
Supplemental Note on Count-to-Infinity Induced
Forwarding Loops in Ethernet Networks

Khaled Elmeleegy, Alan L. Cox, T. S. Eugene Ng
Department of Computer Science

Rice University

Abstract— Ethernet forwarding loops are dangerous. Packets
can be trapped in a loop and cause network congestion and
instability. Furthermore, packet forwarding can be disrupted due
to the pollution of forwarding tables. In this report, we show that
the “count-to-infinity” behavior in Ethernet’s Rapid Spann ing
Tree Protocol (RSTP) can lead to a temporary forwarding
loop. Additionally, we identify the causes for the formation of
this forwarding loop: races between protocol control packets
traversing the network, races between RSTP state machines,and
nondeterminism within RSTP state machines. Finally, we present
an annotated trace of RSTP events for an example network as
an existential proof of the formation of a forwarding loop during
count to infinity.

I. I NTRODUCTION

Myers et al. [3] observed that Ethernet’s distributed for-
warding topology computation protocol – the Rapid Spanning
Tree Protocol (RSTP) [2] – can suffer from a classic “count-
to-infinity” problem. Elmeleegyet al. [1] explained the origin
of this problem in detail, studied its behavior under a wide
range of scenarios, and proposed a simple solution, RSTP with
Epochs, that addresses the count to infinity problem.

In addition, Elmeleegyet al. observed that a forwarding loop
can be formed during count to infinity. This report supplements
Elmeleegyet al. and provides a detailed explanation of how
a forwarding loop can form during count to infinity in RSTP.

Such forwarding loops are serious problems. During the
count to infinity, which can last tens of seconds even in a
small network, a forwarding loop can cause a network to
become highly congested by packets that persist in the loop.
Moreover, packet forwarding can fail due to the pollution of
forwarding tables with false information that is learned from
looping packets.

There are three key ingredients for the formation of a
forwarding loop during count to infinity:

1) Count to infinity is initiated around a physical network
cycle. This behavior and its cause are described by
Elmeleegyet al. [1]. This results in the propagation of
BPDUs carrying both fresh and stale information around
the network cycle.

2) During count to infinity, the fresh information stalls
at a bridge because the bridge port has reached its
TxHoldCount and subsequently the stale information is
received at the bridge. As as result, the fresh information
is eliminated from the network. BPDUs carrying stale
information continue to propagate around the network

2
1, 20

1
1, 0

3
1, 40

4
1, 40

Alternate port

Root port

Designated port

Fig. 1. An example network of bridges.

cycle, and the count to infinity lasts until the stale
information is aged out.

3) The “sync” hand-shake operation that would have pre-
vented a forwarding loop is not performed by a bridge
when a proposal BPDU carrying worse information
is received at its root port, allowing the forwarding
loop to be formed. This behavior is a result of race
conditions that exist between the RSTP state machines
and nondeterministic transitions within state machines.
These race conditions and nondeterministic transitions
have not been previously documented. Explaining them
is a key contribution of this report.

The rest of this report explains these problems in detail.
First, Section II explains the aforementioned race conditions
and nondeterministic transitions in RSTP in detail. Then, Sec-
tion III provides a detailed RSTP event trace for an example
network that serves as an existential proof of the formationof
a forwarding loop during count to infinity in RSTP.

II. RACE CONDITIONS

In this section we describe the race conditions between
the RSTP state machines that allow for the formation of the
forwarding loop. The RSTP state machines can be found in
the 802.1D (2004) specification [2]. Those state machines
execute concurrently and communicate with each other via
shared variables. The transitions between states are controlled
by Boolean expressions that often involve multiple variables.
As stated in the specification, “the order of execution of
state blocks in different state machines is undefined exceptas
constrained by their transition conditions.” Thus, many races
naturally occur between the RSTP state machines and some



of them can be harmful.
We will use the example network as shown in Figure 1 to

illustrate how the races play out. A box represents a bridge;
the top number in the box is the bridge ID, the lower set
of numbers represent the root bridge ID as perceived by the
current bridge and the cost to this root. The link costs are all
20. This value is not important though.

In this section and the rest of this report we use the notation
ipj to name a port of a bridge, whereipj means the port at
bridge i connecting it to bridgej. We use a fixed-width font
to refer to state machine variables, all capital letters to refer
to state machine names, and a fixed-width font with all capital
letters to refer to state names.

We present two lemmas that describe the races and prove
their existence. The two lemmas are similar. Lemma 1 differs
from Lemma 2 in that it handles the case where the bridge in
question receives the new information alongwith a proposal
as explained later in the section.

Lemma 1: Race conditions exist if a bridge receives, from
its designated bridge at its root port, worse information than
what it currently has and this received information comes
along with a proposal that would not result in the bridge
changing its root port. These race conditions can cause the
bridge to respond with an agreement to its designated bridge
without doing a sync operation.

Proof: Consider if bridge 1 in Figure 1 dies, causing
the network of bridges to start counting to infinity. Suppose
bridge 2 is currently bridge 3’s designated bridge, and bridge
2 proposes information to bridge 3 that is worse than the
information currently at bridge 3 but this does not result in
a change of the root port of bridge 3. The following sequence
of events shows how an agreement can be sent by bridge 3 in
response to the proposal without bridge 3 performing a sync
operation.

1) The PORT INFORMATION state machine(Clause
17.27) is run on 3p2 when the new information with
the proposal from bridge 2 is received in a BPDU.
The information is worse than the port priority vector,
but it is SuperiorDesignatedInfo. The relevant
outcomes for 3p2 are:reselect=T, selected=F
and agree=F.

2) The PORT ROLE SELECTION state machine(Clause
17.28) must be run next, and the relevant outcomes for
3p2 are: reselect=F, selected=T, agree=F
and updtInfo=F; the relevant outcome for 3p4 is:
updtInfo=T.

3) Now, two possible executions can happen depending on
which of the two state machines runs next: (a) run the
PORT INFORMATION state machine on 3p4, or (b) run
the PORT ROLE TRANSITION state machine(Clause
17.29) on 3p2.
Suppose (b) runs first. Because thesynced flag
for 3p4 is only reset in the PORT INFORMATION
state machine when (a) runs, running (b) first al-
lows (allSynced && !agree) and (proposed
&& !agree) to both be true. Thus, this nondetermin-

ism in the PORT ROLE TRANSITION state machine
allows it to enter theROOT AGREED state, instead of the
presumed intended transition into theROOT PROPOSED
state.
The relevant outcome from this transition is that
agree=T at 2p3. Thus, an agreement can be sent
to bridge 2 immediately. Moreover,setSyncTree()
never gets executed, so thesync flag remains false for
3p4.
Now (a) runs and theUPDATE state is entered. The rel-
evant outcomes for 3p4 are:agreed=F, synced=F
and updtInfo=F.

4) Now, since(selected && !updtInfo) is true for
3p4, the PORT ROLE TRANSITION state machine gets
run for 3p4.
Since (b) was run first, and theROOT AGREED
state is taken instead of theROOT PROPOSED state,
setSyncTree() never got executed, and sosync
remains false for 3p4.
This means none of the transitions in the PORT ROLE
TRANSITION state machine for 3p4 can be taken. The
machine does nothing interesting. In particular, it does
not transition toDESIGNATED DISCARD as presumed
intended because thesync flag is false.
Note that thesynced flag at 3p4 gets set to true as
soon as bridge 3 receives a BPDU with the agreement
flag from bridge 4.

Lemma 2: Race conditions exist if a bridge receives, from
its designated bridge at its root port, worse information than
what it currently has and this received information comes
along without a proposal that would not result in the bridge
changing its root port. These race conditions can cause the
bridge to respond with an agreement to its designated bridge.

Proof: We will again provide an existential proof similar
to that given in Lemma 1. Consider that bridge 1 dies, causing
the network of bridges to start counting to infinity. Suppose
bridge 2 is currently bridge 3’s designated bridge, and bridge
2 transmits worse information than what bridge 3 currently
has. Also suppose that this information is transmittedwithout
a proposal to bridge 3 and this information does not result in
a change of the root port. The following sequence of events
shows how an agreement can be sent by bridge 3 in the
absence of a proposal.

1) The first two events are identical to (1) and (2) from the
proof of Lemma 1.

2) Now, two possible executions can happen depending on
which of the two state machines runs next: (a) run the
PORT INFORMATION state machine on 3p4, or (b) run
the PORT ROLE TRANSITION state machine on 3p2.
Suppose (b) runs first. Because thesynced flag
for 3p4 is only reset in the PORT INFORMATION
state machine when (a) runs, running (b) first allows
(allSynced && !agree) to be true. Thus, the
PORT ROLE TRANSITION state machine enters the



ROOT AGREED state.
The relevant outcome for this transition is thatagree=T
at 2p3. Thus, an agreement can be sent to bridge 2
immediately.
Now (a) runs and theUPDATE state is entered. The rel-
evant outcomes for 3p4 are:agreed=F, synced=F
and updtInfo=F.
Also note that thesynced flag at 3p4 gets set to true as
soon as bridge 3 receives a BPDU with the agreement
flag from bridge 4.

III. F ORMATION OF A FORWARDING LOOP: AN EXAMPLE

In this section, using a trace of protocol events, we show
that the count-to-infinity in RSTP can lead to a forwarding
loop. Table I shows a trace of events after the failure of the
root bridge, bridge 1, in the network shown in Figure 1. The
first column of the table shows the time of occurrence for each
event in increasing order. The second column is used if the
event is a BPDU transmission, where it shows the sender and
receiver bridges of the BPDU. The third column shows the
contents of the BPDU if this is a BPDU transmission event.
The fourth column shows additional comments describing the
event.

Assume that bridge 1 has died right after bridge 2 has sent
out a Hello message but before its clock has ticked. Thus, the
Transmission Count (TxCount) is one for ports 2p3 and 2p4
and zero for ports 3p2, 3p4, 4p2, and 4p3.

Also assume that bridges use a Transmission Hold Count
(TxHoldCount) value of 3. Thus, each port can transmit at
most 3 BPDUs per clock tick. After the death of bridge 1,
bridge 2 will declare itself to be the new root and propagate
this information via BPDUs at t1 and t2.

At t3, bridge 3 will send back an agreement to bridge 2
as the information received by bridge 3 is worse than the
information it had before.(Lemma 2)

At t4, bridge 3 will pass the information it received from
bridge 2 to bridge 4.

Bridge 4 having a cached path at its alternate port to the
retired root, bridge 1, believes this stale information to be
better than the fresh information it received at 4p2 from bridge
2. Thus bridge 4 decides to use this stale information and make
its alternate port its new root port. This change of the root port
involves a synchronization operation (sync) that temporarily
blocks 4p2 until a proposal/agreement handshake is done with
bridge 2, as described in(Clauses 17.29.2 & 17.29.3) of the
RSTP specification [2]. The temporary blocking of 4p2 occurs
at t5.

Then bridge 4 sends a BPDU to bridge 2 at t6 informing it
that bridge 4 has a path to a better root bridge, bridge 1, with
cost 60 and proposes to be bridge 2’s designated bridge.

After blocking 4p2, it is now safe for bridge 4 to unblock
its new root port so it unblocks 4p3 at t7.

Since a new port, 4p3, has gone forwarding, this constitutes
a topology change event and thus bridge 4 sends a topology
change message to bridge 3 at t8.

Bridge 4 also sends another topology change message to
bridge 2 at t9.

At t10, the information from bridge 3 announcing bridge
2 to be the root arrives at bridge 4, bridge 4 then passes on
this information to bridge 2, since 4p2’sproposing flag is
still set, the new message is sent along with a proposal flag.
Now port 4p2 has reached its TxHoldCount limit. 4p2 has sent
three messages at t6, t9 and t10. Thus this port can not send
any more BPDUs during this clock tick.

Then bridge 4 sends back an agreement to bridge 3 at t11
for the information it received since this information is worse
than what it had.(Lemma 2)

At t12 bridge 2 receives the proposal along with the new
information from bridge 4 and makes 2p4 its new root port
in response to the new information. This leads to bridge 2
performing a sync operation blocking 2p3.

Then at t13 bridge 2 passes on the new information to bridge
3 proposing to be bridge 3’s designated bridge.

At t14, bridge 2 responds to bridge 4’s proposal with an
agreement, notifying bridge 4 that it agrees to bridge 4 being
its designated bridge. Note that now both ports 2p3 and 2p4
have reached their TxHoldCount limit. 2p3 has sent a Hello
message before bridge 1 died, then two more messages at t1
and t13. 2p4 has sent a Hello message as well and two more
messages at t2 and t14. Thus both ports cannot send any more
BPDUs during this clock tick.

At t15, bridge 3 receives the topology change/agreement
sent by bridge 4 at t8. However this received BPDU is sent
through a root port with better information than that storedat
3p4. Thus the message is discarded based on(Clauses 17.21.8
& 17.27) of the RSTP specification [2].

When bridge 3 receives the proposal sent by bridge 2
at t13, it replies with an agreement at t16. This is be-
cause the information bridge 3 received is better than what
it had before, so theagree flag does not get reset by
betterorsameinfo() (Clauses 17.21.1). When 3p2 en-
ters theSUPERIOR DESIGNATED state in the PORT INFOR-
MATION state machine when it receives the new information
(Clause 17.27). Note that the agreement sent at t11 sets the
synced flag of 3p4 to true.

Bridge 3 also passes on the information to bridge 4 at t17.
Then at t18 bridge 2 receives the information sent at t10

which makes it believe that it is the root bridge. However
it can neither pass on the information to bridge 3 nor send
back a response to the proposal coming along with the new
information from bridge 4. This is because both 2p4 and
2p3 have reached their TxHoldCount limit preventing them
from sending any BPDUs during this clock tick. The fresh
information that conveys bridge 2 should be the root is stalled
at bridge 2 as a result.

At t19, bridge 4 receives the agreement sent by bridge 2
at t14. However this received BPDU is sent through a root
port with better information than that stored at 3p4. Thus the
message is discarded based on(Clauses 17.21.8 & 17.27) of
the RSTP specification [2].



Time BPDU Direction BPDU Contents (Root, Cost[, Flags]) Comments

t1 B2 → B3 2, 0
t2 B2 → B4 2, 0

t3 B3 → B2 2, 20, Agreement
t4 B3 → B4 2, 20
t5 Block 4p2, B4 changes its root port, sync operation.
t6 B4 → B2 1, 60, Proposal
t7 Unblock 4p3, new root port goes forwarding.
t8 B4 → B3 1, 60, Topology Change, Agreement
t9 B4 → B2 1, 60, Topology Change, Proposal

t10 B4 → B2 2, 40, Topology Change, Proposal
t11 B4 → B3 2, 40, Topology Change, Agreement
t12 Block 2p3, proposal arrives from B4, sync operation at B2.
t13 B2 → B3 1, 80, Proposal
t14 B2 → B4 1, 80, Agreement
t15 Topology Change/Agreement arrives at B3 but with a better priority vector than

the port’s priority vector. Invalid agreement, ignored.(Clauses 17.21.8 & 17.27)

t16 B3 → B2 1, 100, Topology Change, Agreement
t17 B3 → B4 1, 100
t18 B2 updates its state to be the root bridge, cannot propagate the information

through its designated ports, 2p3 and 2p4, as they have reached their TxHoldCount.
t19 Agreement arrives at B4 but with a better priority vector than the port’s priority vector.

Invalid agreement, ignored.(Clauses 17.21.8 & 17.27)

t20 Agreement arrives at B2 but with a better priority vector than the port’s priority vector.
Invalid agreement, ignored.(Clauses 17.21.8 & 17.27)

t21 BPDU from bridge 3 arrives at bridge 4, but no BPDU is sent to bridge 2
since 4p2 has reached its TxHoldCount.

t22 B4 → B2 1, 120, Topology Change, Proposal Occurs after a clock tick at B4 decrementing TxCount.

t23 Reroot at B2, 2p4 is the new root port; sync, 2p3 is already blocked.

t24 B2 → B3 1, 140, Topology Change, Proposal Occurs after a clock tick at B2 decrementing TxCount.
t25 B2 → B4 1, 140, Topology Change, AgreementAlso occurs after a clock tick at B2 decrementing TxCount.

t26 Unblock 4p2, agreement arrives.
t27 B3 → B2 1, 160, Topology Change, Agreement
t28 B3 → B4 1, 160, Topology Change

t29 Unblock 2p3, agreement arrives.

TABLE I

AN EXAMPLE SEQUENCE OF EVENTS, AFTER FAILURE OF THE ROOT BRIDGE INFIGURE 1, THAT LEADS TO A FORWARDING LOOP.

Similarly, at t20, bridge 2 receives a stale agreement sent
at t16 and thus the stale agreement gets discarded.

At t21, bridge 4 receives the BPDU sent at t17. But since
4p2 has reached its TxHoldCount limit, BPDU transmission
to bridge 2 is not allowed.

When bridge 4’s clock ticks at t22, bridge 4 passes the
information it received from bridge 3 to bridge 2. Bridge 4
also includes the proposal flag as it never received a valid
agreement from bridge 2 and thus theproposing flag is
still set at 4p2.

At t23, the stale information from bridge 4 conveying that
bridge 1 is the root arrives at bridge 2 and eliminates the only
copy of the fresh information stalled at bridge 2 that conveys
bridge 2 is the root. Subsequently, only the stale information
conveying bridge 1 is the root remains in the network until it
is aged out. This stale information causes bridge 2 to believe
again that bridge 4 is its designated bridge and that port 2p4is
its new root port, this causes bridge 2 to do a sync operation.
Port 2p3 is already blocked, and the sync operation does not
change that. Since 2p3 has reached its TxHoldCount limit,
it cannot send the new information along with the proposal

BPDU until the clock ticks.
When bridge 2’s clock ticks at t24, it sends the proposal

along with the new information to bridge 3. Also, after bridge
2’s clock ticks it sends the agreement to bridge 4 at t25 for
the proposal sent at t22.

Bridge 4 receives the agreement from bridge 2 at t26 causing
it to unblock 4p2.

At t27, bridge 3 sends the agreement to bridge 2 responding
to the proposal sent at t25 by bridge 2. Although the received
information is worse than the information bridge 3 had earlier,
it sends the agreement right away without doing a sync
operation(Lemma 1).

Bridge 3 also passes on the new information to bridge 4 at
t28. This makes port 3p4 reach its TxHoldCount limit based
upon messages sent at t4, t17 and t28.

The agreement sent at t27 reaches bridge 2 at t29 causing
bridge 2 to unblock 2p3. All ports in the network cycle are
now forwarding. Thus a forwarding loop is created.

From this point on until the end of the count to infinity,
the BPDUs will all convey bridge 1 is the root. None of them
will carry a proposal flag. No bridge will perform any sync
operation. Thus the forwarding loop will persist until the count



to infinity ends when the stale information conveying bridge
1 is the root is aged out.

REFERENCES

[1] K. Elmeleegy, A. L. Cox, and T. S. E. Ng. On Count-to-Infinity Induced
Forwarding Loops in Ethernet Networks. InIEEE Infocom 2006, Apr.
2006.

[2] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE
Standard for Local and metropolitan area networks: Media Access Control
(MAC) Bridges - 802.1D, 2004.

[3] A. Myers, T. S. E. Ng, and H. Zhang. Rethinking the ServiceModel:
Scaling Ethernet to a Million Nodes. InThird Workshop on Hot Topics
in networks (HotNets-III), Mar. 2004.


