Cross-Domain Fault Localization: A Case for a Graph Digest Approach

William Fischer

Geoffrey Xie

Joel Young

Department of Computer Science Naval Postgraduate School

Network Fault Localization

Fault localization: integral part of network management/troubleshooting

Not always easy to locate a fault

- Large number of devices
- Stale topology databases
- Human-introduced errors tough to find

Cross-Domain Fault Localization

Networks are highly connected

- Some faults can affect many domains
 - E.g. DNS failure, link congestion
- Correlating observations across domains intuitively increases accuracy of locating these types of faults

Domains can represent fault propagation with a graph

• Common Ground

Challenges and Assumption

Challenges

- Domain managers are reluctant to share internal information
 - Topology, state, sensitive properties, etc
 - May even view other domains as *adversaries*
- Accuracy versus Privacy: competing goals
- Scalability: measured by the size of the aggregated inference graph

Assumption

- Domain managers will want to participate if
 - Privacy preserved
 - Fault localization accuracy improved

Related Work

Intra-domain: Significant recent advances in fault localization

- SHRINK [Kandula et al., 2005] and SCORE [Kompella et al., 2005]
 - bipartite causal graph model
- Sherlock [Bahl et al., 2007]
 - Multi-level causal graph model

Cross-domain: under-researched

- End-to-end approach for hierarchical organizations [Steinder et al., 2008]
 - Constrained environment

Our Graph Digest Approach

What is a graph digest?

A reduction of a fault propagation model (eg causal graph) to a digest

representation of nodes and edges

Our Graph Digest Approach

A general framework for creating and using a digest that explicitly models the inference accuracy and privacy requirements

Performance Criteria

Heart of the approach is quantifiable metrics for accuracy and privacy

Accuracy

$$h = \frac{|B_d \cap B_u|}{|B_d|} \qquad c = \frac{|B_d \cap B_u|}{|B_u|}$$

 $\alpha = \frac{2 * h * c}{h + c}$ for h + c > 0, otherwise $\alpha = 0$

B_u: Best explanation using undigested graphs

 B_d : Best explanation using 1 undigested graph, 1+ digests

Privacy: let S model adversary's knowledge of sensitive property

$$KL((S \mid digest), S) = \sum_{x \in X} \Pr(S = x \mid digest) \log_2 \frac{\Pr(S = x \mid digest)}{\Pr(S = x)}$$

Practical Privacy Metrics

KL Distance an ideal metric for a privacy criterion, but hard to quantify

In this work we look at protecting a domain against causal graph attacks

From causal graphs, can infer

• In-degree, out-degree, path lengths, reachability, etc

Sample privacy metrics:

• Reachability, number of routers, maximum node degree, diameter

Assumptions

- Bipartite model
- Independent SRG failures
- No more than 3 simultaneous failures

arg max
$$Pr(< S_1,...,S_n > | < L_1,...,L_m >)$$

Adds "noisy" edges to form complete bipartite graph

- d = .0001 edge strength for a noisy edge $Pr(L_j | S_i) = .0001$
- Subtract d from any edge strength of 1.0 $Pr(L_i | S_i) = .9999$

Returns most probable explanation for the observations

IP View

Provider Causal Graph (with respect to customer)

Customer Causal Graph with observation state

Nodes R₁, P₁, P₂, P₄ pruned

Combing all "up" observations

U1 = R2,R6 U2 = P3,P5 Aggregating nodes that are indistinguishable in the causal graph

Renaming all but the "shared attribute" nodes and L_u

Multilevel union

Model Specific Bipartite Union

Continuing Work Customer Network Physical Topology

Continuing Work Customer Network IP View

Accuracy Results for All Single Failures

Privacy Results for All Single Failures

Adding Scalability Results

Summary and Future Work

A general framework for reasoning and discussing cross-domain fault localization

Initial results demonstrating utility of the framework

Future Work:

- Validation of the generality for the approach
- Impacts of observation and model errors must be determined
- Privacy protection given a series of digests from the same domain
- Digest-sharing format and strategies must be explored

Thank you!

Questions?