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Abstract—Available bandwidth estimation techniques are being
used in network monitoring and management tools to provide
information about the utilization of the network and verify the
compliance of service level agreements. However, the use of
these techniques in other applications and network environments
is limited by the convergence time, accuracy, and amount of
overhead that they introduce. In this paper, we propose a
Hidden Markov Model-based technique to end-to-end available
bandwidth estimation and monitoring that improves these per-
formance metrics and therefore promises to expand the use of
these techniques in other scenarios. The estimator, which has
been implemented in a new tool called Traceband, is as accurate
as Spruce and Pathload but considerably faster, and introduce
far less overhead. In addition, when compared using bursty
cross-traffic, Traceband is the only tool that accurately reacts to
zero-traffic periods, which may be particularly useful for those
applications that need to make decisions in real time.

I. INTRODUCTION

Recently, the estimation of the available bandwidth (AB) of

an end-to-end path has received considerable attention due to

its applicability in several network applications. For example,

AB estimation can be utilized in network management to

provide information about current utilization of the network

resources or to monitor and verify service level agreements.

Transport layer protocols might also use AB information to

change the transmission rate according to the amount of

bandwidth available in the path, using the network resources

efficiently while avoiding congestion.

The available bandwidth of an end-to-end path is a time-

varying metric related to the individual utilization of each link

throughout the path. Defining T as the averaging timescale

of the available bandwidth [1], the average utilization for a

sample during T , is given by

ui(t, t + T ) =
1

T

∫ t+T

t

ui(s)ds (1)

where 0 ≤ ui(t, t + T ) ≤ 1. For a link i with capacity Ci, the

AB of the link in the interval (t,t+T ) can be defined as the

average non-utilized capacity during the time T . That is,

ABi(t, t + T ) = Ci[1− ui(t, t + T )] (2)
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For an end-to-end path with H hops, the available bandwidth

is given by the minimum non-utilized link in the path. That is,

AB(t, t+T ) = mini=1..HABi(t, t+T ). In the literature, the

link with the minimum capacity is called the narrow link and

the link with the minimum available bandwidth is called the

tight link, which is considered the bottleneck of the path and

the link that determines the end-to-end available bandwidth.

Two main available bandwidth estimation approaches have

been reported. The first approach is called the Probe Gap

Model (PGM) which bases the estimation on the gap disper-

sion between two consecutive probing packets at the receiver.

That dispersion is used to estimate the amount of cross-traffic

in the tight link during T which is subtracted from the Capacity

to estimate the AB in the path. Examples of tools in this

category are Spruce [2], Delphi [3], and IGI [4]. The second

approach called Probe Rate Model (PRM) is based on the idea

of induced congestion, in which the turning point (available

bandwidth) is determined by the variation in the probing

packet rate from sender to receiver. Pathload [5], TOPP [6],

and Pathchirp [7] are examples of tools utilizing this approach.

Although Pathload and Spruce have been recognized as

the best performing tools in their respective estimation ap-

proaches, their applicability has been limited to network man-

agement tools where the accuracy, overhead, and convergence

times are not as strict as in other applications or network en-

vironments. Otherwise, performance trade-offs must be made,

as it is shown in [8]. Pathload is accurate but takes too long

to provide an estimate and introduces considerable overhead.

Spruce is faster and less intrusive than Pathload but, in general,

is less accurate than Pathload. Further, neither tool is able to

react fast enough to cross-traffic rapid changing conditions,

which is specially important for those applications that need

to make decisions in real time, such as available bandwidth-

based transmission rate decisions of a transport layer protocol.

This paper introduces Traceband, a new available bandwidth

estimation tool based on the probe gap model. Traceband

utilizes a Hidden Markov Model approach to provide fast and

accurate estimates using a low probing traffic rate, making

it the first tool that improves most, if not all, performance

metrics over Pathload and Spruce. Further, the tool is also able

to quickly and accurately react to cross-traffic variations, like

those present in links loaded with bursty traffic. These features

not only make Traceband a better tool to perform available
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Fig. 1. Probe Gap Model (PGM) sampling.

bandwidth estimations for network management tools (no

trade-offs are necessary) but also extend the possibility of

applying these techniques in other applications and scenarios.

As an additional contribution, the paper also introduces the

use of a modified version of the moving average technique

presented in [9] that can be used in all tools to provide

smoother estimations.

The reminder of the paper is organized as follows. Section II

explains the Hidden Markov Model and the methods used

to obtain observations from the network. Section III presents

Traceband implementation details. Section IV compares the

performance of Traceband with Pathload and Spruce by using

synthetic generated traffic. Finally, Section V concludes the

paper.

II. ESTIMATION MODEL

The available bandwidth in an end-to-end path can be

modeled by N states each one representing certain level of

availability. For example, in a five-state representation, the AB

could be in one of Low (L), Medium Low (ML), Medium (M),

Medium High (MH), and High (H) states. That is, it could be

located in any spare utilization range from [0,0.2), [0.2, 0.4),

[0.4,0.6), [0.6,0.8), or [0.8,1]. Since the average timescale T
in Equation 2 is very small (microseconds), it is assumed that

transitions from one state to another during that period go no

farther than one state apart. Therefore, a one-step transition

Markov chain can be utilized to estimate the probability of

being in a particular state, or AB range. This assumption is

experimentally verified in this paper using Poisson and bursty

cross traffic. Future work will verify if it holds in the case

of Internet trace-driven traffic and synthetic self-similar cross

traffic.

However, AB states can not be directly observed (hidden)

since end-to-end estimators do not have information about

bandwidth consumption in intermediate routers through the

network path. Rather, AB estimators sample the network path

with probe packets that convey packet dispersion information

instead, which can be used by a Hidden Markov Model to

infer the non-observable state.

A. Probing Sampling Method

In order to estimate the average available bandwidth during

the period T , the network is sampled using the Probe Gap

Model, as shown in Figure 1. Assuming a single tight link, a

probing packet pair enters the router with a ∆in separation.

Because of interaction with cross-traffic in the router’s output

queue, a variation or dispersion is observed when the packet

ξ1 ξ tξ t-1 ξ T

X1 Xt-1 Xt XT
���� ����
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Fig. 2. Hidden Markov Model.

pair leaves the link. This variation has a strong correlation with

the amount of cross-traffic in the queue during the sampling

period. Defining ε = (∆out − ∆in)/∆in as the relative

time dispersion observed, then the available bandwidth can

be estimated by:

AB = Ct × (1− ε) = Ct ×

(

1−
∆out −∆in

∆in

)

(3)

Similar to other PGM tools, the value of the tight link capacity

(Ct) can be calculated by using well-known and accurate tools,

like Pathrate [10].

B. Hidden Markov Model (HMM)

Figure 2 represents the tight link available bandwidth transi-

tions from time t = 1 to time t = T . This is a Hidden Markov

Model (HMM) with discrete hidden states X representing the

available bandwidth levels (ranges) and discrete observation

variables ξ representing probing packet pair dispersions. A

particular observation has associated a probability B to be

generated by a particular hidden state. Transition between

states are governed by probabilities specified in the transition

probability matrix A. This model, which is refined with every

new observation, is used to determine the most probable state

sequence (X1, X2, · · · , XT ) responsible for what has been

observed during T .

As defined in [11], the Hidden Markov Model consists of

the following five elements:

1) Number of states in the model (N ). The larger this

number, the better the accuracy but the longer the time

needed to provide an estimation. The set of states is

defined by S = S1, S2, . . . , SN where the available

bandwidth level grows from S1 to SN (from low to

high). The state at time t is denoted by Xt.

2) Number of distinct observation symbols per state

(M ). These are all the possible outcomes of a state.

That is, the set of symbols corresponding to observed

dispersions from the probing sampling method. Al-

though this number can be changed in the model, in the

default implementation of Traceband this number is set

to ten symbols denoted by V = υ1, υ2, . . . , υ10. These

symbols are decimal numbers from 1 to 10 grouping

continuous observed values of ε in the ranges [0,0.1),

[0.1,0.2), ..., and [0.9,1]. Every single observation is

converted to a discrete symbol by:

ξt = dM × |1− εt|e (4)

Equation 3 provides the relation between states and

observations symbols.



3) State transition probability matrix (A). A = [aij ]
where aij = P (Xt+1 = Sj |Xt = Si), 1 ≤ i, j ≤
N . Since only one-step transitions between states are

possible, the number of unknown elements in the matrix

is reduced to the three main diagonals:

A =



















a1,1 a1,2 0 · · · 0

a2,1 a2,2 a2,3 0
...

0
. . .

. . .
. . . 0

... 0 aN−1,N−2 aN−1,N−1 aN−1,N

0 · · · 0 aN,N−1 aN,N



















4) Observation probabilities (B). This is a set of prob-

abilities that indicates how likely is that at time t
an observation symbol ξt is generated by each state

from the set S. More specifically, B = [bj(m)] where

bj(m) = P (ξt = υm|Xt = Sj) for 1 ≤ m ≤ M and

1 ≤ j ≤ N :

bS1
= [P (ξ1/S1), · · · , P (ξM/S1)]

bS2
= [P (ξ1/S2), · · · , P (ξM/S2)]

...

bSN
= [P (ξ1/SN), · · · , P (ξM/SN)]

It is expected that small values of ξ are the result

of a highly loaded network and therefore more likely

generated by a low order state (one indicating low

available bandwidth) and conversely. Based on this,

probability values are assigned as shown below. Note

that 0.4 and 0.25 are high probability values assigned to

more likely states:

bS1
= [0.40, 0.25, 0.15, · · · , 0.01, 0.01]

bS2
= [0.15, 0.40, 0.15, · · · , 0.02, 0.01]

...

bSN
= [0.01, 0.01, 0.02, · · · , 0.25, 0.40]

5) Initial state probabilities (Π). This is a vector with

the probabilities that each state is the first in the state

sequence that generated the observations. Π = [πi]
where πi = P (X1 = Si) for 1 ≤ i ≤ N .

The last three probabilities are usually denoted as

λ=(A,B,Π) to indicate the complete parameter set of the

model. Table I summarizes all the variables used in the

estimation model.

C. Parameter Estimation

Given an observation sequence O = ξ1, ξ2, . . . , ξT , that is,

a set of samples from the network during T , it is desired

to estimate the model λ that most likely generated that

sequence, i.e. the model λ for which the P (O|λ) is maximized.

This is done by using the Baum-Welch algorithm [12]. For

implementation purposes, a modified version of the Baum-

Welch algorithm written in C by Tapas Kanungo [13] is used.

The algorithm runs as follows:

Variable Description

ε Relative time dispersion

ξt Observation symbol at time t

Ct Tight link capacity

∆in Packet pair separation before the tight link

∆out Packet pair separation after the tight link

N Number of states representing AB levels

S Set of states (low to high): S = S1, S2, . . . , SN

M Number of distinct observation outcomes

V Set of observations: V = υ1, υ2, . . . , υM

A State transition probability matrix

B Observation probabilities

Π Initial state probabilities

T Number of observations

O Observation sequence: O = ξ1, ξ2, . . . , ξT

TABLE I
MODEL VARIABLES.

1) Set the initial model λ0 with a randomly generated

matrix A0 (one-step transition) and vector Π0. Matrix

B0 is initialized as explained in the previous section.

2) Calculate a new λ̄ = (Ā, B0, Π̄) based on λ0 and the

observation sequence O.

3) if logP (O/λ̄)− logP (O/λ0) < 0.001 then stop

else λ0 ← λ̄ and go to step 2.

Notice that B̄ = B0 all the time since as explained before,

it is expected that small variations of ε correspond to a low

loaded link and conversely.

D. State Sequence Estimation

Once an approximation to the available bandwidth model

λ is available, the Viterbi algorithm [14] can be applied to

find the state sequence (X1, X2, · · · , XT ) that maximizes the

likelihood of P (X1, X2, · · · , XT |O, λ). The algorithm selects

the most likely path from a particular state to all possible

paths and does the same for each state. The final most likely

path represents the levels of AB that the probing sampling

packets have observed during the sampling time. As defined

in Equation 1, the final estimation is based on the average

utilization observed during T . Therefore, the AB is calculated

as the average state in the sequence.

III. TRACEBAND

Traceband2 is a client-server tool written in ANSI C that

uses the described Hidden Markov representation of the avail-

able bandwidth dynamics to provide fast, continuous, and

accurate AB estimates. The Traceband client runs in cycles of

ten estimations. In the first estimation the tool sends 50 UDP

packet pairs 1498 bytes long. The nine remaining estimations

are performed with 30 packet pairs each. This reduction is

possible thanks to the HMM, which is able to learn the

AB dynamics with an initial sample and keep the model

updated with samples of reduced size. It was found from

experimentation that re-learning every ten estimations was

enough to maintain good accuracy with low overhead.

Traceband utilizes different values for the intra-gap and

inter-gap times of packet pairs. The intra-gap refers to the

2On line available at http://www.cse.usf.edu/∼guerrerc/traceband/soft.htm



time between the two packets of each packet pair. The intra-

gap or ∆in is specified at the sender and is set equal to the

transmission time of a single probe packet in the tight link.

In that way, the packet pair will be able to capture cross-

traffic in the queue, if any. The inter-gap refers to the time

between pairs of probe packets, i.e. the time between the

second packet of probe pair i−1 and the first packet of probe

pair i. Similar to Spruce [2], Traceband performs a Poisson

sampling process of the available bandwidth of the path by

using exponentially distributed inter-gap times. In order to

keep the overhead controlled and low, the mean inter-gap time

value is calculated so that the maximum overhead introduced

by the tool is 5% or less of the tight link capacity.

At the receiver side, the tool server application timestamps

each received probing packet at the kernel level. This is per-

formed by setting the SO_TIMESTAMP option in the socket.

Packets are numbered to determine which packets are in the

same pair and calculate the correct relative time dispersion

(ε) between them. By applying Equation 4, the corresponding

observation symbol for the HMM is determined for each

packet pair.

The HMM module in Traceband reads the values of N, M

and B from a file to compute the model λ based on the 50 (or

less) observations calculated at the receiver. The model is used

to determine the most likely sequence of states that generated

the observations. For every new estimation, the initial model

λ0 is the output of the previous estimation. The sequence of

states is then averaged and multiplied by the tight link capacity

to provide a final AB estimation.

Traceband includes an optional moving average post pro-

cessing technique to smooth the AB estimations. This tech-

nique, similar to the one proposed in [9] to filter out abrupt

changes in the received signal strength of wireless devices,

calculates the mean and the standard deviation of five con-

tinuous estimations to generate a single estimation with a

95% confidence interval using the t-student distribution. If

the next single estimation lies above or below the upper

and lower limits of the calculated interval, that estimation is

considered a “peak” (a very rare sample) and is changed to

the interval upper or lower limit value. Then a new confidence

interval is calculated with the last five estimations (a window

of five estimations is continuously shifted once every time).

The smoothed estimation is therefore the result of averaging

the five last measurements after adjusting those out of the

confident interval limits. It is worth noticing that this technique

is general and could be applied and incorporated into any other

available bandwidth estimation tool.

IV. PERFORMANCE EVALUATION

The performance of Traceband is evaluated and compared

with Pathload and Spruce, which are used without any modifi-

cation of their default parameters. The evaluation is performed

using the testbed shown in Figure 3. This is a fully controlled

environment with a 10 Mbps capacity tight link. Cross-traffic

is generated from the host called US to the host called China

and the estimation is performed from Sender to Receiver. The

Multi-Generator MGEN [15] is used as traffic generator; it

US China

Switch 10 Mbps

Router Cisco 2514

Sender Receiver

Hub
Switch

tcpdump

Fig. 3. Testbed to evaluate available bandwidth estimation tools.

allows to send cross-traffic at different rates and with different

probability distributions. A computer using tcpdump sniffs the

output link in the router and records a trace with the joined

cross and probing traffic. This trace is used to calculate and

plot the average utilization of the link every 1/10 seconds.

The performance metrics used in the evaluation are ac-

curacy, overhead, and estimation rate. The accuracy metric

compares the estimation provided by the tool with the real

average value obtained from the tcpdump trace, during the

tool estimation period. In this paper, the accuracy is given by

the relative error according to Equation 5, where mAB is the

value given by the tool and µAB is the real AB value from

the trace.

error =

∣

∣

∣

∣

mAB − µAB

µAB

∣

∣

∣

∣

× 100% (5)

The overhead is related to the amount of probe packets that

the tool needs to inject into the network in order to perform

the estimation. Although the overhead is usually expressed in

bps, in this article it is defined as the percentage of tool traffic

rate (tool traffic divided by the tool running time) with respect

to the total capacity of the tight link.

Finally, the estimation rate shows how often the tool is

able to provide an estimate. This rate is given in estimations

per minute. The higher this value the better the convergence

time of the tool. Pathload and Traceband directly report the

estimation time. Spruce estimation time was recorded using

a script to calculate the difference of times before and after

running the tool.

The tools were evaluated as if they were performing a

continuous network monitoring task during a period of 200

seconds. In the case of Pathload and Spruce, it was necessary

to run the tools in a loop. In the case of Traceband, the tool has

an option to set the estimation period. For every experiment,

the output of the tool was redirected to a log file that was

processed to extract information about the time, amount, and

values of the estimations. The tight link was loaded with 3

Mbps (30% of its capacity) with Poisson and bursty cross-

traffic.

A. Poisson cross-traffic experiments

Figure 4 shows the tools estimations when the tight link

is loaded with an average of 3 Mbps Poisson cross-traffic.

The mean value for the real available bandwidth is calculated

as the average of all real AB values observed between two

estimations of each tool. This is done in that way since the

tools also provide an average over the estimation period. For
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(a) Pathload.
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(b) Spruce.
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(c) Traceband.

Fig. 4. Available Bandwidth Estimation for a 10 Mbps tigth link with 30% of Poisson cross-traffic.

0 20 40 60 80 100 120 140 160 180
4

5

6

7

8

9

10
x 10

6

Time (seconds)

A
v
a
ila

b
le

 B
a
n
d
w

id
th

 (
b
p
s
)

 

 

Real AvBw

Mean Real AvBw

Estimated AvBw

(a) Pathload.
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(b) Spruce.
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(c) Traceband.

Fig. 5. Moving average post processing to experiments in Figure 4.

Tool Estimation Error Estimations/min Overhead

Pathload 6.71% ± 1.17% 1.754 ± 0.066 6.57% ± 0.20%

Spruce 7.77% ± 0.98% 5.579 ± 0.059 1.41% ± 0.02%

Traceband 8.83% ± 0.43% 11.645 ± 0.132 1.96% ± 0.03%

TABLE II
PERFORMANCE EVALUATION FOR 30% POISSON CROSS-TRAFFIC WITH A

95% CONFIDENCE INTERVAL.

comparison purposes, Pathload single points were calculated

as the mid point of the range reported by the tool.

¿From Figure 4, it can be seen that Pathload makes 1.86

estimations per minute, inserts 6.86% of the path capacity

as tool overhead, and presents an average estimation error

of 6.92%. Spruce, performs 5.49 estimations per minute,

inserts 1.42% of the path capacity as tool overhead, and

has an average estimation error of 8.54%. Finally, Traceband

performs an average of 11.42 estimations per minute, inserts

1.90% of the path capacity as tool overhead, and presents

an average estimation error of 8.40%. It is worth noticing

that Traceband introduces far less overhead than Spruce and

Pathload; the overhead percentages are similar because of the

higher number of estimations that Traceband performs during

the same time period. In order to have statistically significant

results, each experiment was performed five times. For each

time, the average value of each metric was calculated. Using

these averages and the t-student distribution, a 95% confidence

interval was calculated for each tool on each performance

metric. Results are shown in Table II.

Tool Estimation Error

Pathload 4.88% ± 2.13%

Spruce 3.84% ± 1.92%

Traceband 2.93% ± 1.42%

TABLE III
ESTIMATION ERROR AFTER APPLYING MOVING AVERAGE TO EXPERIMENT

RESULTS IN TABLE II.

In this scenario, the three tools under evaluation showed

estimation errors below 10%, which according to evaluations

performed by other authors like in [16] can be considered as of

high accuracy. Compared with Spruce, Traceband has shown

to perform twice the number of estimations per minute with

similar total overhead. Pathload has shown to be more than

three times more intrusive and more than six times slower

than Traceband.

The optional moving average described before and available

in Traceband was also evaluated. For comparison purposes,

it was also applied to the results of Pathload and Spruce

shown in Figure 4. From Figure 5, it can be observed that

since Traceband estimations are more symmetric over the

mean value than Pathload’s and Spruce’s estimations, after

applying the moving average technique, the tool shows the

best accuracy and the lowest variability. It is worth noticing

that given the small estimation rate of Pathload, using this

filtering algorithm the tool is not able to perform the first

estimate before 150 seconds. As before, for the set of five

experiments, a 95% confidence interval was calculated. The
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(a) Pathload.
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(b) Spruce.
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(c) Traceband.

Fig. 6. Available Bandwidth Estimation for a 10 Mbps tight link with 30% of Burst cross-traffic.

overhead and estimation rate are the same as in Table II but

the estimation error results are shown in Table III.

B. Bursty cross-traffic experiments

Figure 6 shows the results of running the tools when the

network is loaded with 3 Mbps of bursty cross-traffic. The

length of the bursts and the burst interarrival times are both

exponentially distributed with averages of 5 and 10 seconds,

respectively. In this case, Pathload makes 2.45 estimations per

minute, inserts 7.65% of the path capacity as tool overhead,

and presents an average estimation error of 12.06%. Spruce

performs an average of 5.46 estimations per minute, inserts

1.34% of the path capacity as tool overhead, and has an

average estimation error of 8.21%. Traceband performs an

average of 11.86 estimations per minute, inserts 1.98% of

the path capacity as tool overhead, and presents an average

estimation error of 4.12%. As in the Poisson cross-traffic

case, the amount of overhead introduced by Traceband is

consoderably lower than Pathload and Spruce. The percentages

are similar because of the higher number of estimations

performed by Traceband. As it can be observed from Figure 6,

since Traceband performs more estimations per minute, the

tool is able to accurately react to periods where the tight

link has no cross-traffic. Further, during those empty periods,

the HMM provides 100% accuracy setting the estimations to

the state representing the highest availability. As far as the

authors’ knowledge is concerned, this is the first tool capable

of reacting in such a fast and accurate manner.

V. CONCLUSIONS

This paper introduces a Hidden Markov Model approach to

end-to-end available bandwidth estimation. The new approach

is implemented in a tool called Traceband that, compared with

Pathload and Spruce, not only provides better performance

results overall but also is able to react and accurately esti-

mate the available bandwidth under abrupt changes in cross-

traffic. Experimental results over Poisson and bursty traffic

show that Traceband can provide more estimations per unit

time with comparable accuracy to Pathload and Spruce with

far less probe traffic. Traceband also includes an optional

moving average technique that smooths out the estimations

and improves its accuracy even further. With this result, it

is expected that available bandwidth estimation tools be used

in a larger number of applications and networking scenarios.

Future work will test Traceband using real Internet traces with

self-similar cross traffic.
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