Supplemental Note on Count-to-Infinity Induced
Forwarding Loops in Ethernet Networks

Khaled Elmeleegy, Alan L. Cox, T. S. Eugene Ng
Department of Computer Science
Rice University

Abstract— Ethernet forwarding loops are dangerous. Packets
can be trapped in a loop and cause network congestion and 1.0
instability. Furthermore, packet forwarding can be disrupted due ;

—

Alternate port 4

to the pollution of forwarding tables. In this report, we show that l Root port O
the “count-to-infinity” behavior in Ethernet's Rapid Spann ing

Tree Protocol (RSTP) can lead to a temporary forwarding 2 Designated port @
loop. Additionally, we identify the causes for the formation of 1,20

this forwarding loop: races between protocol control packés

traversing the network, races between RSTP state machineand

nondeterminism within RSTP state machines. Finally, we prsent 3 4

an annotated trace of RSTP events for an example network as 1.40 1,40

an existential proof of the formation of a forwarding loop during

count to infinity.
y Fig. 1. An example network of bridges.

|I. INTRODUCTION

Myers et al. [3] observed that Ethernet's distributed for- cycle, and the count to infinity lasts until the stale
warding topology computation protocol — the Rapid Spanning information is aged out.
Tree Protocol (RSTP) [2] — can suffer from a classic “count- 3) The “sync” hand-shake operation that would have pre-
to-infinity” problem. Elmeleegyt al. [1] explained the origin vented a forwarding loop is not performed by a bridge
of this problem in detail, studied its behavior under a wide when a proposal BPDU carrying worse information
range of scenarios, and proposed a simple solution, RSTP wit is received at its root port, allowing the forwarding

Epochs, that addresses the count to infinity problem. loop to be formed. This behavior is a result of race
In addition, EImeleeggt al. observed that a forwarding loop conditions that exist between the RSTP state machines
can be formed during count to infinity. This report suppletaen and nondeterministic transitions within state machines.
Elmeleegyet al. and provides a detailed explanation of how These race conditions and nondeterministic transitions
a forwarding loop can form during count to infinity in RSTP. have not been previously documented. Explaining them

Such forwarding loops are serious problems. During the is & key contribution of this report.
count to infinity, which can last tens of seconds even in aThe rest of this report explains these problems in detail.
small network, a forwarding loop can cause a network tirst, Section Il explains the aforementioned race cooni
become highly congested by packets that persist in the lo@@d nondeterministic transitions in RSTP in detail. Thesg-S
Moreover, packet forwarding can fail due to the pollution ofion Il provides a detailed RSTP event trace for an example
forwarding tables with false information that is learnednfr network that serves as an existential proof of the formadion

looping packets. a forwarding loop during count to infinity in RSTP.
There are three key ingredients for the formation of a
forwarding loop during count to infinity: [I. RACE CONDITIONS

1) Count to infinity is initiated around a physical network In this section we describe the race conditions between
cycle. This behavior and its cause are described liye RSTP state machines that allow for the formation of the
Elmeleegyet al. [1]. This results in the propagation offorwarding loop. The RSTP state machines can be found in
BPDUs carrying both fresh and stale information arounitie 802.1D (2004) specification [2]. Those state machines
the network cycle. execute concurrently and communicate with each other via

2) During count to infinity, the fresh information stallsshared variables. The transitions between states areodledtr
at a bridge because the bridge port has reached litg Boolean expressions that often involve multiple vaesbl
TxHoldCount and subsequently the stale information s stated in the specification, “the order of execution of
received at the bridge. As as result, the fresh informati@tate blocks in different state machines is undefined exapt
is eliminated from the network. BPDUs carrying staleonstrained by their transition conditions.” Thus, mangesa
information continue to propagate around the networkaturally occur between the RSTP state machines and some

of them can be harmful.

We will use the example network as shown in Figure 1 to
illustrate how the races play out. A box represents a bridge;
the top number in the box is the bridge ID, the lower set
of numbers represent the root bridge ID as perceived by the
current bridge and the cost to this root. The link costs are al
20. This value is not important though.

In this section and the rest of this report we use the notation
ipj to name a port of a bridge, whefpj means the port at
bridgei connecting it to bridgg. We use a fixed-width font
to refer to state machine variables, all capital lettersetier
to state machine names, and a fixed-width font with all capita
letters to refer to state names. 4)

We present two lemmas that describe the races and prove
their existence. The two lemmas are similar. Lemma 1 differs
from Lemma 2 in that it handles the case where the bridge in
guestion receives the new information alonigh a proposal
as explained later in the section.

Lemma 1. Race conditions exist if a bridge receives, from
its designated bridge at its root port, worse informatioanth
what it currently has and this received information comes
along with a proposal that would not result in the bridge
changing its root port. These race conditions can cause the
bridge to respond with an agreement to its designated bridge
without doing a sync operation.

Proof: Consider if bridge 1 in Figure 1 dies, causing
the network of bridges to start counting to infinity. Suppose
bridge 2 is currently bridge 3's designated bridge, andd®id
2 proposes information to bridge 3 that is worse than the
information currently at bridge 3 but this does not result in

ism in the PORT ROLE TRANSITION state machine
allows it to enter thékOOT _AGREED state, instead of the
presumed intended transition into tREOT_PROPOSED
state.

The relevant outcome from this transition is that
agree=T at 2p3. Thus, an agreement can be sent
to bridge 2 immediately. Moreoveset SyncTr ee()
never gets executed, so thgnc flag remains false for
3p4.

Now (a) runs and th&PDATE state is entered. The rel-
evant outcomes for 3p4 aragr eed=F, synced=F
and updt | nf o=F.

Now, since(sel ect ed && ! updt | nf o) is true for
3p4, the PORT ROLE TRANSITION state machine gets
run for 3p4.

Since (b) was run first, and th&kOOT_AGREED
state is taken instead of thROOT_PROPOSED state,
set SyncTree() never got executed, and sync
remains false for 3p4.

This means none of the transitions in the PORT ROLE
TRANSITION state machine for 3p4 can be taken. The
machine does nothing interesting. In particular, it does
not transition toDESI GNATED_DI SCARD as presumed
intended because theync flag is false.

Note that thesynced flag at 3p4 gets set to true as
soon as bridge 3 receives a BPDU with the agreement
flag from bridge 4.

Lemma 2: Race conditions exist if a bridge receives, from

a change of the root port of bridge 3. The following sequené deglgnated bridge at its ro.ot port,_ worse mformauomnth
of events shows how an agreement can be sent by bridge Avhat it currently has and this received information comes

response to the proposal without bridge 3 performing a syﬁ ng_/vlth(_)ut a proposal that would not re_s_ult in the bridge
operation. changing its root port. These race conditions can cause the

1) The PORT INFORMATION state machinéClause bridge to respond with an agreement to its designated hridge

17.27) is run on 3p2 when the new information with Proof: We will again provide an existential proof similar

the proposal from bridge 2 is received in a BPDUP that given in Lemma 1. Consider that bridge 1 dies, causing

The information is worse than the port priority vectorthe network of bridges to start counting to infinity. Suppose

but it is Super i or Desi gnat ed! nf 0. The relevant bridge 2 is currently bridge 3's designated bridge, anddwid

outcomes for 3p2 arezesel ect =T, sel ect ed=F 2 transmits worse information than what bridge 3 currently

and agree=F.

The PORT ROLE SELECTION state machif@ause
17.28) must be run next, and the relevant outcomes f
3p2 are:resel ect =F, sel ected=T, agree=F
and updt | nf o=F; the relevant outcome for 3p4 is:
updt | nf o=T. 1)
Now, two possible executions can happen depending on
which of the two state machines runs next: (a) run the 2)
PORT INFORMATION state machine on 3p4, or (b) run
the PORT ROLE TRANSITION state machirf€lause

17.29) on 3p2.

Suppose (b) runs first. Because tlsgynced flag

for 3p4 is only reset in the PORT INFORMATION
state machine when (a) runs, running (b) first al-
lows (al | Synced && !agree) and (proposed

&& !agree) to both be true. Thus, this nondetermin-

2)

3)

has. Also suppose that this information is transmitigthout

a proposal to bridge 3 and this information does not result in
change of the root port. The following sequence of events

shows how an agreement can be sent by bridge 3 in the

absence of a proposal.

The first two events are identical to (1) and (2) from the
proof of Lemma 1.

Now, two possible executions can happen depending on
which of the two state machines runs next: (a) run the
PORT INFORMATION state machine on 3p4, or (b) run
the PORT ROLE TRANSITION state machine on 3p2.
Suppose (b) runs first. Because tlsgnced flag

for 3p4 is only reset in the PORT INFORMATION
state machine when (a) runs, running (b) first allows
(all Synced && !'agree) to be true. Thus, the
PORT ROLE TRANSITION state machine enters the

ROOT_AGREED state. Bridge 4 also sends another topology change message to

The relevant outcome for this transition is thgr ee=T bridge 2 at t9.

at 2p3. Thus, an agreement can be sent to bridge 2At t10, the information from bridge 3 announcing bridge

immediately. 2 to be the root arrives at bridge 4, bridge 4 then passes on

Now (a) runs and th&PDATE state is entered. The rel-this information to bridge 2, since 4p2® oposi ng flag is

evant outcomes for 3p4 aragr eed=F, synced=F still set, the new message is sent along with a proposal flag.

and updt I nf o=F. Now port 4p2 has reached its TxHoldCount limit. 4p2 has sent

Also note that thesynced flag at 3p4 gets set to true asthree messages at t6, t9 and t10. Thus this port can not send

soon as bridge 3 receives a BPDU with the agreemesnty more BPDUs during this clock tick.

flag from bridge 4. Then bridge 4 sends back an agreement to bridge 3 at t11

B for the information it received since this information is nse

than what it had(Lemma 2)

.]) At t12 bridge 2 receives the proposal along with the new
In this section, using a trace of protocol events, we shQWsormation from bridge 4 and makes 2p4 its new root port

that the count-to-infinity in RSTP can lead to a forwarding, response to the new information. This leads to bridge 2

loop. Table | shows a trace of events after the failure of t%rforming a sync operation blocking 2p3.

r_oot bridge, bridge 1, in the networ_k shown in Figure 1. The Then at t13 bridge 2 passes on the new information to bridge

first collumn of th_e table shows the time of occurrence for _ea%hproposing to be bridge 3's designated bridge.

event in increasing order. The second column is used if the

event is a BPDU transmission, where it shows the sender andA‘t t14, bridge 2 responds to bridge 4's proposal with an

receiver bridges of the BPDU. The third column shows th%greement, notifying bridge 4 that it agrees to bridge 4 gein

contents of the BPDU if this is a BPDU transmission even{. designated bm_jge. Note that now both ports 2p3 and 2p4
o o ave reached their TxHoldCount limit. 2p3 has sent a Hello
The fourth column shows additional comments describing the :)
message before bridge 1 died, then two more messages at t1

event.
ar{d t13. 2p4 has sent a Hello message as well and two more

Assume that bridge 1 has died right after bridge 2 has sen
out a Hello message but before its clock has ticked. Thus, t@essages a.lt 2 apd t14. Thus both ports cannot send any more
DUs during this clock tick.

Transmission Count (TxCount) is one for ports 2p3 and 2p At t15. bridge 3 . h | h /
and zero for ports 3p2, 3p4, 4p2, and 4p3. t t15, bridge 3 receives the topology change/agreement
lféz‘nt by bridge 4 at t8. However this received BPDU is sent

IIl. FORMATION OF A FORWARDING LOOP. AN EXAMPLE

Also assume that bridges use a Transmission Hold Co)))
(TxHoldCount) value of 3. Thus, each port can transmit & rough a root port with better information than that stoatd

most 3 BPDUs per clock tick. After the death of bridge 13p4. Thus the message is discarded base(Ctauses 17.21.8

bridge 2 will declare itself to be the new root and propagaigé 17.27) of the RSTP specification [2].

this information via BPDUs at t1 and t2. When bridge 3 receives the proposal sent by bridge 2
At t3, bridge 3 will send back an agreement to bridge 3t t13, it replies with an agreement at t16. This is be-

as the information received by bridge 3 is worse than tif&use the information bridge 3 received is better than what

information it had before{Lemma 2) it had before, so theagree flag does not get reset by

At t4, bridge 3 will pass the information it received fromPett er or samei nf o() (Clauses 17.21.1). When 3p2 en-
bridge 2 to bridge 4. ters theSUPERI OR DES| GNATED state in the PORT INFOR-

Bridge 4 having a cached path at its alternate port to tMATION state machine when it receives the new information
retired root, bridge 1, believes this stale information ® HClause 17.27). Note that the agreement sent at t11 sets the
better than the fresh information it received at 4p2 fromgei SYNced flag of 3p4 to true.

2. Thus bridge 4 decides to use this stale information ancemak Bridge 3 also passes on the information to bridge 4 at t17.
its alternate port its new root port. This change of the rast p Then at t18 bridge 2 receives the information sent at t10
involves a synchronization operation (sync) that templyrar which makes it believe that it is the root bridge. However
blocks 4p2 until a proposal/agreement handshake is doie witcan neither pass on the information to bridge 3 nor send
bridge 2, as described ifClauses 17.29.2 & 17.29.3) of the back a response to the proposal coming along with the new
RSTP specification [2]. The temporary blocking of 4p2 occutsformation from bridge 4. This is because both 2p4 and
at t5. 2p3 have reached their TxHoldCount limit preventing them

Then bridge 4 sends a BPDU to bridge 2 at t6 informing ftom sending any BPDUs during this clock tick. The fresh
that bridge 4 has a path to a better root bridge, bridge 1, witiformation that conveys bridge 2 should be the root is estill
cost 60 and proposes to be bridge 2's designated bridge. at bridge 2 as a result.

After blocking 4p2, it is now safe for bridge 4 to unblock At t19, bridge 4 receives the agreement sent by bridge 2
its new root port so it unblocks 4p3 at t7. at t14. However this received BPDU is sent through a root
Since a new port, 4p3, has gone forwarding, this constitutgsrt with better information than that stored at 3p4. Thies th
a topology change event and thus bridge 4 sends a topologgssage is discarded based(@hauses 17.21.8 & 17.27) of

change message to bridge 3 at t8. the RSTP specification [2].

Time | BPDU Direction | BPDU Contents (Root, Cost[, Flags]) Comments

t1 B2 — B3 2,0

t2 B2 — B4 2,0

t3 B3 — B2 2, 20, Agreement

t4 B3 — B4 2,20

5 Block 4p2, B4 changes its root port, sync operation.

t6 B4 — B2 1, 60, Proposal

t7 Unblock 4p3, new root port goes forwarding.

8 B4 — B3 1, 60, Topology Change, Agreemen

9 B4 — B2 1, 60, Topology Change, Proposal

t10 B4 — B2 2, 40, Topology Change, Proposal

t11 B4 — B3 2, 40, Topology Change, Agreemen

t12 Block 2p3, proposal arrives from B4, sync operation at B2.

113 B2 — B3 1, 80, Proposal

t14 B2 — B4 1, 80, Agreement

t15 Topology Change/Agreement arrives at B3 but with a bettenify vector than
the port's priority vector. Invalid agreement, ignoré@lauses 17.21.8 & 17.27)

t16 B3 — B2 1, 100, Topology Change, Agreemept

t17 B3 — B4 1, 100

118 B2 updates its state to be the root bridge, cannot propagatenformation
through its designated ports, 2p3 and 2p4, as they haveeedbkir TxHoldCount.

t19 Agreement arrives at B4 but with a better priority vectorrtlihe port’s priority vector.
Invalid agreement, ignoreqClauses 17.21.8 & 17.27)

t20 Agreement arrives at B2 but with a better priority vectorrtlihe port’s priority vector.
Invalid agreement, ignoreqClauses 17.21.8 & 17.27)

t21 BPDU from bridge 3 arrives at bridge 4, but no BPDU is sent tdde 2

since 4p2 has reached its TxHoldCount.
1, 120, Topology Change, Proposal| Occurs after a clock tick at B4 decrementing TxCount. |

(22 [B4—B2

[123] | | Reroot at B2, 2p4 is the new root port; sync, 2p3 is alreadgkeld. |
t24 B2 — B3 1, 140, Topology Change, Proposal| Occurs after a clock tick at B2 decrementing TxCount.
t25 B2 — B4 1, 140, Topology Change, AgreemehtAlso occurs after a clock tick at B2 decrementing TxCount.
t26 Unblock 4p2, agreement arrives.
t27 B3 — B2 1, 160, Topology Change, Agreement
128 B3 — B4 1, 160, Topology Change
[129] | | Unblock 2p3, agreement arrives.

TABLE |
AN EXAMPLE SEQUENCE OF EVENTSAFTER FAILURE OF THE ROOT BRIDGE INFIGURE 1, THAT LEADS TO A FORWARDING LOOR

Similarly, at t20, bridge 2 receives a stale agreement sé8PDU until the clock ticks.
at t16 and thus the stale agreement gets discarded. When bridge 2’s clock ticks at t24, it sends the proposal

At 21, bridge 4 receives the BPDU sent at t17. But sincd©ng with the new information to bridge 3. Also, after brdg
4p2 has reached its TxHoldCount limit, BPDU transmissiofs Clock ticks it sends the agreement to bridge 4 at 125 for

to bridge 2 is not allowed. the proposal sent at t22. _ _
Bridge 4 receives the agreement from bridge 2 at t26 causing

When bridge 4's clock ticks at t22, bridge 4 passes tkf?to unblock 4p2.
information it received from bridge 3 to bridge 2: Bridge 4_ At 27, bridge 3 sends the agreement to bridge 2 responding
also includes the proposal flag as it never received a vajigly,o nroposal sent at t25 by bridge 2. Although the received
agreement from bridge 2 and thus theoposing flag is ytormation is worse than the information bridge 3 had eayli
still set at 4p2. it sends the agreement right away without doing a sync
At t23, the stale information from bridge 4 conveying thapperation(Lemma 1).
bridge 1 is the root arrives at bridge 2 and eliminates thg onl Bridge 3 also passes on the new information to bridge 4 at
copy of the fresh information stalled at bridge 2 that corsvey28. This makes port 3p4 reach its TxHoldCount limit based
bridge 2 is the root. Subsequently, only the stale inforamti upon messages sent at t4, t17 and t28.
conveying bridge 1 is the root remains in the network until it The agreement sent at t27 reaches bridge 2 at t29 causing
is aged out. This stale information causes bridge 2 to beliebridge 2 to unblock 2p3. All ports in the network cycle are
again that bridge 4 is its designated bridge and that pori2p4ow forwarding. Thus a forwarding loop is created.
its new root port, this causes bridge 2 to do a sync operationFrom this point on until the end of the count to infinity,
Port 2p3 is already blocked, and the sync operation does tioé¢ BPDUs will all convey bridge 1 is the root. None of them
change that. Since 2p3 has reached its TxHoldCount limitjll carry a proposal flag. No bridge will perform any sync
it cannot send the new information along with the proposaperation. Thus the forwarding loop will persist until theuot

to infinity ends when the stale information conveying bridge
1 is the root is aged out.

REFERENCES

[1] K. Elmeleegy, A. L. Cox, and T. S. E. Ng. On Count-to-Infininduced
Forwarding Loops in Ethernet Networks. |&BEE Infocom 2006, Apr.
2006.

[2] LAN/MAN Standards Committee of the IEEE Computer SogietEEE
Standard for Local and metropolitan area networks: Medieeas Control
(MAC) Bridges - 802.1D, 2004.

[3] A. Myers, T. S. E. Ng, and H. Zhang. Rethinking the Servidedel:
Scaling Ethernet to a Million Nodes. [hhird Workshop on Hot Topics
in networks (HotNets-111), Mar. 2004.

