Two well-behaved nodes would be
expected to have an equal chance of being parent or child
in any given multicast tree. A freeloader, however, might
regularly refuse to accept children. When the freeloader
A asks some prospective node B to be its parent, B needs
a way to judge whether A has had a history of behaving
selfishly. To address this, we allow B to break the traditional
join protocol and instead occasionally attempt to make A its
parent by requesting to join directly under A for a multicast
tree where A is supposed to be an interior node. This can
be done whenever the number of recent requests from one
direction exceeds a constant factor more than requests in
the opposite direction. This would allow B to determine
whether A is misbehaving, and thus have a stronger basis
for ignoring A in the future.

Ancestor rating Another approach, an extension of debt
maintenance, is to apply debts and credits not only to a
node’s immediate parent, but to all of their ancestors who
should have been responsible for forwarding data from the
multicast root. Whenever a node receives a packet, it in-
crements its confidence value of each node in the path to
the root. Whenever an expected packet is not received (this
can be noticed if the packets should arrive at a timely, peri-
odic fashion, as in video and audio streams), the node decre-
ments the confidence value of each node in the path to the



root, blaming them all equally, for the lack of any more
specific information. When the trees are reconstructed, any
blame assigned falsely or due to lost packets would aver-
age out as nodes are later observed to behave correctly.
Freeloading nodes, on the other hand, would be consistently
blamed for their misbehavior. Service would eventually be
refused to these freeloaders.

3.3 Authenticity of data and path

Our mechanisms rely on the knowledge of ancestors. A
selfish node, of course, has no incentive to provide such in-
formation correctly. False information might allow good
nodes to be falsely considered to be freeloaders; likewise,
false information might allow freeloading nodes to escape
detection. Here, we outline a low-cost method to authenti-
cate the stream data and verify the integrity of the path. We
borrow ideas from hash chains [19] and path authentication
in Ariadne [14].

First, the source creates a hash chain by randomly generat-
ing a value xn (for sufficiently large n), and iteratively com-
puting xn−1, . . . ,x0 by xi = h(xi+1) with a cryptographically
secure one-way hash function h (e.g., MD5 or SHA-1). One
important property of one-way hash functions is that while
it is cheap to compute a hash, it is computationally infeasi-
ble to find its inverse. Thus, given xi+1, it is trivial to verify
that it hashes to xi, but it is infeasible to find xi+1 from xi.
We assume that the source can distribute x0 as an initial
shared secret to all receivers.

Before the source sends the ith packet, it computes the base
message digest di = h(datai,xi). Whenever a node sends
the packet, it hashes the message digest it receives from
its parent (or di for the source) with the receiving node’s
nodeId. Thus, the message digest received by the source’s
child A would be h(di,A) and that by A’s child B would
be h(h(di,A),B) and so on. Each packet will also include
the hash chain value used in the previous packet, i.e., the
i + 1th packet contains xi. Upon receipt of xi, each node
can confirm that xi−1 = h(xi). Each node can then verify
the integrity of the previous packet by reconstructing the
message digest using xi and the path.

In case of lost packets, a node only needs to hash the value
multiple times until it matches the last seen xi. Likewise,
a node joining an ongoing streaming session only needs to
hash the value multiple times until it matches x0. If the
source ever runs out of all the values in the hash chain, it
can generate a new chain on the fly and use the old chain
to authenticate the new one. Each multicast tree can use a
separate hash chain so that other trees can still be use while
one is under reconstruction.

Under this scheme, nodes cannot fake the path from the root
to their children without knowing xi, which would not be
revealed until after the packet becomes obsolete. Nodes can
still lie about their children, however. If that becomes an
issue, we can require nodes to sign lists of their children,

creating a structure analogous to a Merkle hash tree [16].

3.4 Sybil attacks

The rating mechanisms described above can all be poten-
tially defeated if nodes with poor reputations can quit the
system and rejoin under new identities, an example of a
Sybil attack [8]. While we could address these attacks by
requiring certified nodeIds [1], we can also limit the effec-
tiveness of such attacks by putting new nodes through a
probation where they experience a lower quality of service.
In SplitStream, where there are k trees being used concur-
rently, we might reconstruct one tree for each time step. If
we close these trees to new members after they start run-
ning, then a new node will not be able to join a tree until
it is being reconstructed, and will not receive all k streams
until k time steps have elapsed. Thus, it will get a lower
quality of service when it first joins, with its quality pro-
gressively improving over time. This may or may not be an
inconvenience to legitimate nodes. If, for example, nodes
are subscribing to a lecture that starts at a known time, they
would need to join k time steps in advance. If a time step
was 15 seconds and k = 16, then the probationary period
would only be four minutes long.

A selfish node might attempt to join under multiple iden-
tities with the hope of getting some portion of the stream
with each pseudonym. Regardless of the pseudonyms, the
selfish node will be immediately required to participate in
the protocol and will suffer if it freeloads. Furthermore, a
node using multiple pseudonyms will pay some fixed over-
head in the underlying p2p protocol for maintaining each
pseudonym, thus providing a disincentive to creating such
pseudonyms. As a result, nodes have an incentive to join
under a single identity and to behave correctly, allowing
them to develop a positive reputation.

4 Experiments

In this section, we use simulations to study the effective-
ness of a variety of different mechanisms. We study sev-
eral mechanisms in isolation and then describe a combina-
tion that is more effective at discriminating freeloaders from
normal nodes. All experiments are run on an instrumented
version of SplitStream using 500 nodes with randomly cho-
sen nodeIds. Since SplitStream considers node proximity
when building multicast trees, node “locations” are ran-
domly distributed on a plane, with proximity between two
nodes determined by their Euclidean distance. Each node
attempts to subscribe to k = 16 trees, and will accept up to
16 children. The root node transmits one “data unit” to each
multicast tree and then all trees are reconstructed at every
time step. (For an actual implementation trying to spread
the load of tree reconstruction, we might cut one time step
into 16 smaller steps and reconstruct one of the 16 trees per
step. The net cost would be the same.)
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Figure 1: Average tree reconstruction cost.

4.1 Tree reconstruction cost

Tree reconstruction would not be useful if the cost was pro-
hibitively expensive. We first study the cost of reconstruct-
ing and discarding trees. Figure 1 shows the average num-
ber of messages sent by every node in order to reconstruct
a tree. Since subscribing to a tree is simply sending a sub-
scribe message to a specific nodeId, the cost is proportional
to the log of the number of nodes. As each message is very
small in size (it contains a treeId and a few nodeIds), only
a few kilobytes are transmitted by each node, which is min-
imal relative to typical data rates for streaming video. To
unsubscribe from a tree, a node only needs to notify its par-
ent in the tree, therefore the cost is constant regardless of
the size of the system. Moreover, this unsubscription cost
can be saved if all the nodes in the tree discard the tree at the
same time. This is possible if the data source can include
this information in the data stream.

To estimate the overhead in practice, consider video stream-
ing to 500 nodes. Assume that the video is streaming at
128Kbps, the typical upstream bandwidth for a DSL user.
Figure 1 shows that on average each node needs to send 16
messages to reconstruct one tree. Assume that each mes-
sage is of size 128 bytes and all 16 multicast trees are re-
constructed every two minutes. The total overhead would
only be 1.71% of the stream.

4.2 Debt

Consider two randomly chosen nodes in the SplitStream
system. If the trees are constructed randomly, the odds of
one node being the parent or the child of the other are the
same as a random coin flip. As trees are reconstructed, the
expected average debt that might be accumulated will tend
to vary with the square root of the number of rounds [13].
We can thus define the debt level:

Debt level =
accumulated debts/credits

√
total transfers

.

Figure 2 shows the cumulative distributions of debt levels,
with 5% selfish nodes after 256 rounds of tree reconstruc-
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Figure 2: Cumulative distribution for debt level.
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Figure 3: Cumulative distribution of parental availability
when all nodes are normal.

tions. Despite the tree reconstructions, we see that debt
levels do not discriminate well between selfish and normal
nodes. We believe this occurs mainly as a result of the Split-
Stream’s preference for routing to “local” nodes, meaning
that many nodes will have the same pairings, round after
round, and other nodes will not learn enough to distinguish
selfish from normal nodes.

4.3 Parental availability

In order to understand parental availability (a child’s rating
of how likely a given parent was to accept it as a child),
we simulated a network with no freeloaders; each node will
accept up to 16 children. Figure 3 shows the distribution
after 256 tree reconstruction time steps. Half of the child-
parent availability ratings in the system are below 0.37 and
half are above. If a node was a freeloader, its parent avail-
ability rating would be zero. If we choose to cut off parents
with low availability, we must take care to avoid false pos-
itives, particularly given that many legitimate parents have
low ratings. For example, a cut-off of 0.44 might normally
reject 58% of the legitimate parents.

4.4 Confidence

Since debts between peers and parental availability rates
are insufficient, by themselves, to detect freeloading nodes,
we will consider a rating mechanism (see Section 3.2) that
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Figure 4: Cumulative distribution for negative confidence.

blames all upstream peers for any transmission failure. Fig-
ure 4 shows the distribution of negative confidence, with
5% selfish nodes, after 256 full reconstructions. Unlike
debt, the confidence value can effectively distinguish self-
ish nodes. For example, by setting a threshold of 2, a selfish
node can be positively identified by more than 90% of nodes
in the system with only 1% false positives.

4.5 Refusing service to freeloaders

In this experiment, we evaluate the effectiveness of a com-
bination of our mechanisms. We simulate a system consist-
ing of 496 nodes correctly following our protocol and four
selfish nodes. Two of these selfish nodes begin cheating im-
mediately while the other two start cheating only after time
32. Two cheaters will refuse to forward traffic to their chil-
dren and the other two will refuse to be a parent. When
performing our simulations, we tried a variety of different
parameters, eventually settling on the ones described here.
Normal nodes will always forward data to each of their chil-
dren, unless the child has:

• a confidence value of less than −2; or
• a parental availability of less than 0.44 as well as a

confidence value of less than 0.2.

When accepting children, a parent can preempt its
previously-accepted children for any other node with at
least 0.1 higher in parental availability. Also, reciprocal
requests are used when a prospective child has attempted
to contact a parent at least a factor of 8 times more often
than when their roles are reversed. Furthermore, we de-
cay positive confidence values over time, multiplying them
by 0.9 after each time step. As a result, nodes will forget
how good their parents have been, but they will remember
how bad their parents have been. A parent is thus forced to
continue providing service to maintain its children’s confi-
dence; likewise, freeloaders will be forced to provide ser-
vice if they ever wish to reestablish their reputation.

Figure 5 shows that our hybrid policy, considering confi-
dence values and parental availability, effectively punishes
nodes who refuse to forward traffic to their children. Nodes

Type Count Description

+ 496 Normal nodes
× 1 Refuse to accept children after 32

�
1 Always refuse to accept children

� 1 Refuse to forward data after 32
� 1 Always refuse to forward data
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Figure 5: Fraction of multicast streams successfully re-
ceived when nodes refuse to send data to freeloaders.

who refuse to accept children likewise manage to only re-
ceive 10% of the multicast data. It can also be observed
that initial cooperation followed by freeloading behavior
has only a limited effect in the short term and no effect in
the long term.

We also performed an experiment with ten freeloaders of
both types (refusing to send data to children and refusing
to accept children). These freeloaders experienced simi-
lar levels of reception as the freeloaders in Figure 5, but
normal nodes’ reception levels dropped from 98% to 92%.
This indicates that increasing numbers of freeloaders will
cause worsening performance for normal nodes, but that
the freeloaders will not benefit from their increased pres-
ence. For contrast, we also ran a similar simulation against
the original SplitStream, with a random distribution of
freeloading nodes and found that normal nodes’ reception
levels was 90.6%. This shows that our techniques represent
an improvement over the original system, although some
bandwidth is still being wasted on freeloaders. One possi-
ble way to address this might be to use a data encoding that
somehow requires a node to receive above a certain frac-
tion of the multicast data to decode anything at all. Such a
scheme would reduce the utility experienced by freeloaders;
if the freeloaders gain no benefit from staying, they would
leave and the bandwidth they were consuming would revert
back to being used by good nodes.

5 Related work

Distributed mechanisms Ngan et al. [17] consider a p2p
storage system, and propose an auditing mechanism so that
cheaters can be discovered and evicted from the system.
Fuqua et al. [12] modeled the utility function of nodes
in such a system, showing that nodes with similar prefer-



ences will have an incentive to cluster together and to reveal
their preferences truthfully. Feigenbaum et al. [9] consider
multicast transmissions using micro-payments, and proved
the strategy-proof property of a simple cost-sharing mech-
anism. All such systems are examples of problems in dis-
tributed algorithmic mechanism design (DAMD) [10].

Nicolosi and Mazières [18] propose a technique for the
sender of multicast data to confirm message delivery to all
receivers. While this can help the sender to learn the iden-
tity of nodes refusing to forward data, it does not prevent
nodes from refusing to accept children.

Reputation systems Many systems depend on nodes ob-
serving the behavior of their peers and gossiping with each
other about their observations. Dingledine et al. [7] surveys
many such schemes for tracking nodes’ reputations.

In reputation systems, if obtaining a new identity is cheap,
negative reputations can be shed easily. Friedman and
Resnick [11] study the case of cheap pseudonyms, and ar-
gue that suspicion of strangers is costly. Distributed repu-
tation systems have been proposed in a number of contexts,
including MIX-Nets [6] and Gnutella [4].

Our system uses the notion of a probationary period, where
new nodes see degraded service, yet must participate fully
in the protocol. A similar concept appears in Tangler [21].

6 Conclusions

We have demonstrated that, by regularly rebuilding multi-
cast trees and having nodes only track their first-hand ob-
served behavior of their peers, freeloaders would be suit-
ably denied service. The network and computational over-
head of our mechanism is low and thus could scale to large
number of nodes. It remains future work to study whether
we can improve the robustness of the system to tolerate a
larger fraction of freeloaders and freeloaders operating in
concert with one another. In addition, the effectiveness of
our mechanism may depend on the choice of multicast ap-
plications, p2p routing substrates, and network topologies.
Regardless, we have shown the effectiveness of combining
a node’s direct observations with mechanisms to guarantee
that parent-child relationships have a good chance of being
reversed are effective at providing disincentives to freeload-
ing behaviors.
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