Adaptive Parsing of Router Configuration Languages

Donald Caldwell
AT&T Labs Research

Abstract—Network functionality is growing increasingly com-
plex, making network configuration management a steadily
growing challenge. Router configurations capture and reflect all
levels of network operation, and it is highly challenging to manage
the detailed configurations of the potentially huge number of
routers that run a network.

One source of difficulty is the constant evolution of router
configuration languages. For some languages, particularly Cisco’s
10S command language, and its relatives, these changes de-
mand frequent maintenance of configuration parsers in any
configuration management tool. The essential problem is that
config parsers understand a statically determined set of inputs,
requiring human intervention to modify that set. We propose
an alternative design for router configuration parsers: adaptive
parsers. Such parsers can infer the configuration language based
on real configs and automatically adapt to changes in the config
language, all with minimal human involvement. We present the
design of such a parser and discuss its prototype implementation
for the Cisco 10S configuration language. We have validated
our prototype’s accuracy and efficiency by running it on the
configuration files of Tier-1 ISP networks. Our results show that
from only 81 configuration files, we can learn enough 10S to
successfully parse all of the 819 10S configurations in under 10
minutes.

I. INTRODUCTION

Automated configuration management is becoming increas-
ing crucial to providing reliable network service and trou-
bleshooting. Yet, some configuration management tools face a
vexing problem: the constant evolution of router configuration
languages, demanding frequent modifications to configuration
parsers. Specifically, network analysis tools targeting Cisco
10S-based routers, and others with similiar configuration lan-
guages, require their parsers to be manually updated to incor-
porate new commands — a tedious and error-prone process.
Additionally, the size of these router configuration languages
makes creating a new parser similarly tedious and error-prone.

In this paper, we present an adaptive parsing system
for Cisco’s 10S command language, which simultaneously
addresses the problems of configuration language size and
frequent evolution. Our system, starting with a small, fixed
amount of domain-knowledge about 10S, infers an approxi-
mation of the router configuration language as it runs, and
remembers the inferred structure for to improve the perfor-
mance and robustness of future parses. We have divided the
implementation of our system into two major components. One
leverages 10S domain-knowledge to infer an approximation
of the 10S language from input configuration files, and then
generates a description of the inferred language in PADS/ML,
a human-and-machine readable data description language [1].
The inferred description captures the syntax used by each
command to group together its subcommands (if any) and

Seungjoon Lee
AT&T Labs Research

Yitzhak Mandelbaum
AT&T Labs Research

the set of such subcommands'. The other component uses
the inferred 10S description to parse configuration files and
process them (e.g. convert to XML) for downstream use. In
this way, our system can both learn the configuration language
and adapt to new language elements, with one mechanism.
When our system encounters new commands, the inference
engine detects their syntax and set of subcommands and adds
them into the language description. Then, the system can parse
the new configurations based on the modified language.

We have targeted our adaptive parsing system to Cisco 10S—
the operating system and configuration comand language of
Cisco’s routers. While we can apply and intend to expand our
adaptive parsing method to other, related, router configuration
languages, this paper focuses on Cisco’s 10S because (1)
Cisco routers are widely deployed and (2) their configuration
language is particularly difficult to parse.

This paper makes the following contributions:

« We have developed a system for effectively parsing Cisco
10S configuration files based on a small core of I0S-
specific knowledge. In Section III, we discuss the two-
phase design of the system, wherein Phase I infers an
approximation of the Cisco 10S language from valid
router configuration files and generates a formal descrip-
tion of the language in PADS/ML (Section III-A), and
Phase II uses the generated description to translate parsed
configs into XML suitable for downstream processing
(Section III-B).

o We have implemented (in less than 1100 lines of code) the
ideas presented in this paper and validated them through
experiments using real Cisco router configurations from
Tier-1 ISP networks (Section IV). Our results show that
after parsing only a small set of configuration files, the
parser can accurately parse hundreds of configurations
(millions of lines combined) in less than 10 minutes.

Before describing the details of our adaptive parser, we pro-
vide some background on the Cisco 10S command language
and the PADS/ML data description language in the following
section.

I1. IOS AND PADS/ML

A. Cisco 10S Configuration Files

The set of 10S commands and their syntax is referred
to as the 10S language, and collections of 10S commands
are referred to as 10S configurations (or configs for short).
1I0S is a declarative language and its basic element is a
“command”. There are simple commands, whose influence

I'The description does not include the format of the command parameters

interface P0S2/0
description interface description
ip vrf forwarding 123:123
ip address 135.12.34.65 255.255.255.252
ip accounting precedence input
pvc 0/1919
service-policy input interfacename_input
I
class-map match-any classname
match ip dscp csé6
match ip dscp cs7
!
router ospf 12
log-adjacency-changes
area 0 authentication message-digest
network 135.12.34.64 0.0.0.3 area O
maximum-paths 6
!
router bgp 7018
neighbor 12.23.34.45 activate
neighbor 12.23.34.45 send-community
neighbor 12.23.34.45 route-map InRMName in
neighbor 12.23.34.45 route-map OutRMName out
address-family ipv4 multicast
neighbor 12.23.34.45 peer-group FOO:bar
no auto-summary
exit-address-family
!
crypto key pubkey-chain rsa
addressed-key 12.23.34.45
address 12.23.34.45
key-string
00302017 4A7D385B 1234EF29 335FC973
2DD50A37 C4F4BOFD 9DADE748 429618D5
90288A26 DBC64468 7789F76E EE21
quit
|
!
banner exec +

WARNING =============c=c=c==
This system is intended strictly for use
by authorized users.

+

Fig. 1. Sections from an 10S configuration file.

does not extend beyond a line, and mode commands, which
change the state of the command interpreter. Each mode has
a restricted set of allowable commands, which may be simple
commands or mode commands. We call the portion of the
configuration in which a mode is active a section. Commands
can have arguments which set particular parameters of the
router operating system. For example, the area command
in the router ospf [2] section in Figure 1 specifies the
authentication method to use in OSPF area 0.

The above description of 10S captures its logical structure.
Unfortunately, that logical structure is not expressed in configs
in a syntactically consistent manner across all commands.
Rather, a set of several common syntactic structures exist,
all expressing the same logical structure. In addition, some
commands have their own, unique structure, shared by no other
commands. We have identified five unique syntactic structures,
each of which are demonstrated in Figure 1.

The interface and class—map commands demonstrate
the most prevalent syntactic structure: a command starts
a section and its subcommands are indented at least one
more space than the starting command. The section is closed
when a command is encountered with equal or less inden-
tation than the starting command. Notice that interface-
subcommand pvc starts its own (sub)section, with one mem-

ber (service-policy). Note that we consider simple com-
mands to be just a special case of this syntactic form, just
without any children.

Often, sections are distinguished by the first token in the
starting command. However, some commands rely on the
command’s first parameter (the second token) to determine
the set of subcommands for the section. In essence, that
first command names a subcommand of the section. For
example, notice that the two router sections in Figure 1 have
distinct sets of subcommands, because “ospf” and “bgp”
are essentially independent subcommands of “router”. We
call such sections two-dependency sections, classifying them
with there own syntactic form, because they require distinct
treatment from ordinary indentation-based sections.

Another structure uses explicit begin and end commands to
delimit a section. The key-string command is one such
example, relying on quit to explicitly close the section. This
command also demonstrates another form, in which elements
of the section are data. For the key—-string section, the
elements are the contents of a public key. The final syntactic
form uses user-chosen parameters to delimit the end of the
command. An example is the banner command, whose
purpose is to specify the banner shown to users upon login
and other activities. For this command (and others like it),
the second parameter indicates the closing delimiter for the
contents of the banner.

The above syntactic forms pose a number of challenges.
First, a parser must have a way to determine the syntactic
form used by a command in order to parse it correctly.
The parser can make these determinations based on hard-
coded knowledge, or perform them dynamically. The latter
case poses a second challenge: these dynamic determinations
can adversely impact parser performance. Third, indentation-
based commands have no explicit command to end their
section. A parser must either use indentation for clues, know
the set of commands that implicitly indicate that the section
has ended, or know the set of commands allowed in each
section. Last, as we can see with the banner command in
Figure 1, we cannot model 10S using a context-free grammar.
Moreover, parsing sections based on their indentation level
is also context-dependent. This context-dependency greatly
complicates or even precludes processing by many off-the-
shelf grammar compilation tools, like YACC, which do not
support context-sensitive grammars.

B. PADS/ML: A Data Description Language

PADS/ML is a data description language designed for the
concise and declarative description of legacy data formats,
including those for which no context-free grammar exists [1].
PADS/ML’s support for legacy data formats goes beyond its de-
scription language: from a description, PADS/ML can generate
many essential software artifacts, including a data structure
for representing parsed data in memory, a recursive-descent
parser, a printer and a data validator. All software artifacts
are generated as source code in OCAML, a safe, general-
purpose programming language, supporting functional, im-

ptype section (min_indent : int) = {

hostname harel03
' Config
redundancy

mode rpr-plus
logging console informational

indent : [i : pstring ME(‘'/ */’’) | length(i) >= min_indent];
start_cmd : command; peol;
sub_cmds : section (length(indent) + 1)
plist (No_sep, Error_term)
}
Fig. 2. A description of the indentation-based section form in PADS/ML.

perative and object-oriented programming [3]. In addition to
generating software, PADS/ML provides a framework for devel-
oping generic tools in OCAML— functions that can operate on
any description-derived data structure, regardless of its type.
PADS/ML does the work of specializing generic tools written
in its framework to the particular data structures derived from
a description.

The extensive, end-to-end support that PADS/ML provides
for processing legacy data formats makes it a natural choice
for addressing the challenges of the 10S language. The small
codebase size mentioned in the introduction (< 1100 LOC)
owes almost entirely to the conciseness with which we can
write PADS/ML descriptions and generic tools.

We now briefly describe the PADS/ML language. A more
complete description of the language and other features can be
found in earlier publications [1], [4]. A PADS/ML description
specifies the physical layout and semantic properties of an
ad hoc data source. These descriptions are formulated using
types. Base types describe atomic data, like ASCII-encoded,
8-bit unsigned integers (puint8), dates (pdate) and strings
(pstring). Certain base types take additional OCAML values
as parameters. For example, pstring_ME (re) describes
strings that match the regular expression re. Literal values
describe exactly themselves.

Structured types describe compound data, and are built
using ML-like type constructors. For example, records and
tuples (records with unnamed fields) describe fixed-length
sequences of data with elements of different types. Datatypes
(or variant types) describe elements of a format where multiple
alternative types of data may appear. Lists describe homoge-
neous sequences of data and fype constraints describe data
satisfying arbitrary programmer-specified semantic conditions
— for example, that a string has at least ten characters.

Users can define their own type constructors using polymor-
phic types — types parameterized by other types, and dependent
types — types parameterized by values. Many base types are
examples of dependent types. There are also a variety of built-
in polymorphic types; for example, plist, a polymorphic,
dependent description of lists. It has three parameters: on the
left, a type parameter: its element type; on the right, a pair
of value parameters: an optional separator that delimits list
elements, and an optional ferminator.

As an example, we demonstrate in Figure 2 how to describe
the simplest section form: a single command, with zero
or more children of greater indentation. Type section is
parameterized by the minimum required indentation, and its
actual indentation is checked against the parameter. The first
field, indent, describes the indentation preceding the first
command of the section. Its string value is constrained to

U

Bootstrap IOS Description

Model Builder

Description Generator

U

Generated 10S
Description

Phase 1 Phase II

Generic XML Transform

~ on L

The adaptive parser phases and their components.

Fig. 3.

be at least the minimum length supplied as an argument. A
lesser indentation would violate the constraint, resulting in a
parse error. Field start_cmd describes the first command
of the section, and field sub_cmds describes the list of
its subcommands, each of which must have a minimum
indentation ar least one greater than the current indentation.
We use a plist whose elements have no separator (No__sep)
and which terminates when it encounters an element with an
error (Error_term). When a subcommand is encountered
without the required minimum indentation, the constraint on
the indent field will be violated — a parse error, thereby
terminating the list (with that command returned to the in-
put). In this way, only commands with the correct minimum
indentation are included in the current section. Notice the
dependence of the type of sub_cmds on the value of field
indent: this kind of dependency cannot be expressed in a
context-free grammar, and is a key feature of PADS/ML.

III. ADAPTIVE PARSING

We have implemented an adaptive parsing system to address
the challenges described in Section II-A. Our system has
two phases: Phase I, the inference phase, and Phase II, the
parsing and processing phase. In Figure 3, we illustrate the
relationship between the phases and their composition. The
input to both phases are 10S configs. The output of Phase I is a
PADS/ML description of 10S, which becomes an input to Phase
II. The output of Phase II is an XML representation of the
input config(s). For both phases, we layout their components
according to the order of the data flow within the phase.
Note that the choice of PADS/ML for both 10S descriptions
is natural because of its support for context-sensitive parsing,
a requirement for parsing I0S.

A. Phase I: Inference

Phase I has three components: a bootstrap 10S description
(in PADS/ML), a model builder, and an 10S-description gen-
erator. At approximately 130 lines, the bootstrap 10S descrip-
tion is a concise, high-level description of pretty-printed 10S

configs, including their five syntactic structures together with
other, more minor, syntactic details. It has evolved over time,
through trial-and-error and the experience of the authors, and
contains the bulk of the 10S-specific domain knowledge in the
system. This description is valuable in its own right, because
it addresses the first challenge noted in Section II-A 2.

Except for a handful of commands, the description distin-
guishes commands based on their structure, not their name.
Commands mentioned explicitly in the description are those
with a specialized section type: two-dependency, character-
delimited, and command-delimited sections. Still, though, we
infer the details of their structure and their subcommmand
sets. For example, the command-name “ip” is listed as
indicating a two-dependency section, but the details of the
“vrf” subcommand are inferred by the parser.

From the bootstrap description, the PADS/ML compiler
generates a parser, which performs two functions: first, it
classifies each command in a config according to its syntactic
structure; second, it groups each command together with its
subcommands (if any) into a tree-shaped data structure. The
model builder is responsible for using the output of the parser
to create a simple model of IOS: a mapping from commands to
their syntactic structure and set of child commands. In essence,
creating a map means combining the results of parsing all
of the commands in the input configs into a single tree
data structure with one entry per command (as opposed to
one entry per command instance). Note that the system is
sensitive to the context of a command — a command appearing
as a subcommand of multiple different commands is treated
distinctly for each appearance. Therefore, the inferred mapping
from commands to their structure and child-set is tree-shaped,
rather than flat.

Once the map has been created from the input configs, it is
converted into, and output as, a PADS/ML description. Unlike
the original description, this description is specialized to the
particular commands whose structure was determined during
Phase 1. This specialization has a number of benefits, which
we discuss at the end of this section.

B. Phase II: Parsing and Processing

Once Phase I has created a (specialized) 10S description,
Phase II can parse and process configs. The structure of Phase
IT is similar to that of Phase I, albeit simpler. It consists of an
10S description and an XML generator, embedded in a “driver,”
which coordinates the components and provides the user with
a simple command-line interface. The code for Phase II can be
thought of as a harness into which generated IOS descriptions
are “dropped” to produce an I10S-processing application. In our
case, the processing is a conversion into a simple XML format,
which groups commands into XML elements according to their
section, while maintaining the order in which they appear
in the original config. The original text of each command’s
arguments (if any) are saved together with the command in the

2While we don’t have space to include it here, we have posted the
description on the web [5].

XML. Note that the choice of XML format, and even the choice
to produce XML, rather than, for example, run some analysis,
are not essential to the system. One could easily modify the
XML generator to produce XML with a different schema, or
even replace the XML generator with a different component
entirely.

Our XML-conversion component is implemented as a
generic function, meaning that it works on data of any type. It
is written using PADS/ML’s generic programming toolkit [1].
The use of a generic function is critical to the success of the
conversion tool, for a number of reasons. First, the size and
complexity of the type of parsed 10S commands are directly
proportional to the size and complexity of the 10S format.
Therefore, writing a tool that would work directly on data
of this type (that is, parsed 10S commands) would be a very
tedious process. Second, while each 10S description shares the
same metastructure, the in-memory representation of each one
is different, with different OCAML types. Therefore, a (non-
generic) function written to work on one I0S representation
will not work on another 10S representation. This incompata-
bility would require us to modify the conversion function each
time a new description is inferred — again, a tedious and error-
prone process. The generic tool framework saves us from both
of these hassles. We write one, generic, XML converter and
PADS/ML adapts it to each inferred description.

C. Handling New and Modified Commands

Under most circumstances, the conversion program will run
without modification. Occassionally, however, it will encounter
new commands, or commands whose syntax has changed.
When a new command is encountered, it is not recognized
by the Phase II parser and is therefore reported as an error.
Under these circumstances, we rerun Phase I on the offending
config to determine the new command’s syntax and appropri-
ately update the description used by Phase II. Currently, this
automation is not supported within the Phase I or Phase II
programs, but by a script. Phase II outputs a list of all configs
with unrecognized commands and the script passes this list to
Phase I along with the current description used in Phase II.
Phase I produces an updated description and then the script
recompiles Phase II. At that point, regular config processing
resumes.

If a command has changed in structure then the process is
somewhat more complex. Again, Phase II’s parser will report
an error upon encountering the command and the script will
rerun Phase I on the offending config. However, at this point,
the process diverges. Phase I will recognize a conflict in the
previously-recorded syntax of the command and its syntax in
the current config. At this point, our system merely reports the
error and leaves the previous description in place. We could
add flags to change the behaviour of Phase I - for example,
to change the default behaviour to replace the syntax, or to
specify overrides for particular commands. We leave more
complex behaviours, such as conditioning the choice of syntax
based on the IOS version reported at the header of the config,
for future work. In our experience, we have only seen these

Number of Configs 4 8 25 50 81 Phase I Phase II
(Increment) ‘) “4) a7 25 (31) General description 146 Parsing engine 173
Parsing success ratio 032 0.61 093 096 1.00 Model builder 324 XML formatter 220
No. of sections learned 37 40 43 52 56 Description generator 106 | Common types description 65
Time to learn additional configs (sec) | 19.6 7.6 704 69.0 106.9 Miscellaneous 17
TABLE 1 Subtotal 576 Subtotal 475

PERFORMANCE WHEN WE VARY THE CONFIGURATION COUNT FOR TABLE 11

LEARNING LINE COUNT FOR DIFFERENT SECTIONS OF CODE (1051 TOTAL)

types of conflicts when trying to use the same parser for IOS
and I0S XR.

D. The Benefit of Two Phases

If we have a component which is able to parse I0S well-
enough to infer an (approximate) IOS grammar, then why
bother with a second component which uses the inferred
grammar? Their are multiple motivations for this design.
The foremost benefit is that inference is relatively costly, so
our system is designed to pay the cost of determining the
structure of command once — in Phase I, and then benefit
from it repeatedly — in Phase II. Moreover, for indentation-
based commands, knowing the set of valid subcommands lets
us ignore the indentation entirely. This feature can also be
helpful in parsing the occasional config which we encounter
whose indentation has been stripped away. Thus, the two-
phase approach addresses the second and third challenges from
Section II-A.

The second benefit is to increase the robustness of the parser.
In our experience with a large network, we occassionally
encounter configs with errors in them. Our system flags
configs which don’t conform to the inferred grammar, allowing
network operators to verify their correctness. Even if the error
is caused by valid, yet unrecognized, command, a network
operator can benefit simply from being informed of the use of
a previously unused command.

However, to benefit from the improved robustness, the
system must be used somewhat differently. It cannot be run
on any config, with the assumption of its being valid (that
is, error-free and pretty-printed). Rather, Phase I must be used
more judiciously to avoid learning incorrect information about
10S. In this situation, Phase I “trains” on selected configs
that are known to be valid, and then Phase II can be run on
arbitrary configs. The system can still adapt to configs with
new commands after the training process, but such configs
must be manually vetted to ensure their validity. While the
selection and vetting processes requires human effort, it is
nearly always limited to validating configs — the system still
automatically updates the 10S description if and when the
config has been validated. The only situation that requires
more than config validation is when a new syntactic form is
encountered, or new commands are encountered that belong
to one of the specialized syntactic forms: two-dependency,
character-delimited, and command-delimited sections. How-
ever, this situation seems to be rare.

IV. EVALUATION

We report the performance of our prototype learning parser
implementation using hundreds of router configurations for a
Tier-1 ISP network.

A. Experimental Set-up

In our experiments, we use 819 Cisco router configurations,
which we can divide into multiple groups depending on their
role. For example, some routers are at the edge of the ISP
network and interact with external network elements (e.g., in
Tier-2 customer networks), and some other routers are in the
core of the network and mainly provide connectivity among
other routers in the network. We use the following simple
strategy for training set selection, while we envision the input
selection can potentially be further automated in practice. We
first use a small set of randomly selected configurations as
training input to the inference component. Then, we see if the
inferred model can parse the whole set of 819 configurations.
If not, we randomly select a subset of the configurations that
the model failed to parse, and use them as input to the next
iteration of inference. We repeat this procedure until we can
parse all the 819 configurations. We perform our experiments
on SUN Fire-15000 multi-processor server (900MHz CPU)
running Solaris 5.8. The total human time taken to configure
and run these experiments was a few hours.

B. Experimental Results

In Table I, we report experimental results for our parser. The
first row of Table I denotes the number of configurations used
for inference. In fact, since our parser employs incremental
inference (Section III-A), the values within parentheses are the
numbers of additional configurations used on top of previously
inferred models. Specifically, to complete the learning of 819
configs, our experiments needed five iterations, where we first
used 4 configurations files, and subsequently added 4, 17, 25,
and 31 files for respective iterations.

In Table I, we observe that we need only around 10% of
configurations (81 out of 819) to learn the language model and
achieve 100% success ratio. When we first use 4 configurations
for inference, we achieve only 32% success ratio (i.e., 263 out
of 819), while another 4 configurations help us parse 61% of
configs successfully. As we increase the size of training set,
the parser can handle more top-level commands (e.g., 37 top-
level commands from 4 configs vs. 56 from 81 configs). In
our experiments, the 56 top-level commands are sufficient to
parse all the given configurations.

Suppose that a model learned from 25 configurations works
well with the current network configuration, and then a net-
work operator decides to introduce several new features in the
network (e.g., new services). Our result illustrates that we can
simply select some of the configurations containing the new
features and re-train the parser, which in turn will pick up the
new command and be able to parse the new configs.

Running Time: In Table I, we present the running time
for each iteration. We observe that the total time to learn
from the five iterations is 273 seconds. When we performed
an experiment with only one iteration with the final set of
81 training configurations, the learning time was around 240
seconds. This illustrates that the iterated learning does not
significantly degrade the running time, compared to the ideal
scenario where we know which configurations to use for
learning. Finally, we report on the performance of actual
parsing. There are millions of command lines combined in
the 819 configurations, and it takes around 9 minutes to parse
all the configurations.

In Table II, we report the breakdown of lines of code for
different parts in our implementation.

V. RELATED WORK

Caldwell et. al. [6] propose a configuration management
tool called EDGE, which reads all router configurations in
a network, extracts network-wide information from them,
and creates a database and relevant reports. Although EDGE
employs a parser that handles whole configurations, its parser
does not learn by itself and does require manual maintenance
whenever changes in configuration language or new features
are introduced. In contrast, our parser can learn many such
changes automatically, and involves minimal human interac-
tion for maintenance. Many network analysis and management
tools use static router configuration information [7]-[10].
Our parsing scheme is an essential building block for such
static analysis, and can improve the effectiveness of these
network management tools. Our work is different from other
configuration management research to generate configurations
for different routers in an automated fashion [11], [12], in that
our focus is on parsing existing router configurations, after
which independent tools can extract information and perform
configuration analysis.

Outside of configuration management, there has been con-
siderable work studying the problem of grammar induction.
De La Higuera provides a recent survey [13]. However, this
body of work is far more general than the system that we
present and their results far less applicable to the problem of
network configuration management. We are starting with an
accurate description of pretty-printed configs (the bootstrap
IOS description), which drastically simplifies the problem of
inferring a full description. Additionally, we are seeking a
very particular structure to the inferred grammar — correctness
alone is not enough. The inferred grammar must allow for
straightforward translation of the parse tree into XML with a
known schema.

The most closely related work from the area of grammar
induction is a concurrent project by Fisher et. al., which
explores the inference of a format description from ad hoc data
without human intervention or domain knowledge [14]. Once
again, the generality of their result makes their work largely
inapplicable to our problem. In particular, their system can-
not recognize the complex functional dependencies between
commands and subcommands, and is therefore unable to infer

the relationships between commands which are essential to the
10S language. However, their results seem very promising for
inferring the format of parameters for particular commands.

VI. CONCLUSIONS AND FUTURE WORK

Network configuration management is a daunting task with
excessive manual involvement, and only growing more com-
plex. In this paper, we have presented an important addition
to the network configuration manager’s toolbox and validated
it with positive experimental results: a parser that can infer
an effective approximation of Cisco 10S and use it to support
efficient parsing of 10S configs, and adapt to changes in the
10S configuration langauge.

To improve their chances for acceptance by customers, some
router manufacturers have created configuration languages
very much like 108, resulting in a number of 10S “dialects.”
We are investigating expanding our work to include support
for these languages. Beyond that, we hope to explore whether
the design underlying our system could provide benefits to
more regular configuration languages as well.

In addition to router configuration files, network service
providers often log all the commands executed on their routers,
which typically contain audit trails of 10S commands. The
language learned by our system should prove useful for
analyzing commands extracted from these logs.

REFERENCES

[1]1 Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez, and A. Gleyzer,
“PADS/ML: A functional data description language,” in POPL, 2007.

[2] Cisco 10S IP Command Reference, Volume 2 of 3: Routing Protocols,
Release 12.2.

[3] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon, “The
objective caml system, release 3.10, documentation and user’s manual,”
2007.

[4] M. Fernandez, K. Fisher, J. N. Foster, M. Greenberg, and Y. Man-
delbaum, “A generic programming toolkit for PADS/ML: First-class
upgrades for third-party developers,” in PADL, 2008.

[5] “Cisco IOS description in PADS/ML.” [Online]. Available: http:
/Iwww.research.att.com/~yitzhak/pml/cisco-ios.pml

[6] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford, “The cutting EDGE of ip router configuration,” SIGCOMM
Comput. Commun. Rev., vol. 34, no. 1, pp. 21-26, 2004.

[7]1 N. Feamster and H. Balakrishnan, “Detecting BGP Configuration Faults
with Static Analysis,” in 2nd Symp. on Networked Systems Design and
Implementation (NSDI), Boston, MA, May 2005.

[8] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “On static reachability analysis of IP networks,” in Proc.
IEEE INFOCOM, Mar. 2005.

[9] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,

“NetScope: Traffic engineering for IP networks,” IEEE Network, vol. 14,

no. 2, pp. 11-19, 2000.

A. Shaikh and A. Greenberg, “OSPF Monitoring: Architecture, Design

and Deployment Experience,” in Proc. USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), March 2004.

J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Automated provi-

sioning of BGP customers,” IEEE Network, vol. 17, no. 6, 2003.

W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,

S. Rao, and W. Aiello, “Configuration Management at Massive Scale:

System Design and Experience,” in USENIX Annual Technical Confer-

ence, Santa Clara, CA, June 2007.

C. D. L. Higuera, “Current trends in grammatical inference,” Lecture

Notes in Computer Science, vol. 1876, pp. 28-31, 2001.

K. Fisher, D. Walker, K. Q. Zhu, and P. White, “From dirt to shovels:

Fully automatic tool generation from ad hoc data,” in POPL, 2008.

[10]

[11]

[12]

[13]

[14]

