
Towards Validated Network Configurations
with NCGuard
Laurent VANBEVER, Grégory PARDOEN, Olivier BONAVENTURE

INL: IP Networking Lab (http://inl.info.ucl.ac.be,laurent.vanbever@uclouvain.be)
Université catholique de Louvain (UCL), Belgium

Internet Network Management Workshop
October 19, 2008

http://inl.info.ucl.ac.be
http://inl.info.ucl.ac.be
mailto:laurent.vanbever@uclouvain.be
mailto:laurent.vanbever@uclouvain.be

Agenda

• Introduction

• State-of-the art in network configuration

• NCGuard: Towards new configuration paradigm

• High-level representation

• Validation

• Generation

• Conclusion

• Demo session (1:30pm - 2:30pm)

Introduction

10Gb

10Gb

100Mbit 100Mbit

fe-0/0/0

fe-0/0/0

ge-0/0/1 ge-0/0/2

ge-0/0/0 ge-0/0/1

fe-0/0/1

fe-0/1/0

Some networking facts

• Configuring networks is complex, costly, and error-
prone

• Networks can be composed of hundreds to thousands of
devices

• Manual configuration, equipment-by-equipment

• Trial-and-error approach

• Diversity of vendor-specific languages (IOS, JunOS, etc.)

• Syntax, semantic, and supported features sets are different

• Low-level configuration languages

• Lot of code duplication

4

Consequences

• Network misconfigurations are frequent

• “ Human factors, is the biggest contributor — responsible for
50 to 80 percent of network device outages ”1

• In 2002, 0.2% to 1% of the BGP table size suffer from
misconfiguration 2

• Misconfigurations have led and still lead to large scale
problems (e.g., YouTube in 2008)

• Management costs keep growing due to the increasing
complexity of network architectures

1 Juniper Networks, What’s Behind Network Downtime?, 2008
2 R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP Misconfiguration,” in SIGCOMM ’02, 2002, pp. 3–16.

5

Current Approaches: Static Analysis

• Use pattern matching on configurations to detect
misconfigurations 1

• Compare configurations to given specifications 2

• Pro & Con:

• Very effective to detect some critical problems

• Need a a priori specifications of what a valid network is

• Difficulties encountered when analyzing heterogenous networks

• Solution: use of an intermediate representation

1 A. Feldmann and J. Rexford. IP Network Configuration for Intradomain Traffic Engineering. IEEE Network Magazine, 2001.
2 N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with Static Analysis. In Proceedings of NSDI, 2005.

6

• Perform statistical analysis directly on configurations 1

• Infer network-specific policies, then perform deviation
analysis 2

• Pro & Con:

• Completely independent of a priori validity specifications

• Too verbose, people are flooded with non-error messages.

• Difficulties encountered when analyzing heterogenous networks

• Solution: use of an intermediate representation

Current Approaches: Data mining

1 K. El-Arini and K. Killourhy. Bayesian Detection of Router Configuration Anomalies. In SIGCOMM Workshop on Mining Network Data, 2005.
2 F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb. Minerals: Using Data Mining to Detect Router Misconfigurations. In MineNet ’06:
Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data, 2006. 7

OUTPUT

ERRORS &
WARNINGS

BO
T

TO
M

-U
P

A
PP

RO
A

C
H

Current Approaches: Design

INTERMEDIATE
REPRESENTATION

SPECIFICATIONS

VALIDATED !

PROCESS

TRANSLATOR

INPUTLegend:

...DEVICE 2
CONFIG.

DEVICE N
CONFIG.

DEVICE 1
CONFIG.

VALIDATOR

8

bgp {
group ibgp {

type internal;
peer-as 100;
local-address 200.1.1.1;
neighbor 200.1.1.2;

NCGuard: Towards new
configuration paradigm1

group ebgp {
type external;
peer-as 200;
neighbor 172.13.43.2;

}1 http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard

http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard
http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard

Starting point

• Network configuration contrasts with numerous progress in
software engineering

• Requirements, specifications, verification, validation, new development
schemes, etc.

• In comparison, network configuration is like writing a distributed
program in assembly language 1

• Current approaches do not solve the problem

• Do not relax the burden associated to the configuration phase

• Why not apply software engineering techniques to network
configurations ?

1 S. Lee, T. Wong, and H. Kim, “To automate or not to automate : On the complexity of network configuration,” in IEEE ICC 2008,
Beijing, China, May 2008.

10

NCGuard Design

OUTPUT

ERRORS &
WARNINGS

CISCO
TEMPLATE

JUNIPER
TEMPLATE

DEVICE 1
CONFIG. ...DEVICE 2

CONFIG.
DEVICE N
CONFIG.

GENERATOR

PROCESS

VALIDATOR

INPUTLegend:

SPECIFICATIONS
NETWORK

REPRESENTATION T
O

P-D
O

W
N

 A
PPRO

A
C

H

11

Main concepts
1. High-level representation (i.e., abstraction) of a network

configuration

• Suppress redundancy

• Vendor-independent

2. Rule-based validation engine

• A rule represents a condition that must be met by the
representation

• Flexible way of adding rules

3. Generation engine

• Produce the configuration of each device in its own configuration
language

12

Validation engine

• After a survey of real network configurations, we found that
many rules follow regular patterns

• In NCGuard, we implemented the structure of several
patterns, that can be easily specialized:

• Presence (or non-presence)

• Uniqueness

• Symmetry

• If a rule cannot be expressed as one of them:

• Custom (e.g., connexity test, network redundancy test, etc.)

13

Scope: All routers

descendants(R2) :
all R2’s interfaces

descendants(R1) :
all R1’s interfaces

Rules representation

• Rules are expressed formally by using
the notions of scope and its
descendants

• A configuration node is an element
of the high-level representation

• Composed of fields

• A scope is a set of configuration
nodes

• descendants(x) is a set of selected
descendants of the scope’s element x

Routers

R1 R2

Interface
so-0/0/1

Interface
so-0/0/1

Interface
loopback

Interface
loopback

: Configuration node

14

Scope: All routers

Interfaces of R1 Interfaces of R2

• Check if certain configuration nodes are in the representation

Example: each router must have a loopback interface

Routers

R1 R2

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: loopback

Interface
id: loopback

Interface
id: loopback

Interface
id: loopback

: Seeked node

Presence rule

15

Check if there is at least one configuration node respecting a
given condition in each descendants set.

<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <condition>@id='loopback'</condition>
</presence>
</rule>

Example : each router must have a loopback interface

∀x ∈ scope ∃y ∈ descendants(x) : Cpresence(T, y)

∀x ∈ routers ∃y ∈ interfaces(x) : y.id = loopback

Presence rule

16

Scope : All routers

Check the uniqueness of a field value in a set of
configuration nodes

Example : uniqueness of routers interfaces identifiers

Routers

R1 R2

Interface
id: loopback

Interface
id: so-0/0/0

Ids of R1’s interfaces are unique.

Interface
id: loopback

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Ids of R2’s interfaces are not unique
The rule will failed.

Interface
id: so-0/0/0

Interface
id: so-0/0/0

Uniqueness rule

17

Check if there is no two configuration nodes with identical
value of field

Example : uniqueness of routers interfaces identifiers

∀x ∈ scope ∀y ∈ d(x) : ¬(∃z !=y ∈ d(x) : y.field = z.field)

∀x ∈ routers ∀y ∈ interfaces(x) : ¬(∃z !=y ∈ interfaces(x) : y.id = z.id)

<rule id="UNIQUENESS_INTERFACE_ID" type="uniqueness">
<uniqueness>
	 <scope>ALL_NODES</scope>
	 <descendants>interfaces/interface</descendants>
	 <field>@id</field>
</uniqueness>
</rule>

Uniqueness rule

18

• Check the equality of fields of configuration nodes

• Such rules can be checked implicitly by the high-level
representation

• Example: MTU must be equal on both ends of a link

• Automatically checked by modeling it once at the link level

• Instead of twice at the interfaces level

• Hypothesis: duplication phase is correct

Symmetry rule

19

• Used to check advanced conditions

• Expressed in a query or programming language

<rule id="ALL_AREAS_CONNECTED_TO_BACKBONE_AREA" type="custom">
 <custom>
 <xquery>
 for $area in /domain/ospf/areas/area[@id!="0.0.0.0"]
 let $nodes := $area/nodes/node
 where count(/domain/ospf/areas/area) > 1
 and not(some $y in $nodes satisfies /domain/ospf/areas/
 area[@id="0.0.0.0"]/nodes/node[@id=$y/@id])
 	 return
 <result><area id="{$area/@id}"/></result>
 </xquery>
 </custom>
</rule>

Example: All OSPFs areas must be connected to the backbone

Custom rule

20

Generation

• High level representation is not designed to be translated into
low level language

• Intermediate representations are needed

• Templates translate those intermediates representations
into configuration files

• Support of any configuration or modeling language (e.g., Cisco
IOS, Juniper JunOS, etc.)

21

Generation

<node id="SALT">
<interfaces>

<interface id="lo0">
<unit number="0">

<ip type="ipv4" mask="32">198.32.8.200</ip>
<ip type="ipv6" mask="128">2001:468:16::1</ip>

 </unit>
 </interface>
</interfaces>

</node>

GENERATOR
JUNIPER

TEMPLATE

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 198.32.8.200/32;
 }
 family inet6 {
 address 2001:468:16::1/128;
 }
 }
 }

22

Conclusion

Conclusion

• NCGuard is a first step towards an extensible, and easy
way of designing and configuring correct networks.

• Easy to:

• Add new protocols, equipments, parameters, etc.

• Add rules to check specific needs or new features

• Add new templates to generate appropriate configlets

• Further works:

• Extends the prototype to a broader range of case

• Allow NCGuard to interact directly with the routers

24

Any Questions ?

