
POST: A secure, resilient, cooperative messaging system∗

Alan Mislove1 Ansley Post1 Charles Reis1 Paul Willmann1 Peter Druschel1

Dan S. Wallach1 Xavier Bonnaire2 Pierre Sens2 Jean-Michel Busca2

Luciana Arantes-Bezerra2

1Rice University, Houston, TX, USA
2LIP6, Université Paris VI, Paris, France

Abstract

POST is a decentralized messaging infrastructure that
supports a wide range of collaborative applications, in-
cluding electronic mail, instant messaging, chat, news,
shared calendars and whiteboards. POST is highly re-
silient, secure, scalable and does not rely on dedicated
servers. Instead, POST is built upon a peer-to-peer
(p2p) overlay network, consisting of participants’ desk-
top computers. POST offers three simple and general
services: (i) secure, single-copy message storage, (ii)
metadata based on single-writer logs, and (iii) event no-
tification. We sketch POST’s basic messaging infrastruc-
ture and show how POST can be used to construct a co-
operative, secure email service called ePOST.

1 Introduction

Messaging systems like traditional email and news, as
well as instant messaging, shared calendars and bulletin
boards, are among the most successful and widely used
distributed applications. Today, these services are imple-
mented in the client-server model. Messages are stored
on and routed through dedicated servers, each hosting
a set of user accounts. This partial centralization limits
availability, because a failure or attack on a server de-
nies service to the users it supports. Also, substantial
infrastructure, maintenance and administration costs are
required to scale to large numbers of users. This is true
in particular for semantically rich, complex messaging
systems like Microsoft Exchange and Lotus Notes.

POST is a cooperative infrastructure that utilizes the
untapped resources of users’ desktops to provide mes-
saging services. Unlike server-based systems, POST is
self-scaling: the addition of new user desktops and peri-
odic upgrades of existing desktops implicitly add more
resources, thus balancing increased demands on the ser-
vice due to additional users and new features. POST
does not present a single point of failure or attack, and

∗This research was supported in part by Texas ATP (003604-
0079-2001) and by NSF (ANI-0225660),http://project-
iris.net.

is thus potentially more resilient than server-based sys-
tems. Finally, the self-organizing properties of POST
promise reduced system administration costs.

POST provides three basic services to applications:
(1) persistent single-copy message storage, (2) metadata
based on single-writer logs, and (3) event notification. A
wide range of messaging applications can be constructed
on top of POST using these services.

POST is built upon a structured p2p overlay network,
providing it scalability, resilience and self-organization.
Users contribute resources to the POST system (CPU,
disk space, network bandwidth), and in return, they are
able to utilize its services. POST assumes that participat-
ing nodes can suffer byzantine failures. Stronger failure
assumptions may be unrealistic, even in scenarios where
participating hosts belong to a single organization, be-
cause a single compromised node could disrupt critical
messaging services or disclose confidential messages.

In this paper, we sketch the design of POST, and then
describe how a cooperative, secure email system can be
built using POST. Unlike conventional email services,
ourePOSTsystem provides secure email services by de-
fault and requires no dedicated servers. Furthermore,
due to its strong sender authentication, ePOST makes ef-
ficient spam defense easier. We chose email as the initial
application for POST because it is well understood, and
because its high availability, reliability and security de-
mands make it a challenging driver for POST and p2p
systems in general.

The remainder of this paper is organized as follows.
Section 2 provides background information on Pastry,
PAST, and Scribe. Section 3 sketches the design of the
POST infrastructure. In Section 4, we sketch the design
of a cooperative email system as an example POST ap-
plication. Section 5 discusses integrating ePOST with
existing email systems. Section 6 outlines related work,
and Section 7 concludes.

2 Background

POST relies onPastry, a structured overlay network, as
well as two basic services built upon Pastry:PAST, a



storage system andScribe, a group communication sys-
tem. POST could easily be layered on similar systems
like Chord/CFS, or Tapestry/OceanStore [14, 6, 9, 16].

Pastry [12] is a structured p2p overlay network de-
signed to be self-organizing, highly scalable, and fault
tolerant. In Pastry, every node and every object is as-
signed a unique identifier chosen from a large id space,
referred to as anodeIdand key, respectively. Given a
message and a key, Pastry can efficiently route the mes-
sage to the node whose nodeId is numerically closest to
the key.

PAST [13] is a storage system built on top of Pas-
try and can be viewed as a distributed hash table. Each
stored item in PAST is given a 160 bit key (hereafter re-
ferred to as thehandle), and replicas of an object are
stored at thek nodes whose nodeIds are the numeri-
cally closest to the object’s handle. PAST maintains this
invariant regardless of node arrivals or failures. Since
nodeId assignment is random, thesek nodes are unlikely
to suffer correlated failures. PAST relies on Pastry’s se-
cure routing [2] to ensure thatk replicas are stored on the
correct nodes, despite the presence of malicious nodes.
Throughout this paper, we assume that at mostk− 1
nodes are faulty or unreachable in any replica set.

POST stores three types of data in PAST:content-
hash blocks, public-key blocks, and certificate blocks.
Content-hash blocks are stored using the cryptographic
hash of the block’s contents as the handle. Public-key
blocks contain monotonically increasing timestamps, are
signed with a private key, and are stored using the cryp-
tographic hash of the corresponding public key as the
handle. Certificate blocks are signed by a trusted third
party and bind a public key to a name (e.g., an email ad-
dress). The block is stored using the cryptographic hash
of the name as the handle.

Content-hash blocks can be authenticated by obtain-
ing a single replica and verifying that its contents match
the handle. Unlike content-hash blocks, public key
blocks are mutable. To prevent rollback attacks by mali-
cious storage nodes, clients attempt to obtain allk repli-
cas and choose the authentic block with the most recent
timestamp. Certificate blocks require a signature verifi-
cation using the public key of a trusted third party.

Scribe [3] is a scalable multicast system built on top
of Pastry. Each Scribe group has a 160 bitgroupId,
which serves as the address of the group. The nodes sub-
scribed to each group form a multicast tree, consisting of
the union of Pastry routes from all group members to the
node with nodeId numerically closest to the groupId.

3 POST Architecture

POST provides three basic services: a shared, secure
single-copy message store, metadata based on single-
writer logs, and event notification. These services can
be combined to implement a variety of collaborative ap-
plications, like email, news, instant messaging, shared
calendars and whiteboards.

A typical pattern is that users create messages and in-
sert them in encrypted form into the secure store. To
send a message to another user or group, the notification
service is used to provide the recipient(s) with the neces-
sary information to locate and decrypt the message. The
recipients may then modify their personal metadata to in-
corporate the message into their view (e.g., into a private
mail folder).

POST assumes the existence of a certificate authority.
This authority signs certificates binding a user’s unique
name (e.g., her email address) to her public key. The
same authority issues the nodeId certificates required for
secure routing in Pastry [2]. Furthermore, the authority
may set policies for each user (such as ensuring that each
user owns a nodeId bound to a live IP address), thus forc-
ing the user to contribute resources to the system. Users
can access the system from any node, but it is assumed
that the user trusts her local node, hereafter referred to as
the trusted node, with her private key.

Throughout the design of POST, we assume that ob-
jects stored in PAST cannot be deleted. Thus, the amount
of available disk space in the system must be increasing
and greater than the total storage requirements, which
is reasonable to expect in a p2p environment where each
participant is required to contribute a portion of her desk-
top’s local disk.

3.1 User Accounts

Each user in the POST system possesses an account,
which is associated with an identity certificate. The cer-
tificate is stored as a certificate block, using the secure
hash of the user’s name as the handle. Also associated
with each account is a user identity block, which con-
tains a description of the user, the contact address of the
user’s current trusted node, and any references to public
metadata associated with the account. The identity block
is stored as a public-key block, signed with the user’s pri-
vate key. Finally, each account has an associated Scribe
group used for notification, with a groupId equal to the
cryptographic hash of the user’s public key.

The immutable identity certificate, combined with the
mutable public-key block, provides a secure means for
a trusted authority to bind names to keys, while giving
users the ability to change their personal contact data
without requiring subsequent interactions with the cer-
tificate authority. The Scribe group allows anybody wait-
ing for news from that user, or anybody wishing to no-
tify the user that new data is available, to have a common
rendezvous point.

3.2 Secure Message Storage

POST provides a shared, secure message storage facility.
Application-provided message data is encrypted using a
technique known as convergent encryption [7]. Conver-
gent encryption allows a message to be disclosed to se-
lected recipients, while ensuring that copies of a given
cleartext message inserted by different users map to the



same ciphertext, thus requiring only a single copy of the
ciphertext to be stored.

When an application wishes to store messageX,
POST first computes the cryptographicHash(X), uses
this hash as a key to encryptX with an symmetric cipher,
and then stores the resulting ciphertext at the handle

Hash
(

EncryptHash(X) (X)
)

which is the secure hash of the ciphertext. To decrypt the
message, a user must know the hash of the plaintext.

Convergent encryption reduces the storage require-
ments when multiple copies of the same content tend
to be inserted into the store independently. This hap-
pens commonly in cooperative applications, for instance,
when a given popular document is sent as an email at-
tachment or posted on bulletin boards by different users.

Convergent encryption is vulnerable to certain known
plaintext attacks. An attacker who is able to guess
the plaintext of a message can verify its existence in
the store, but cannot necessarily find out who inserted
it. Moreover, since users normally encrypt their private
metadata, it is not possible to determine who references
the message. Nevertheless, with sensitive content, con-
vergent encryption must be used with care, particularly
when the content is of a small size, is highly structured,
or is otherwise predictable. In such cases, convergent en-
cryption could be supplemented or replaced by conven-
tional cryptographic methods. A simple change could be
to prepend some number of random bits to the plaintext
prior to the convergent encryption.

3.2.1 Scoped storage overlays

P2p storage systems like PAST or CFS form a single
overlay network that includes all participants. Replicas
of stored objects are placed at random nodes with ad-
jacent nodeIds throughout this overlay. This approach
leads to good load balancing and failure independence,
since the set of replica nodes for an object is widely dis-
tributed and thus unlikely to suffer correlated failures.

On the other hand, network locality can be poor be-
cause all objects are replicated at global scope, even
when an object is only of local interest and a more local
distribution (e.g., within a large organization) may yield
adequate failure independence. The lack of centralized
node administration makes it difficult to assess individ-
ual nodes’ failure probabilities, and thus determine the
appropriate degree of replication. And, the fact that any
node can insert objects anywhere in the system invites
denial-of-service attacks aimed at exhausting the storage
space of certain nodes, or the entire system. Lastly, it is
difficult to let nodes behind a firewall participate in the
storage overlay.

POST overcomes these problems using a two-level
store consisting of organizational overlays and a global
overlay. The two-level store allows POST to scope the
insertion of documents into the store, such that docu-
ments inserted by members of an organization are repli-
cated among the organization’s nodes. This is achieved

without sacrificing load balancing, failure independence,
or the ability to look up a stored message anywhere in the
global overlay; we omit the details due to lack of space.

3.3 Event notification

The event notification service is used to alert users to
certain events, such as the availability of a message, a
change in the state of a user, or a change in the state of a
shared object.

For instance, after a new message was inserted into
POST as part of an email or news service, the intended
receiver(s) must be alerted to the availability of the mes-
sage and provided with the appropriate decryption key.
Commonly, this type of notification requires obtaining
the contact address from the recipient’s identity block.
(This may require a lookup of the recipient’s certifi-
cate block, if the certificate is not already cached by the
sender). Then, a notification message is sent to the recip-
ient’s contact address, containing the secure hash of the
message’s ciphertext and its decryption key, encrypted
with the recipient’s public key and signed by the sender.

In practice, notification can be more complicated if
the sender and the recipient are not on-line at the same
time. To handle this case, the sender may delegate the
responsibility of delivering the notification message to a
set ofk random nodes; we omit the details here due to
lack of space.

To guarantee confidentiality, each notification mes-
sage is encrypted using a symmetric cipher such as AES
with a unique session key, and the session key itself is
then encrypted using the recipient’s public key. Thus,
only the recipient can decrypt the session key (i.e., with
his private key) in order to decrypt the remainder of the
message. Each notification message is also signed with
the sender’s private key, allowing the recipient to verify
its authenticity. Finally, each notification message also
includes a timestamp to prevent the message from be-
ing replayed by malicious users. Note that, unlike most
traditional user messaging infrastructures, everything in
POST is digitally signed and encrypted, by default. This
will prove useful when implementing higher-level ser-
vices like email, chat, and so forth.

3.4 Metadata

POST provides single-writer logs that allow applications
to maintain metadata. Typically, a log encodes a view
of a specific user or group of users and refers to stored
messages. For instance, a log may represent updates to
a user’s private email folder, or a public news group. An
email or news application would use a log of insert and
delete records to keep track of the state of a user’s mail
folder or a shared folder representing a news group.

In general, logs can be used to track the state of a
chatroom, a newsgroup, a shared calendar, or an arbi-
trary data structure. POST represents logs using self-
authenticating blocks that form a content-hash chain.
This is similar to, and was inspired by, the logs used in
the Ivy p2p filesystem [11].



The log head is stored as a public-key block and con-
tains the location of the most recent log record. Handles
for log heads may be stored in the user’s identity block,
in a log record, or in a message. Each log record is stored
as a content-hash block and contains application-specific
metadata and the handle of the next recent record in the
log. Applications optionally encrypt the contents of log
records depending on the intended set of readers.

In the original implementation used in Ivy, the log
head and each log record are stored at a different set
of nodes. To allow for more efficient log traversal,
POST stores clusters ofM consecutive log records on
the same node, under the handle of the least recent of
theM records. To deal with partially filled clusters, the
log head contains an additional handle, referring to the
least recent record in a partially filled cluster. This han-
dle identifies the cluster.

Other optimizations are possible to reduce the over-
head of log traversals, including caching of log records
at clients and the use of snapshots. Like Ivy, POST appli-
cations may periodically insert snapshots of their meta-
data into the store. Thus, log traversals always terminate
at the most recent snapshot.

3.5 POST robustness and security

The single-writer property and the content-hash chain-
ing [10] of the logs make it very hard for a malicious user
or storage node to insert a new log record or to modify
an existing log record without the change being detected.
To prevent version rollback attacks, public-key blocks
contain version timestamps. When reading a public-key
block (e.g., a loghead) from the store, clients attempt to
read allk replicas of the block, and use the authentic
replica with the most recent timestamp. When reading
content-hash blocks or certificate blocks, it is sufficient
to use any authentic replica.

Of great concern is the durability of stored messages.
It depends on the failure independence of the replica
node sets and an appropriate choice of replication factor,
relative to the failure rate of individual nodes. POST’s
scoped insertion into local overlays greatly eases the as-
sessment of failure independence and node failure rates,
because all nodes are under some level of joint adminis-
trative control.

Organizations that run a local overlay should ensure
that nodes are spread over different buildings, if not dif-
ferent sites. To reduce the risk of correlated failures due
to security attacks, there should be sufficient heterogene-
ity in hardware and software. This can be difficult to en-
sure due to most organizations’ monoculture approach
to systems administration. However, risks from com-
mon virus attacks can be greatly reduced by running the
POST daemon with reduced system privileges under its
own user identifier. Thus, a compromised POST daemon
has insufficient privileges to cause harm to the rest of the
system. Likewise, other compromised user applications
cannot attack POST’s local file store.

Pastry’s secure routing mechanism provides an effec-
tive defense against denial-of-service attacks against the

overlay, both from within and outside [2]. Attacks aimed
at filling the store can be thwarted with relative ease due
to the use of local overlays. Since object insertions are
allowed only within a local overlay, it is possible to track,
identify and reprimand offenders within an organization.

Single-writer logs are the only mechanism used to
maintain mutable state in POST. Their use avoids the
cost and complexity of a general byzantine fault-tolerant
replicated state machine. We are confident that POST’s
restricted mechanism for mutable state is flexible enough
for applications like email, news, instant messaging and
calendaring. The logs are efficient in cooperative appli-
cations, where insertions occur at a rate typical of human
user actions.

Some cooperative applications may require a more
flexible mechanism for maintaining mutable state. To
support such applications, the authors at LIP6 are cur-
rently investigating additional, byzantine fault-tolerant
mechanisms for maintaining multi-writer, mutable state.

4 Example: Electronic mail

In this section, we sketch the design of a serverless email
system, ePOST, on top of the POST infrastructure. The
goal is to show how POST can support a secure, scal-
able and highly resilient email system that leverages the
resources of participating desktop computers.

While a system like ePOST promises increased re-
silience, greater scalability and lower cost, it remains
an open question whether these advantages will be suf-
ficient to completely displace the existing, server-based
email infrastructure. Nevertheless, we chose to pursue
ePOST for several reasons.

First, ePOST is designed so that it can be deployed
incrementally, thus allowing individual organizations to
adopt it while still relying on existing standards and
infrastructure for communication across organizations.
Second, unlike most existing p2p applications, email is
mission-critical and demands high reliability, security,
and availability. Thus, it is a challenging driver for the
development of POST and, more generally, the underly-
ing p2p infrastructure.

4.1 Overview

Each ePOST user is expected to run a daemon program
on his desktop computer that implements the Pastry,
PAST, Scribe and POST protocols, and contributes some
CPU, network bandwidth and disk storage to the system.
The daemon acts as a SMTP and IMAP server, thus al-
lowing the user to utilize conventional email client pro-
grams. The daemon is assumed to be trusted by the user
and holds the user’s private key. No other nodes in the
system are assumed to be trusted by the user (other than
the authority that signs the users’ certificates).



4.2 Email storage

In ePOST, email messages received from an email client
program are parsed and the MIME components of the
message (message body and any attachments) are stored
as separate messages in POST. Thus, frequently circu-
lated attachments are stored in the system only once.

The message components are first inserted into POST
by the sender’s ePOST daemon; then, a notification mes-
sage is sent to the recipient. Sending a message or attach-
ment to a large number of recipients requires very little
additional storage overhead beyond sending to a single
recipient. If messages are forwarded or sent by differ-
ent users, the original message data does not need to be
stored again; the original message reference is reused.

Due to the necessary data replication in PAST, the
storage overhead per message is higher in POST com-
pared to a conventional server-based email system.
However, this effect is partly offset by POST’s single-
copy store, which eliminates large amounts of duplica-
tion due to large, widely circulated email attachments.
Moreover, exploiting the typically underutilized disk
space on desktop computers should more than com-
pensate for this overhead [1]. Lastly, the storage re-
quirements can be further reduced by using erasure
codes [15], but we have not yet explored their use in
POST.

4.3 Email delivery

The delivery of new email is accomplished using POST’s
notification service. A sender first constructs a notifica-
tion message containing basic header information, such
as the names of the sender and recipients, the subject, a
timestamp, and a reference to the body and attachments
of the message. The sender then requests the POST ser-
vice to deliver this notification to each of the recipients.

It is noteworthy that ePOST extends recipient control
beyond current systems by allowing the recipient to ap-
pend the message to his mailbox or to simply ignore the
notification, perhaps based on a spam filter. Since mes-
sages are stored in the sender organization’s ring, one of
the major goals of anti-spam researchers, to push most
of the costs of spam back onto the spammers, can be
achieved in a straightforward manner.

4.4 Email folders

Each mail folder is represented by a POST log. Each log
entry represents a change to the state of the associated
folder, such as the addition or deletion of a message. Fur-
thermore, since the log can only be written by its owner
and its contents are encrypted, ePOST preserves the ex-
pected privacy and integrity semantics of current email
systems with storage on trusted servers.

An email insertion record contains the content of the
message’s MIME header, the message’s handle and its
decryption key, and a signature of all this information,
taken from the sender’s original notification message.
This data is then encrypted under the user’s public key.

4.5 Discussion

By default, ePOST provides strong confidentiality, au-
thentication and message integrity. The system is able to
tolerate up tok− 1 faulty or unreachable nodes in any
random set ofk POST nodes without loss of data or ser-
vice, wherek is the degree of message replication. It
relies on Pastry’s secure routing facilities [2], data repli-
cation, and cryptographic techniques to achieve robust-
ness under a wide range of attacks, including denial-of-
service and participants that suffer byzantine faults.

More analysis and experimentation will be necessary
to determine appropriate assumptions about the fraction
of faulty nodes in various environments, and appropri-
ate levels of replication. Results of a prior study on p2p
filesystems in corporate environments indicate that mod-
est levels of replication can yield high availability [1].

Since ePOST inserts all incoming messages into the
local overlay, only the node failure probability and fail-
ure independence within a user’s local overlay deter-
mine the durability of the messages that the user ref-
erences. Therefore, a user’s organization can take ap-
propriate steps to ensure failure independence and deter-
mine an appropriate degree of replication.

Mailing lists can be easily supported by maintaining
the list as an additional log and storing the log head ref-
erence at the list maintainer’s user identity block. When
delivering a message, the sender notices the list and ex-
pands the recipient list appropriately.

5 Incremental deployment

To allow an organization to adopt ePOST as its email
infrastructure, ePOST must be able to interoperate with
the existing email infrastructure. We sketch here how
ePOST could be deployed in a single organization and
interoperate with email services in the general Internet.

For inbound email, the organization’s DNS server pro-
vides MX records referring to one of a set of POST
nodes within the local organization. These nodes act
as incoming SMTP mail gateways, accepting messages,
inserting them into POST, and notifying the recipient’s
nodes. Suitable headers are generated such that the re-
ceiver is aware the message may have been transmitted
on the Internet unencrypted. If no identity block can be
found for the recipient in the local overlay, then the email
“bounces” as in server-based systems.

The incoming mail gateway nodes need to be trusted
to the extent that they receive plaintext email messages
for local users. Typically, the desktop workstations of an
organization’s system administrators can be used for this
purpose. These administrators own root passwords that
allow them to access incoming email in conventional,
server-based systems. Thus, ePOST provides the same
privacy for incoming email from non-ePOST senders as
existing systems.

Sending email to the outside world first requires de-
termining that the desired email address is not already
available inside the ePOST world. At that point, there



may be a gateway service that can provide the appro-
priate certificate material to generate a standard crypto-
graphic email in S/MIME or PGP format. This encryp-
tion is performed in the sending user’s local node, before
the data goes onto the network. If the recipient does not
support secure email, then the email must ultimately be
transmitted in the clear, so the ePOST proxy server can
speak regular SMTP to the recipient’s mail server.

6 Related work

Lotus Notes and Microsoft Exchange provide a gen-
eral, secure messaging infrastructure based on the client-
server model, providing the ability to transfer email, per-
sonal contacts, calendars, and tasks. POST aims to pro-
vide similar functionality based on a serverless, decen-
tralized and cooperative p2p architecture.

Current email protocols, including SMTP, POP3, and
IMAP, are tailored towards an infrastructure based on
dedicated servers. Minimal security is provided in these
protocols, as they do not provide confidentiality, verifi-
ability, or data integrity. Extensions like PGP provide
secure email, but are not widely used.

The use of a single-writer, self-authenticating log in
POST was inspired by the use of similar logs in the Ivy
filesystem [11]. The loghead is the root of a Merkle hash
tree [10], which allows the log to be stored on untrusted
nodes, while ensuring that the authenticity of each log
entry can be verified locally. This allows POST to avoid
more complex byzantine state machine protocols [4].

A serverless email system proposed in [8] shares many
of the goals of ePOST. Unlike POST, it focuses on email
service only, and unlike ePOST, it is not compatible with
the existing email infrastructure. Providing email ser-
vices on top of a p2p storage system has also been ex-
plored in the OceanStore project [5]. The use of single-
writer logs allows POST to achieve similar functionality
with significantly less complexity, while providing gen-
eral support for collaborative applications.

7 Status and conclusions

POST is a decentralized, collaborative messaging sys-
tem that leverages the resources of participating desktop
computers. POST provides highly resilient and scalable
messaging services, while ensuring confidentiality, data
integrity, and authentication. The basic services pro-
vided by POST can be used to support a variety of col-
laborative applications. In this paper, we have sketched
how POST can be used to construct ePOST, a coopera-
tive, secure email system.

Prototype implementations of POST and ePOST ex-
ist and are currently under experimental evaluation. Im-
plementations of calendaring and instant messaging ap-
plications are underway. We plan to start using ePOST
shortly, initially within our research groups, and hope
to expand the user base within Rice and LIP6 and be-
yond, as we gain experience and confidence in the sys-

tem. Given users’ dependence on email services, we
view this as a proof of concept for mission-critical p2p
systems, and as a vehicle to gain practical experience and
workload trace data from such a system.

References
[1] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility

of a serverless distributed file system deployed on an existing set
of desktop PCs. InProc. SIGMETRICS’2000, Santa Clara, CA,
2000.

[2] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Security for structured peer-to-peer overlay networks. In
Proc. of the Fifth Symposium on Operating System Design and
Implementation (OSDI 2002), Boston, MA, December 2002.

[3] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure.IEEE JSAC, 20(8), October 2002.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
OSDI: Symposium on Operating Systems Design and Implemen-
tation. USENIX Association, Co-sponsored by IEEE TCOS and
ACM SIGOPS, 1999.

[5] S. Czerwinski, A. Joseph, and J. Kubiatowicz. Design-
ing a global email repository using OceanStore, June 2002.
UC Berkeley summer retreat,http://roc.cs.berkeley.
edu/retreats/summer_02/slides/czerwin.pdf.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. InProc. ACM
SOSP’01, Banff, Canada, October 2001.

[7] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. InProc. of the International Conference on Dis-
tributed Computing Systems (ICDCS 2002), Vienna, Austria,
July 2002.

[8] J. Kangasharju, K. Ross, D. Turner, J. Syrjala, and D.S. Digeon.
Peer-to-peer e-mail, November 2002. Submitted for publication.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent store. InProc. ASPLOS’2000, Cambridge, MA,
November 2000.

[10] R. Merkle. A digital signature based on a conventional en-
cryption function. InIn Advances in Cryptology—CRYPTO’87
(LNCS, vol. 293), 1987.

[11] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. InProc. of the Fifth Sym-
posium on Operating System Design and Implementation (OSDI
2002), Boston, MA, December 2002.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware 2001, Heidelberg, Germany, November
2001.

[13] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. ACM SOSP’01, Banff, Canada, October 2001.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Inter-
net applications. InProc. ACM SIGCOMM’01, San Diego, CA,
August 2001.

[15] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.replica-
tion: A quantitative comparison. InProc. ITPTS’02, Cambridge,
MA, March 2002.

[16] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and routing.
Technical Report UCB//CSD-01-1141, U. C. Berkeley, April
2001.


