
1

Interdomain Traffic Engineering in a
Locator/Identifier Separation Context

Damien Saucez, Benoit Donnet, Luigi Iannone, Olivier Bonaventure
Université catholique de Louvain, Belgium

Abstract— The Routing Research Group (RRG) of the Internet
Research Task Force (IRTF) is currently discussing several archi-
tectural solutions to build an interdomain routing architecture
that scales better than the existing one. The solutions family
currently being discussed concerns the addresses separation
into locators and identifiers, LISP being one of them. Such a
separation provides opportunities in terms of traffic engineering.
In this paper, we propose an open and flexible solution that
allows an ISP using identifier/locator separation to engineer its
interdomain traffic. Our solution relies on the utilization of a
service that transparently ranks paths using cost functions. We
implement a prototype server and demonstrate its benefits in a
LISP testbed.

I. INTRODUCTION

During the last years, the Internet growth combined with
factors including multihoming and interdomain traffic engi-
neering has lead to a huge growth of the BGP routing tables
([1], [2]) and an increase of the BGP churn [3]. To cope
with this problem, the Internet Architecture Board (IAB) re-
chartered the Routing Research Group (RRG) of the Internet
Research Task Force (IRTF) to design a new interdomain
architecture for the Internet. The architectural work within the
RRG is progressing slowly, but several proposals have already
been discussed ([4], [5], [6]).

Most of these proposals assume two different types of
addresses: identifiers and locators. An identifier is used on
an host to identify a connection endpoint while a locator
refers to a node attachment point in the Internet topology.
Note that, in today’s Internet, an host address is at the same
time its identifier and its locator. The proposals are divided
in two categories: those attaching locators directly to hosts
(see HIP [7], SHIM6 [8], or ILNP [6]) and those attaching
locators to routers (see LISP [4], or Six/One [5]). Finally,
when identifiers are not routable, a mapping system allows
to map an identifier onto a set of locators in order to reach
this identifier ([9], [10]).

A key advantage of the addresses separation is to offer the
possibility of associating several locators to a given identifier.
This implies the availability of multiple paths between two
identifiers and, as shown by several studies, those paths often
offer different characteristics ([11], [12], [13], [14]). Conse-
quently, the identifier/locator separation adds a new dimension
to traffic engineering. Indeed, the separation makes possible
to choose the best locator (and, thus, the best path) in addition
to current traffic engineering techniques.

This work was partially supported by the European-funded 027609
AGAVE, 034819 OneLab and INFSO-ICT-216372 TRILOGY projects

In this paper, we propose a service helping an ISP, using
identifier/locator separation, to deploy a traffic engineering
service controlling both incoming and outgoing packet flows.
This service is contacted by clients (i.e., LISP routers in this
paper) for ranking paths between locators of the source and
the destination. The service performs the ranking using cost
functions that return a value characterizing a path according
to one or more metrics. One of the main advantages of the
cost functions is that they can be combined in order to form
a more complex function. Clients receive the list of ranked
paths so that the first path in the list is the most preferable
while the last one is the least desirable.

We implement our path selection mechanism in a tool
named ISP-Driven Informed Path Selection (IDIPS) and apply
it to a LISP case study. Our implementation is freely available.1

The remainder of this paper is organized as follows. Sec. II
gives a brief overview of LISP, a solution for separating ad-
dresses; Sec. III details our path selection mechanism; Sec. IV
shows how to construct a complex path selection algorithm
based on elementary cost functions; Sec. V demonstrates
the benefits of using our path selection mechanism within
LISP; Sec. VI positions our work with the state of the art.
Finally, Sec. VII concludes this paper by summarizing its main
contributions and by discussing future research directions.

II. LISP

The Locator/Identifier Separation Protocol (LISP) is a
router-based solution that does not require any end-host mod-
ification ([4], [15]). LISP has been mainly designed for stub
ASes and we focus our discussion on such ASes.

In a LISP-enabled stub AS, only the border routers are
upgraded to support LISP. The hosts send and receive IP
packets using IP addresses. In the LISP terminology, these host
addresses are called Endpoint IDentifiers (EIDs). The EIDs
are not advertised in the BGP routing system. The addresses
of the LISP-enabled routers are called the Routing LOCators
(RLOCs). These RLOCs are allocated by the providers to
which each border router is attached. An EID can be associated
to several RLOCs.

The basic idea of LISP is to tunnel packets from the RLOC
associated to the source EID to the RLOC associated to the
destination EID. To better understand the operation of LISP,
let us consider the example shown in Fig. 1.

In this topology, host EIDx is reachable through two border
routers. Hence it can be associated to two RLOCs: RLOC1

EIDx

1See http://inl.info.ucl.ac.be/idips.

2

EIDX

RLOC2
EIDX

RLOC1
EIDX

RLOC1
EIDY

RLOC2
EIDY

EIDY

ASX

ASY

ASj

ASz

ASk

ASw

Internet

Fig. 1. Position of EIDs and RLOCs in the global Internet

and RLOC2
EIDx

. Similarly, EIDy has two locators. When send-
ing a packet from EIDx to EIDy, the following happens.

First, EIDx sends a packet, using its ID (EIDx) as Source
Address and EIDy as Destination Address. This packet is
forwarded inside ASx in the usual way and reaches one
of the border routers. Upon reception of this packet, the
border router, called the Ingress Tunnel Router (ITR) in LISP
terminology, sends a map request through the mapping system
to determine the RLOCs associated to EIDy. A cache system
is used to avoid contacting the mapping system for each
packet [16]. Several mapping systems have been proposed
([17], [9], [10]) but, here, we assume the use of ALT [9].

Then, a new LISP header is prepended to the original IP
packet. Assuming that the packet reaches RLOC1

EIDx
and that

RLOC2
EIDy

is selected for the destination RLOC, the encapsu-
lated packet has RLOC1

EIDx
as source address and RLOC2

EIDy
as

destination address. The encapsulated packet is then forwarded
through the Internet until it reaches the Egress Tunnel Router
(ETR) RLOC2

EIDy
. Thanks to the utilization of tunnels, the core

Internet routers do not need to maintain routes for the EIDs
used by stub ASes. They only need to maintain routes to the
RLOCs whose prefixes can be more easily aggregated than
EID prefixes.

When the packet reaches RLOC2
EIDy

the outer LISP header
is removed and the inner packet is forwarded to EIDy inside
ASy.

III. ISP-DRIVEN INFORMED PATH SELECTION

In this section, we present IDIPS (for ISP-Driven Informed
Path Selection), our implementation of a generic and modu-
lar path selection service offering new network management
perspectives.

In Sec. III-A, we first propose a high-level behavior for any
path selection mechanism. In Sec. III-B, we describe how this
behavior has been implemented within IDIPS. Finally, Sec. III-
C illustrates how traffic engineering can be supported in LISP
with IDIPS.

A. Path Selection Mechanism

It is well recognized that traffic fluctuates with time: what
we see today is different from the past and does not reflect
tomorrow’s traffic. It is thus mandatory to build traffic engi-
neering systems that are traffic independent. This is clearly
the approach we follow in this section when discussing the
high-level behavior of a path selection mechanism.

Our assumption is that specialized boxes are installed in
the network. These boxes are in charge of running a path
selection algorithm reflecting the operator requirements in
terms of traffic engineering. Every time an application or
service needs to select one path among others or to rank a
list of paths, it contacts the box that replies with ranked paths.
In the IDIPS terminology, the specialized box is called a server
and anything querying the server is called a client. It is worth
to notice that more than one server can be deployed in the
network and that clients do not have to deal with that (e.g.,
servers can be deployed in anycast).

Any request sent by a client contains the following in-
formation: a list of sources, a list of destinations and an
optional performance criterion (e.g., route stability). The server
processes the request and builds a list of all possible paths
based on those two lists. This paths list is then ranked using
information on the network state owned by the server such
that the higher the rank the more promising the path.

Sources and destinations sent by the clients are typically
IPv4 or IPv6 addresses. Instead of replying with complete
addresses, the server can work with prefixes. In other words,
if two paths with different ends have the same rank and if it is
possible to aggregate the sources within a single prefix and to
aggregate the destinations within a single prefix, the returned
ranked list will only contain one path where the source is a
prefix encompassing the two source addresses and the same
for the destination. Aggregation offers several advantages. It
allows to reduce the size of the replies (e.g., a single prefix can
include several addresses indicated in the request) as well as
the amount of potential paths to process. In addition, it avoids
revealing topology details and network policies to clients.
Nevertheless, a drawback in such an approach is the lost of
precision (e.g., the reachability of a prefix is not the same as
the reachability of an host).

In addition to a ranked prefixes pairs list, the server reply
contains a time-to-live (TTL) information indicating how long
the path ranking remains valid. This TTL is configured by the
network operators and depends on the performance criterion
provided by the client. When the TTL expires, it is up to the
client to contact the path selection service to obtain a new path
ranking.

Considering ranked prefixes pairs list allows reduces the
risk of attacks or the disclosure of sensitive information to
competitors, which is often a required by ISPs. Further, it al-
lows the operators to modify the ranking algorithms according
to their needs without involving clients. It thus separates the
clients and operators while enabling cooperation.

B. A Modular Architecture for IDIPS

Fig. 2 shows the high level design of IDIPS, our implemen-
tation of the path selection service described in Sec. III-A. It
is based on three modules or engines that cooperate with each
other when performing the path selection.

The first engine, named Path Information Collector (PIC)
collects path information. Information are of two types: (i)
administrative information (i.e., network policies and billing,
but also routing information such as BGP or IGP), (ii) mea-
surements information (i.e., active and passive measurements).

3

Internet

ISP A

ISP B

Request

ResponseClient

ranking server

AS 123

BGP feeds

BG
P

feeds

Measurement results

IGP/SNMP

AS Policies

KB

PIC

DE

Fig. 2. IDIPS general behavior

In addition to information collection, the PIC translates the
different metrics into path attributes. Attributes are a generic
representation of the metrics, independent of their nature.
The simplest way to transform metrics into attributes is to
convert them into integer values. This idea comes from the LO-
CALPREF attribute used by BGP where complex metrics are
summarized as an integer. Attributes comparison relationship
is transitive so that the comparison between different unrelated
paths is made possible. For instance, if A > B and B > C
then A > C for a given attribute. It is up to the implementer
to check that the transitivity property holds.

Once paths have been characterized, their attributes are
stored in the Knowledge Base (KB). The Knowledge Base
might be seen as a database gathering all attributes of various
paths. The Knowledge Base must face two main challenges.
First, it must be possible to retrieve any path attribute as
quickly as possible. Second, given the potentially large number
of paths and attributes in the Knowledge Base, the Knowledge
Base must be as compact as possible.

Finally, the Decision Engine (DE) compares the paths in
order to select the best one according to some criteria. To
do so, the Decision Engine defines Cost Functions. A Cost
Function returns the cost of a 〈source, destination〉 pair (i.e.,
a path) for a given criterion. The cost is a numerical value
characterizing a path according to one or more metrics. The
cost must respect two constraints. First, the lower the cost,
the better the path. Second, costs comparison relationship has
to respect transitivity. As for attributes, transitivity is the key
point of Cost Functions as it allows one to estimate the cost
of any path independently and then order them afterwards.
Transitivity allows caching and parallel computation of costs.
Another important point of Cost Functions is enabling com-
binations to create more complicated Cost Functions.

To ranks paths, the Decision Engine calls the appropriate
Cost Function for each possible path to rank. It then creates
the ranked paths list such that the best paths are those with
the lowest cost and the worst with the highest. Paths in the
returned list are grouped by rank. The first group of paths in
the list contains all the paths with the same lowest cost value.
The second group contains those with the second lowest cost
and so on. Remember that topology should not be revealed,
thus ranking are not absolute but relative to other paths in
the list. For instance, if paths A,B, C and D have a cost of
1, 4, 1 and 7 respectively, the ranking value should be A :

1, B : 2, C : 1 and D : 3 which does not reveal the cost of the
paths.

C. IDIPS and LISP Interactions

In the LISP context, for each RLOC mapped to an EID, the
mapping system provides a priority and a weight [4]. When
several RLOCs have the same priority, the LISP traffic is split
among the different RLOCs in proportion to their weight. This
makes possible to control the traffic that enters a site by tuning
the RLOCs sent to different sources and also by changing their
priorities and weights.

The priorities in LISP follow the same principle as the
ranking in IDIPS. It is thus straightforward to use the IDIPS
ranking as an input for the mapping priorities. When RLOCs
priorities have to be determined, IDIPS is contacted. The
ranking in the IDIPS responses is then converted into priorities.

Working with prefixes in IDIPS allows one to reduce the
number of exchanged messages. If IDIPS replies with prefixes
instead of addresses, it becomes possible to use a reply for
different EIDs. For instance, if an EID has RLOCs within
prefixes already returned by IDIPS, it is possible to reuse the
ranking. This technique has two advantages. First, it reduces
the traffic to and from IDIPS and, second, it reduces the time
required to obtain the optimal RLOC priorities. A drawback
is that a specific cache has to be implemented on the LISP
router.

IV. COST FUNCTIONS

In this section, we show how to construct a complex path
selection algorithm based on elementary Cost Functions. We
base our explanation on a situation in which an ISP has three
customer families: (i) premium users always requiring the
best available performances, (ii) standard users requiring a
good performance/cost trade off, and (iii) light users always
requiring the lowest cost. The traffic engineering changes
between the night and the day for standard users: during
the day, a lower cost is preferred while during the night,
the performance is preferred. The monetary cost of a path
depends on the 95th percentile load of the link used to reach
the Internet.

In our example, we assume that the function
update prefix(src,dst,a,v) tags path from src
to dst with value v for attribute a. In addition, function
path attributes(src, dst) returns all the attributes
of the path from src to dst.

We first have to define if a destination is reachable or
not from a given source address. A destination is considered
as unreachable if its DISABLE attribute is set to 1 in the
Knowledge Base or if it is impossible to find a longest-
match prefix with at least one attribute. The Cost Function
is reachable cf, implemented in Algorithm 1, returns 1
if the path is valid, 2 otherwise, so that reachable paths are
preferred.

In our example, we assume that the local ISP is charged
on the 95th percentile link utilization by its upstream ISPs. In
addition, we assume that the local ISP receives one RLOC
per upstream ISP. To support 95th percentile in IDIPS, a

4

Algorithm 1 Example of Cost Function for the reachability
Ensure: Integer value representing the result of this Cost

Function.
1: procedure IS REACHABLE CF(src, dst)
2: attributes ← path attributes(src, dst)
3: if attributes = ∅ ∨ attributes{’DISABLE’} = 1 then
4: return (2)
5: end if
6: return (1)
7: end procedure

Algorithm 2 Example of Cost Function for the cost minimiza-
tion
Ensure: Integer value representing the cost of using the path

defined by src, dst.
1: procedure MINIMIZE COST CF(src, dst)
2: attributes ← path attributes(src, dst)
3: return attributes{’COST’}
4: end procedure

monitoring tool estimates the cost of using the links at time t.
Periodically, this monitor contacts the PIC to update the
Knowledge Base with a cost associated to each upstream ISP.
If the RLOC provided by upstream ISP A is 192.0.2.1 and
the estimated cost is $1,500.00, IDIPS is updated as follows:
update prefix(192.0.2.1/32, 0.0.0.0/0, ’COST’,2). It adds the
attribute COST with the value 2 for any destination with a
source address within the prefix provided by ISP A. Here,
the value of the attribute COST represents the ceiling cost of
using the ISP, in kilo dollars. This approximation permits to
avoid oscillations and can be adapted to the needs of the IDIPS
operator.

Algorithm 2 shows the minimize cost cf cost function
that returns the cost of using a link such that the cost at the
lowest price is preferred.

When considering bandwidth, the best paths are those
having the highest available bandwidth. To support available
bandwidth metric in IDIPS, we add the ABW attribute repre-
senting the rounded available bandwidth expressed in Kbps on
the associated path. The declaration of the available bandwidth
(let say 12.5Kbps) from src to dst can be done as follows:
update prefix(src,dst,’ABW’,12).

The implementation of a cost function preferring paths with
the highest bandwidth is not straightforward. Indeed, IDIPS,
by definition, always prefers the lowest cost while in terms of
bandwidth, the highest is the best. Thus, to prefer paths with
the highest bandwidth, the value of the available bandwidth
is subtracted to the highest theoretical available bandwidth
for the operator (i.e., the capacity of the best link in the
network). Algorithm 3 provides the implementation of such a
Cost Function, MAX BW being the highest theoretical available
bandwidth for the operator.

To implement the path selection algorithm, we need
to define the customer family (i.e., premium, stan-
dard, light). For the example, we assume that prefixes
are grouped in families. We add the FAMILY attribute
to the Knowledge Base. For a customer belonging to

Algorithm 3 Example of available bandwidth Cost Function
Ensure: Integer value representing the result of this Cost

Function.
1: procedure AVAILABLE BW CF(src, dst)
2: attributes ← path attributes(src, dst)
3: return (MAX BW – attributes{’ABW’})
4: end procedure

Algorithm 4 Example of customer family Cost Function
Ensure: Integer value representing the customer family for

traffic from src to dst.
1: procedure CUSTOMER FAMILY CF(src, dst)
2: attributes ← path attributes(src, dst)
3: return attributes{’FAMILY’}
4: end procedure

Algorithm 5 Example of customer family Cost Function
Ensure: Encounters customers requirements

1: procedure CUSTOMER MANAGEMENT CF(src, dst)
2: if (is reachable cf (src, dst) = 2) then
3: return (UNREACHABLE)
4: end if
5: customer ← CUSTOMER FAMILY CF(src, dst)
6: if (customer == 1) then
7: return (AVAILABLE BW CF(src, dst))
8: end if
9: if ((customer == 10 ∧ DAY) ∨ customer = 20) then

10: return (MINIMIZE COST CF(src, dst))
11: end if
12: if (customer == 10 ∧ NIGHT) then
13: return (AVAILABLE BW CF(src, dst))
14: end if
15: return (ERROR)
16: end procedure

the premium family (assuming that the associated EIDs
are 192.0.2.224/27), the Knowledge Base can be up-
dated as follows: update prefix(192.0.2.224/27,
0.0.0.0/0, ’FAMILY’, 1). Standard family has value
10 and light family 20. This family representation offers high
flexibility (e.g., the family can change from destination to
destination).

Like for cost minimization, the customer family cost func-
tion only has to return the customer family. Algorithm 4 shows
the implementation of this Cost Function.

The previous algorithms can be combined by the network
operator to build more complex strategies. Algorithm 5 com-
bines all the blocks in order to reflect the operator policies
proposed earlier in this section. In particular, Algorithm 5 first
checks whether a path between src and dst exists. If at least
a path exists, then it applies the policies previously defined,
based on the on the FAMILY attribute. For premium clients
available bandwidth is always preferred. For standard clients
the applied policy depends on the time period; the available
bandwidth is used as cost function during the night, while cost
minimization is preferred during the day.

5

Client
FTP

L2 Backup
(128Kbps)

L2 (10Mbps)

L1 (2Mbps)

xTR

xTR

Content Producer Content Consumer

Content
Server

Idips
$ $

= =

Client
video
Idips

Fig. 3. Case study testbed

V. CASE STUDY

In this section, we evaluate the benefits of the interaction
between LISP and IDIPS. To do so, we build the testbed
depicted in Fig. 3. The left hand network, labeled Content
Producer, is a content producer and the right hand network
is the consumer. Interdomain connectivity is ensured by LISP.
For the test, we used the two types of customers light and
premium and apply the customer management cf cost
function presented in Sec. IV. As discussed in Sec. IV, the
objective for light users is cost reduction. On the contrary, QoS
has to be ensured for premium users. In the sake of clarity,
in our experiments two clients with one flow per client are
involved. The light client downloads a large file using FTP
(TCP) while the premium client watches a video over UDP.
The video must have at least a 1.4Mbps bandwidth and the
jitter must be limited. The two networks are connected with
two links: L1 and L2. L1 represents a peering link and L2
a customer/provider link (from the producer point of view).
L2 is protected by a 128Kbps backup link. Penalties are due
when QoS is not ensured for premium users.

In the testbed, we use the recent LISP implementation
named OPENLISP [18]. OPENLISP implements the LISP
protocol in the FreeBSD kernel. A particularity of OPENLISP
is the mapping socket that allows user space applications to
interact with the EID-to-RLOC mappings maintained in the
kernel.

An IDIPS server instance runs in each network. At that point,
neither OPENLISP nor IDIPS are aware of each other. The
link between the two paradigms is implemented by a wrapper
running on each OPENLISP router. The wrapper monitors the
mapping socket and the IDIPS control plane. When there is an
event concerning an EID of the local OPENLISP’s map table,
the wrapper retrieves all the RLOCs for that EID and asks the
IDIPS server to rank them. The resulted ranks are translated
into priorities and the EID’s mapping is updated according to
the information given by IDIPS. Our implementation does not
yet take into account the LISP weight defined in LISP.

The experiment is divided in four periods (P1 to P4). The
RLOCs used for each period depends on the IDIPS rankings.
During P1, both L1 and L2 are working properly and IDIPS
optimizes the performance for premium traffic and minimizes
the cost for the light traffic. The beginning of P2 corresponds

Fig. 4. Evolution of the different flows bandwidth for the different network
events.

to the L2 link failure: L2 traffic is diverted to the backup
link. During L2, IDIPS is not involved and the RLOCs are
not modified, premium traffic is degraded. In P3, IDIPS is
informed of the failure and modifies the mapping to minimize
the cost and avoid backup links. It is worth to notice that the
gap between P1 and P3 is for illustration only, in practice,
IDIPS can be informed of the topology change at the same
time as the backup link activation (e.g., via SNMP). During P3,
the backup link is not used anymore. Finally, P4 shows what
happens if IDIPS policies are set to the original premium and
light traffic requirements (as during P1). In P4, IDIPS decides
to divert the light traffic (i.e., FTP) to the backup link and
keep premium traffic on L1 to ensure its QoS requirements
while minimizing costs.

Fig. 4 shows the flows’ dynamic during the different peri-
ods. The horizontal axis is the normalized time and the vertical
axis the bandwidth (in Kbps). The best effort traffic consist of a
big file transfer using FTP (TCP). The video is simulated with
Iperf. Iperf continuously sends 700 bytes long UDP segments
with a constant rate of 1.7 Mbps.

During P1, both flows are working as expected: the video
(premium customer) encounters a limited jitter and has enough
bandwidth (1.7Mbps) and the cost for FTP (light customer) is
minimized. After the failure, during P2, the video stream is
redirected to the backup link. The video flow bandwidth falls
down to around 100Kbps, which is not sufficient to ensure
QoS (1.4 Mbps is required to ensure QoS requirements). FTP
traffic is not affected by the failure as it is carried by L1. P3

presents the flow bandwidth when all the traffic is diverted on
L1. For that period, the policies in IDIPS are to avoid backup
links. However, this choice does not ensure QoS for the video
as the jitter is important and video bandwidth falls to 1.3Mbps.
With this configuration, video traffic is influenced by the TCP
behavior of the FTP flow. Period P4 shows what happens if
IDIPS is configured to ensure QoS and minimize costs, thus
video is diverted on link L1 as this is the only one allowing
QoS for video. The best effort flow is diverted to L2 backup
link because the costs of using it is lower than the cost of
losing QoS for video.

This test shows that IDIPS path selection algorithm can
take administrative and technical question into account (e.g.,
minimize costs but maximize bandwidth). Furthermore, it also

6

shows that the simplicity of IDIPS allows to use it in situations
where several paths are possible.

VI. RELATED WORK

A proposal that shares objectives similar to IDIPS is Mor-
pheus [19], which determines the best path to use according
to the operator policies and, then, sends BGP updates to its
BGP router target (via multihop eBGP). Like IDIPS, Morpheus
is very modular but is restricted to BGP as the signaling
is performed using BGP messages while IDIPS has its own
messaging format, allowing a finer-grained interaction between
the client and the path selection service. Other IDIPS-like
solutions have already been proposed, specially for peer-to-
peer (P2P) applications. For instance, Xie et al. propose P4P,
a solution to give topology hints to P2P clients [20]. In P4P,
ISPs, or third parties, maintain trackers that are contacted
by P2P clients to retrieve the best swarm peers according
to some topology information. Aggarwal et al. introduce an
oracle service very similar to IDIPS that would be configured
by the network operator and queried by P2P applications [21].
While the oracle limits the ranking to destination addresses,
IDIPS proposes to rank paths or even cluster of paths, using
prefixes. Another difference between the oracle and IDIPS is
the ranking scope: the oracle ranking is limited to local or
peering domains while such a limitation does not exists in
IDIPS. Finally, a number of vendors have proposed proprietary
path selection solution ([22], [23], [24], [25]). Most of the
proprietary solutions are based on BGP or NAT or rewriting.

VII. CONCLUSION

Identifier/locator separation proposals, such as LISP, are
currently being discussed as a possible solution to better scale
the Internet architecture. The idea is to assume two different
types of addresses: identifier (i.e., a connection endpoint) and
locator (i.e., a node attachment point in the Internet). As
several locators can be attached to a given identifier, it leads
to the increase of the number of available paths between two
identifiers. It has been demonstrated that those paths often
offer very different performance characteristics.

This paper proposed what is, to the best of our knowl-
edge, the first attempt for performing traffic engineering in
an identifier/locator separation context. Our solution, named
IDIPS, allows an ISP to control both incoming and outgoing
traffic without the drawbacks of traditional traffic engineering
schemes.

IDIPS is a service deployed in a stub AS network using
LISP. It is contacted by border routers performing the iden-
tifier/locator mapping to rank paths. These rankings are per-
formed using cost functions that return a value characterizing
a path according to one or more metrics. One of the main
advantages of the cost functions is that they can be combined
in order to form a more complex function. Clients receive
the list of ranked paths so that the first path in the list is
the most preferable while the last one is the least desirable.
We demonstrated the advantages of coupling LISP and IDIPS
through a case study.

The path ranking service provided by IDIPS is applicable
to the other environments where a host or a set of hosts
are reachable via multiple paths such as IPv6 host based
multihoming [8], IPv4/IPv6 dual-stack hosts or peer-to-peer
applications. In the near future, we plan to evaluate the effects
of IDIPS on real traffic.

REFERENCES

[1] G. Huston, “BGP routing table analysis reports,” 2004, see http://bgp.
potaroo.net.

[2] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, “IPv4
Address Allocation and the BGP Routing Table Evolution,” ACM
SIGCOMM Computer Communcation Review, vol. 35, no. 1, pp. 71–
80, 2005.

[3] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” Internet Engineering Task Force, RFC 4984,
September 2007.

[4] D. Farinacci, “Locator/ID separation protocol (LISP),” Internet Engi-
neering Task Force, Internet Draft (Work in Progress) draft-farinacci-
lisp-08, July 2008.

[5] C. Vogt, “Six/one: A solution for routing and addressing in IPv6,”
Internet Engineering Task Force, Internet Draft (Work in Progress) draft-
vogt-rrg-six-one-00, July 2007.

[6] R. Atkinson, “ILNP Concept of Operations,” Internet Engineering Task
Force, Internet Draft (Work in Progress) draft-rja-ilnp-intro-01, June
1008.

[7] R. Moskowitz and P. Nikander, “Host identity protocol (HIP architec-
ture),” Internet Engineering Task Force, RFC 4423, May 2006.

[8] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming shim
protocol for IPv6,” Internet Engineering Task Force, Internet Draft
(Work in Progress) draft-ietf-shim6-proto-09, October 2007.

[9] D. Farinacci, V. Fuller, and D. Meyer, “LISP alternative topology
(LISP+ALT),” Internet Engineering Task Force, Internet Draft (Work
in Progress) draft-fuller-lisp-alt-02, April 2008.

[10] S. Brim, N. Chiappa, D. Farinacci, V. Fuller, D. Lewis, and D. Meyer,
“LISP-CONS: A content distribution overlay network service for LISP,”
Internet Engineering Task Force, Internet Draft (Work in Progress) draft-
meyer-lisp-cons-03, November 2007.

[11] A. Akella, S. A., and R. Sitaraman, “A measurement-based analysis of
multihoming,” in Proc. ACM SIGCOMM, August 2003.

[12] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure, “Evalu-
ating the benefits of the locator/identifier separation,” in Proc. ACM
SIGCOMM MobiArch Workshop, August 2007.

[13] C. de Launois, B. Quoitin, and O. Bonaventure, “Leveraging networking
performance with IPv6 multihoming and multiple provider-dependent
aggregatable prefixes,” Computer Networks, vol. 50, no. 8, pp. 1145–
1157, June 2006.

[14] X. Zhou, M. Jacobsson, H. Uijterwaal, and P. Van Mieghem, “IPv6 delay
and loss performance evolution,” International Journal of Communica-
tion Systems, 2007, dOI: 10.1002/dac.916.

[15] D. Meyer, “The locator identifier separation protocol (LISP),” Internet
Protocol Journal, vol. 11, no. 1, pp. 23–36, March 2008.

[16] L. Iannone and O. Bonaventure, “On the cost of caching locator/id
mappings,” in Proc. ACM CoNEXT, December 2007.

[17] E. Lear, “NERD: A not-so-novel EID to RLOC database,” Internet
Engineering Task Force, Internet Draft (Workin in Progress) draft-lear-
lisp-nerd-02, September 2007.

[18] L. Iannone, D. Saucez, and O. Bonaventure, “OpenLISP implementa-
tion report,” Internet Engineering Task Force, Internet Draft (Work in
Progress) draft-iannone-openlisp-implementation-01, July 2008.

[19] Y. Wang, I. Avramopoulos, and J. Rexford, “Morpheus: Making rout-
ing programmable,” in Proc. ACM SIGCOMM Workshop on Internet
Network Management (INM), August 2007.

[20] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz, “P4P:
Provider portal for applications,” in Proc. ACM SIGCOMM, Agust 2008.

[21] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs and P2P users
cooperate for improved performance,” ACM SIGCOMM CCR, vol. 37,
no. 3, pp. 29–40, July 2007.

[22] Internap, “Premise-base route optimisation,” 2005.
[23] Avaya, “Adaptative networking software (ANS),” 2005.
[24] Radware, “Peer director,” 2002.
[25] Cisco Systems, “Optimized edge routing (EOR).”

