
Green, Yellow, Yield: End-Host Traffic Scheduling

for Distributed Deep Learning with TensorLights

Xin Sunny Huang

Rice University

Ang Chen

Rice University

T. S. Eugene Ng

Rice University

Abstract—The recent success of Deep Learning (DL) in a
board range of AI services has led to a surging amount of
DL workloads in production clusters. To support DL jobs at
scale, the parameter server (PS) architecture is the most popular
approach for distributing the computation in a compute cluster.
Concurrent DL jobs consisting of PS tasks and worker tasks
are typically launched on available compute nodes by a cluster
resource manager to ensure high cluster resource utilization. As a
PS needs to distribute model updates to every remote worker, its
communication has very large fan-out. We observe that network
contention among colocated PSes would cause stragglers among
workers, resulting in application performance degradation and
resource under-utilization. To mitigate the straggler effect, we
propose TensorLights, which introduces traffic prioritization at
host NICs to manage traffic contention among PSes. We evaluate
TensorLights experimentally and show that it effectively miti-
gates stragglers, improves the average completion time of DL
applications by up to 31%, and increases resource utilization.
TensorLights is highly practical as it provides benefits without
needing changes to the DL software stack.

I. INTRODUCTION

Today, deep learning (DL) has gained tremendous success

in a wide variety of AI services. Besides classic machine

learning problems such as image recognition [1] and language

processing [2], deep learning has also been applied to prob-

lems in system security [3], network congestion control [4],

database index structures [5], power grid scheduling [6], and

a long list of other challenging problems that conventionally

rely on carefully-designed heuristics or manual control. As a

result, DL has become a surging workload in today’s compute

clusters. Training a complex model on a large dataset usually

requires intense computation and network communication.

To achieve a high accuracy, these applications usually run

for a long time, ranging from hours [7] to days [8] and

even months [9]. The DL workload will continue to grow,

and therefore, improving the efficiency of these emerging

applications has become a crucial challenge in a modern

compute cluster.

To support computation on complex models and large-scale

datasets, training DL models in a distributed mode is beneficial

in several ways. For certain DL jobs, a single machine is

insufficient due to limited compute power and storage [8].

Distributed DL can also exploit the parallelism in a DL job

to speed up the application [8, 10, 11]. Even for a job

that has similar performance running on a single machine

as running on distributed machines, dividing the compute

workloads into multiple machines helps the job to start earlier,

because in a production environment, it is usually easier to

find a collection of machines with the required resources for

the divided tasks, and less likely to find a single machine

with sufficient capacity for the aggregate resource demand of

a DL job, which is typically large [12]. With distributed DL,

divided tasks from concurrent DL jobs are then launched on

any available compute nodes by a cluster resource manager to

ensure high cluster resource utilization [13].

Distributed training using the parameter server (PS) archi-

tecture has gained popularity due to its architectural simplicity

and scalability, and it is widely supported by a range of

distributed DL frameworks [14, 15, 16, 17, 18]. We will

discuss this architecture in more detail in Section II. The

PS architecture leverages a logically centralized PS to work

with a number of remote workers. The PS communicates

with all remote workers back and forth to exchange the

model parameters, so the communication at the PS is usually

intense with high fan-in and high fan-out. Therefore, the

communication efficiency of the PS plays a crucial role in

the performance of a distributed DL application.

Because of the heavy communication at the PS, traffic

contention among PSes from concurrent DL jobs would

lead to stragglers among workers and therefore performance

degradation of the applications (Section III). We analyze the

straggler effect and identify one cause of such inefficiency

to be the conventional packet scheduling policy at the host

NIC (Section IV). Based on these observations, we propose

TensorLights, a traffic scheduler for the end-host NIC to mit-

igate the straggler effect for distributed DL. In contrast to the

conventional first-come-first-serve traffic scheduling policy,

TensorLights applies application-aware traffic prioritization to

ensure that workers of the same job progress at a similar pace,

so as to avoid imbalanced waiting time among workers that

leads to stragglers. This not only improves application per-

formance, but also increases machine utilization. In addition

to using traffic priorities to mitigate stragglers, TensorLights

also provides fairness among concurrent applications, which

is desirable for monitoring the accuracy progress of a set of

related DL models being trained concurrently.

TensorLights is a lightweight approach readily deployable

in modern clusters without having to modify applications,

the cluster scheduler, or the underlying hardware. This is

in contrast to existing works [13, 19, 20, 21, 22], which

require modifications of the distributed DL stacks. We im-

plement TensorLights in Linux and evaluate its performance



in a 21-server testbed. The experimental results show that

TensorLights improves the average job completion time for

distributed DL applications by up to 31%, and leads to higher

machine utilization. Together with its lightweight design, Ten-

sorLights provides a practical strategy to support distributed

DL efficiently at scale in a cluster.

II. BACKGROUND

We begin with a brief overview on the life cycle of a

distributed DL job. Then we discuss how a large amount of

distributed DL jobs are supported in a cluster at scale.

PS vs. worker: Distributed DL based on the parameter server

architecture leverages a logically centralized PS to manage the

model parameters. Figure 1 illustrates an example workflow

of this architecture. The PS manages the trained model and

communicates with a number of workers, which concurrently

work on the training data. Each worker calculates, based on

the worker’s local copy of the model, the gradients of model

parameters for a batch of samples, i.e. a small fraction of

the training data. Local batch size1 describes the number of

samples contained in a batch processed by one worker, which

typically ranges from a few to hundreds of samples [20, 23],

depending on the worker’s compute power.

Communication patterns: The communication between a

worker and the PS proceeds in iterations (Figure 1). Each

worker will wait for the model update from the PS to start

computing on a new local batch with the latest model reported

by the PS. As soon as a worker finishes processing a local

batch, it sends the gradient update to the PS. Upon receiving

the gradient update, PS modifies its local copy of the model to

include the updated gradients. The model update and gradient

update to/from a worker in each iteration are typically of the

same size, i.e. the total data size of the model parameters.

In the common case of synchronous training, the PS applies

a barrier to wait for the gradient updates from all workers,

before sending back the model update to any worker. The

barrier, which marks the end of one iteration, ensures the

models sent to all workers are identical and reflect the ag-

gregated gradients from all workers in the last iteration. It is

also possible to train a model asynchronously: after receiving

the gradient update from a worker, the PS immediately sends

back the latest model to the worker, so that the worker may

continue to process the next local batch without waiting for

other workers. This allows each worker to proceed at their

own pace, but gradients computed by each worker are usually

based on a different version of the model. Consequently, the

asynchronously trained models may be less accurate [24] due

to the potential staleness of models and gradient updates across

workers. In this work, we focus on synchronous training which

usually results in more accurate models [24, 25].

Local vs. global steps: The progress of a worker can be

measured by the number of local batches processed, i.e. local

1 The batch size and mini-batch size in prior literature are vaguely defined,
which also refer to the total number of samples processed in one iteration.
For clarity, we use local batch size.

PS

wk
2

wk
1

time

t
0

t
1

t
2

t
5

t
6

model 
update

t
3

t
4

gradient
update

barrier

next iterationone iteration

Fig. 1: Workflow of a distributed DL application based on the

parameter server architecture. The example DL job has one

PS and two remote workers, wk1 and wk2.

steps. The global step of a DL job describes the total number

of local steps performed by all workers. In the example of

Figure 1, at t3 (or t5), wk1 (or wk2) finishes processing one

local batch, and therefore the local step of wk1 (or wk2)

increases to 1. At t4 (or t6), the PS receives gradient updates

from wk1 (or wk2) and updates its local model. The global

step increases to 1 at t4, and to 2 at t6.

Distributed DL at scale: To search for the best configuration

of a DL model, a common practice is to run a large amount

of concurrent training jobs of the same model on the same

dataset, so that each individual job is configured with a

different combination of model configurations, such as the

parameter initialization methods and the strategies to random-

ize selected parameters to avoid overfitting. This process is

commonly known as the grid search. The grid search is highly

time-consuming and resource intensive, because the number of

possible combinations is exponential.

In production environments, the cluster scheduler, such as

YARN [26], Borg [12], or Mesos [27], is used to manage

the executions of a large amount of distributed DL jobs at

scale [13]. The scheduler picks a machine for a task by

considering a wide variety of factors, such as the task’s

resource request and the actual machine usage. To maximize

utilization, a machine may be scheduled to host a mixture

of different tasks. To achieve fault tolerance, tasks from the

same job are usually spread on different machines across

power and failure domains [12]. When making task scheduling

decisions, the cluster scheduler focuses on the task’s resource

requirement, such as the usage of CPU, memory and storage,

and it is usually agnostic of the task’s functionality (e.g. PS vs.

worker) in the job; thus, colocation of PS tasks can naturally

occur. Cluster designs customized for distributed DL are under

active research [13, 22]. For example, a recent proposal [22]

develops a specialized PS that can service multiple DL jobs

concurrently to improve the communication efficiency for

model/gradient updates.

III. PERFORMANCE MEASUREMENTS

In this section, we characterize the application performance

when multiple concurrent DL jobs coexist in a cluster.

Testbed: Our testbed consists of 21 hosts connected to one

Ethernet switch. Each host has 128 GB RAM and six 3.5 GHz

dual hyper-threaded CPU cores. All links are 10 Gbps. Our



TABLE I: Index of different possible PS placements. The

placement with a higher index tends to be more uniform.

Index PS Placement Index PS Placement

#1 21 #5 5, 5, 5, 6
#2 5, 16 #6 4, 4, 4, 4, 5
#3 10, 11 #7 3, 3, 3, 3, 3, 3, 3
#4 7, 7, 7 #8 1, ..., 1 (all ones)

#1 #2 #3 #4 #5 #6 #7 #8

Placement Index

0

500

1000

1500

2000

J
C

T
 (

s
e

c
o

n
d

)

1
8

3
0

1
4

7
1

1
2

1
3

1
1

5
3

1
1

1
0

1
0

9
2

1
0

7
8

1
0

4
5

lower is better

Fig. 2: Job Completion Time (JCT) of concurrent DL jobs un-

der various placements. Scatters show the completion time for

individual jobs. Bar heights indicate the average completion

time of concurrent jobs in the same experiment. Definitions

of placement indexes are in Table I.

measurements require a controlled network environment to be

meaningful; this requirement prevents us from conducting our

experiments in a public cloud environment (e.g. AWS [28] or

Azure [29]) that has high network interference [30].

Workload: We focus on the performance of grid search as

described in Section II. In each experiment, we deploy 21

concurrent DL jobs. Each job runs synchronous training for

the ResNet-32 [7] model on the CIFAR-10 [31] dataset with

a local batch size of 4, until the global step reaches 30000.

Each worker reads the dataset from the local disk on the host.

There are one parameter server and 20 workers for each job.

In a more general case where one DL job has multiple PSes,

each PS communicates with remote workers in a similar way.

We launch all concurrent jobs almost simultaneously at the

beginning of each experiment with a small delay (0.1 second)

between consecutively launched jobs to avoid overloading

RPC or SSH connections in a short time. We use TensorFlow

(r1.7) [32] and instrumented its public benchmarks [33] with

basic support for our measurements, such as disabling unnec-

essary checkpoints and adding operators in the execution graph

to measure barrier wait time. Our instrumented benchmark

along with the job configurations used for our measurement

is open source [34].

Task placement: In a production environment, a machine can

either host the PS task or the worker task of a DL job. In our

experiment, each DL job has one parameter server on one of

the 21 hosts, and its 20 workers are distributed evenly on the

rest of 20 hosts, so that each host has one worker task. We

have evaluated a range of possible placements of PSes from

concurrent DL jobs, as shown in Table I. For M concurrent

0.00

0.25

0.50

0.75

1.00

C
D

F

(a) Average in one barrier
smaller is better

10
-2

10
-1

10
0

(b) Standard variance in one barrier
smaller is better

Placement Index
#1

#8

Barrier wait time (second) Barrier wait time (second)
10

-2
10

-1
10

0

Fig. 3: Distribution of barrier wait time under two placements.

Each sample describes (a) the average or (b) the standard

variance of waiting time for one barrier among workers of the

same job. Samples include all concurrent jobs under a specific

placement.

jobs each with a PS, the placement of PS tasks is displayed in

the form of m1, ...,mK , where M =
∑K

k=1
mk, which means

mk jobs colocate their PSes on the same host. For example, the

first placement of “21” indicates colocating all concurrent PSes

on the same host, which resembles the architecture design in

[22] where one logical node serves as the shared PS for all

concurrent DL jobs. The last placement of “1, ..., 1” (twenty-

one 1’s) means that each host has one PS.

Observation #1: Impact of placement on performance. Fig-

ure 2 highlights that the performance of concurrent distributed

DL jobs can be highly impacted by the placement of PS

tasks. To quantify this sensitivity, we define the performance

gap as the percentage difference between the best and the

worst performance among all possible placements in our study.

Figure 2 shows the performance gap in terms of average job

completion time can be as large as 75% due to placement of

PS tasks. Because a PS needs to distribute model updates to

all workers, colocated PSes would contend for the outbound

bandwidth on the same physical link to transmit the model

updates. The placement of PSes would result in different levels

of contention among the model update traffic from concurrent

PSes on the same host.

We observe that distributed DL jobs are sensitive to the

network bandwidth contention for two reasons. First, the

model update traffic is bursty, because the PS will wait for

the gradient updates from all workers and then send out

model updates to all workers at once. The bursty traffic

pattern would lead to heavy delays when multiple traffic bursts

overlap in time. Second, because a worker depends on the

model update from the PS to begin computation, a worker

may become a straggler if its model update is delayed as

a result of traffic contention at the PS side. Because of the

barrier enforced in each iteration, any one straggling worker

will delay the whole iteration including the progress of all

other workers in the same job. This effect not only leads to

performance degradation of applications, but also inefficient

machine utilization.

Observation #2: Stragglers under network contention. To

quantify the straggler effect, we measure the waiting time

for each barrier among all workers of the same job. As an



time

(c) TLs-One

PS1 finishes, and 
PS2 catches up

(d) TLs-RR

T 2T 3T0

Rotate piority between “1 > 2” and “2 > 1”

(b) FIFO

22221 2

222
1 2

PS
1

PS
2

... ...

host machine
(a)

to workers

possible
straggler

2

(f) TLs-One (g) TLs-RR(e) FIFO

Assign piority “1>2”

PS2PS
2

P
S
2

P
S

1

PS2PS
2

P
S
2

P
S

1

PS2PS
2

P
S
2

P
S

1

a packet

1 12 2

Fig. 4: Scheduling model update traffic from two concurrent DL jobs. (a) The PSes of two DL jobs are colocated on the same

host machine. (b) FIFO. Workers receiving the tail part of the model updates from PS1 are likely to become stragglers. (c)

TLs-One. (d) TLs-RR. In (b, c, d), the bar area of the same color represents a job’s total amount of model updates sent to all

workers in the same iteration. (e, f, g) Analogy to traffic regulation signals on the road.

example, in a DL job at 30k global steps with 20 workers,

each worker has finished 30k/20 = 1500 local steps and has

correspondingly waited for 1500 barriers. We measure the

elapsed time between a worker entering the barrier and exiting

the barrier, and calculate the average (or the standard variance)

of the elapsed waiting time for a specific barrier among all

workers of the same DL job. Figure 3 shows the distribution

of the average (or standard variance) of barrier wait time under

two extremes of placement in our study.

Heavy traffic contention at the PS leads to longer barrier

wait time. Figure 3a shows the average wait time under

placement #1 (with heavier contention) is 3.71× of that under

placement #8 (with milder contention). Increased barrier wait

time leads to increased life span of the applications.

Besides the average barrier wait time presented above,

we are also interested in the variance of barrier wait time,

which is an indicator of stragglers. Stragglers would force the

peer workers to wait for a longer time while the stragglers

themselves usually wait for a shorter time, which results in

a high variance of barrier wait time. Figure 3b shows the

variance of barrier wait time under placement #1 is 4.37×

of that under placement #8. In sum, the traffic contention at

the PS not only leads to application delays, but also more

stragglers.

IV. TENSORLIGHTS

In this section, we first explain why the straggler effect can

easily arise under the conventional FIFO scheduling policy.

Then we propose TensorLights to mitigate the straggler effect.

A. Stragglers under FIFO Scheduling Policy

Conventional packet scheduling at the host NIC applies

a first-come-first-serve (FIFO) policy to service concurrent

transmissions. However, when model updates from two or

more different jobs overlap in time, the contention among PSes

may introduce random delay in the model updates for one or

more workers of the same job, which would later result in

worker stragglers. Stragglers are harmful for a DL job because

all workers will be delayed by a single straggler.

Figure 4a shows an example of contention between two

PSes of concurrent jobs. Figure 4b demonstrates the straggler

effect under FIFO, where workers receiving the tail part of

the model updates from PS1 are likely to become stragglers.

Unfortunately, the job running on PS2 would not benefit from

sharing the bandwidth in advance with PS1, because workers

that have received earlier parts still have to wait for other

workers receiving the tail part from PS2. Note that such

straggler effect can be more harmful when more concurrent

jobs are contending, because a job can be easily delayed due

to any one straggler, and multiple jobs can be simultaneously

delayed if they each have one or a few stragglers.

B. Mitigating Stragglers with Priority Scheduling

The worker stragglers are a result of contention due to

model updates at the PS, so we focus on regulating the model

update traffic to reduce stragglers. In contrast to the FIFO

scheduling policy, we propose to assign a distinct priority for

the model update traffic of the same DL job. Our proposal is

grounded in the following insights.

Insight #1: Job-level traffic priority mitigates the straggler

effect by reducing the variance of barrier wait time. When

a distinct priority is assigned to the model update traffic for

all workers of the same DL job, workers of a high-priority

job would generally wait for less time, and workers of a

low-priority job would generally wait more. Across jobs with

different priorities, the variance of barrier wait time is reduced.

With less variance of barrier wait time, stragglers are reduced

because workers of the same job are expected to wait for

similar lengths of time.

Insight #2: The communication patterns of a distributed

DL job make it easy to take advantage of the job-level

traffic priority. The life span of a DL job typically ranges

from thousands to millions of iterations [35]. During the

lifetime of a DL job, the traffic patterns between a PS and

the workers, such as the end points and traffic sizes, remain

the same across iterations. This means that, once the job-level

priority is deployed, a DL job would continue to benefit over

multiple iterations. Besides, the communication of a PS is

highly symmetric, because the model update in the outbound

direction is equal in data size to the gradient update in the

inbound direction. Enforcing the priority for model updates



at the PS also indirectly controls the progress of workers and

thus the pace of their gradient updates, which implicitly helps

to schedule the inbound traffic to the PS.

In addition, our proposal also comes with several practical

advantages. First, because we aim at regulating the model

update traffic, the implementation only requires local configu-

ration of traffic priority at the host running PSes (details in

Section V). Second, this approach does not require global

coordination or modifications to the application, the cluster

scheduler or the hardware. Third, manipulating priority is

work-conserving, so that PSes may still exploit the full link

capacity.

We do not constrain how priorities are assigned. For exam-

ple, in grid search where all jobs have the same size of data

in each model update, a random priority assignment can be

adopted. In other cases with concurrent DL jobs of various

sizes of model update, a higher priority can be assigned to a

job with a smaller model update, so as to avoid head-of-line

blocking from a job with larger model update.

In the batch processing mode which allows different

progress of concurrent DL jobs, it suffices to reconfigure

priority assignment upon job arrival and departure. We refer

to such mode of priority assignment as TensorLights-One, or

TLs-One. Figure 4c illustrates the benefits of TLs-One. The

model updates from PS1 are prioritized, so that all receiving

workers may progress as soon as possible, reducing the chance

that any worker becomes a straggler. Model updates from PS2

yield but the transmission would expect to finish at the same

time as in Figure 4b under FIFO.

C. Achieving Fairness with Round-Robin Priority Assignment

We have motivated the benefits of TLs-One. Nevertheless,

applying strict priority can harm fairness among concurrent

jobs, because one job would always be promoted or demoted

over another. However, fairness is desirable in grid search,

because when all search instances have made similar progress,

a DL engineer may compare the accuracy performance of

concurrent grid-search instances. To achieve fairness among

concurrent DL jobs while using priority to mitigate straggler,

we propose to rotate the priority assignment for the contending

jobs once every time interval T . We refer to this version of

TensorLights as TensorLights-Round Robin, or TLs-RR.

Figure 4 illustrates TLs-One and TLs-RR for two jobs with

their PSes on the same host. At t0, two jobs are assigned

priority 1 > 2 under both TLs-One and TLs-RR. Under TLs-

RR at T , the priority is reconfigured to 2 > 1, and later priority

changes back to 1 > 2 at 2T , and so on. TLs-RR resembles the

traffic lights on the road, which rotates the signals of “pass”

and “yield” (“yield” instead of a complete “pause” as in the

real traffic lights) for the contending traffic (Figure 4g). In

contrast to the traffic lights, a “stop” sign asks vehicles to yield

to the contending traffic, and the tie between two ‘stop” signs

is broken by vehicle arrival time. FIFO enforces a “stop” sign

for the “vehicles” (packets) from both “directions” (PS1 and

PS2), which is less efficient because both jobs would suffer

from stragglers due to later arrival model updates.

(a)

TLs-One TLs-RR lower is better

#1 #2 #3 #4

Placement Index

0.00

0.25

0.50

0.75

1.00

1.25

N
o

rm
a

liz
e

d
 J

C
T

FIFO

0
.7
3

0
.8
1

0
.9
8

1
.0
1

0
.8
4

0
.8
7 1
.0
1

1
.0
0

(b)

1 2 8 16

Local Batch Size

0.00

0.25

0.50

0.75

1.00

1.25

FIFO

0
.6
9

0
.7
0 0
.8
3 1
.0
0

0
.8
3

0
.8
3

0
.8
8 1
.0
0

Fig. 5: Normalized Job Completion Time (JCT). The presented

JCT is normalized over that of the same job under FIFO. Scat-

ters show the normalized completion time for individual jobs.

Bar heights indicate the average of normalized completion

time of concurrent jobs in the same experiment. Lower value

is better. (a) Normalized JCT with different placements, under

local batch size of 4. (b) Normalized JCT with different local

batch sizes, under placement #1. In (b), we use the local batch

size as a knob to change the intensity of traffic contension, and

a smaller local batch size leads to heavier traffic contension.

Definitions of placement indexes are in Table I.

TLs-RR mitigates straggler effects by allowing strict priority

during a short interval T . Meanwhile, rotating priority assign-

ments allows each job to make fair progress over a longer time

scale. Because the lifespan of a DL job usually lasts for hours

to days, an interval T in the scale of seconds to minutes is

sufficient to achieve fair progress among concurrent jobs.

V. PERFORMANCE EVALUATION

We evaluate TensorLights under the same settings as de-

scribed in our previous measurements (Section III).

Implementation: We enforce traffic priority with the hierar-

chical token bucket (htb) available in the tc tool on Linux.

In a TensorFlow application, the TCP port numbers for the

PS and workers are fixed for the lifetime of the application.

Therefore, we assign priority for a job based on its PS’s TCP

port number, so that the job’s model update traffic is mapped

to a specific priority band. tc controls outbound traffic at the

sender, so we only need to configure tc on the hosts with

contending PSes and leave other hosts unchanged to limit the

amount of tc reconfigurations. Ideally, a host with contending

PSes should assign a distinct priority for each job. However,

tc only supports a limited number of priority bands. In our

experiments, we only use up to six distinct priority bands, and

multiple jobs may share the same priority band.

We have implemented both TLs-One and TLs-RR based on

tc. For TLs-RR, the reconfiguration interval is T=20 seconds,

which is sufficient for the DL jobs in our experiments that

runs for thousands of seconds. The baseline of comparison

is the default FIFO policy, which does not involve any tc

configurations. TensorLights is open source [34].



0.00

0.25

0.50

0.75

1.00

C
D

F

10 10 10
-2 -1 0

Barrier wait time (second)

FIFO
TLs-One
TLs-RR

(a) Average in one barrier
smaller is better

(b) Standard variance in one barrier
smaller is better

10 10 10
-2 -1 0

Barrier wait time (second)

Fig. 6: Distribution of barrier wait time of various network

scheduling policies under placement #1. This figure reads in a

similar way as Figure 3. Smaller value is better. TensorLights

mitigates straggler effect by reducing the variance of barrier

wait time.

Result #1: TensorLights improves the average completion

time of DL applications. Figure 5a compares the system

efficiency in terms of the average job completion time of

concurrent DL applications. Compared with FIFO, TLs-One

reduces the average job completion time by up to 27%. Under

TLs-RR that achieves job fairness, the average job completion

time is reduced by up to 16%. For the placement with less

model update traffic contention, i.e. placement #4 and above in

our study, TensorLights achieves comparable performance as

FIFO. Because TensorLights is work-conserving, it improves

performance under heavy traffic contention, while preserving

performance in other cases with milder contention. Note that

under the priority assignment of TLs-One, jobs with higher

priority tend to finish earlier and others finish later, which

results in progress differences across concurrent jobs. TLs-RR,

on the other hand, achieves fair progress among concurrent

jobs while improving the system efficiency by mitigating

stragglers.

Result #2: TensorLights improves system efficiency by ef-

fectively reducing straggler. Figure 6 quantifies the straggler

effects with the barrier wait time that we used in the previous

measurements (Section III). As expected, the span of average

barrier wait time in Figure 6a is larger under both TLs-One and

TLs-RR, because jobs with higher priority tend to wait less

while jobs with low priority tend to wait longer. The average

barrier wait time are comparable under the three network

scheduling policies.

The variance of barrier wait time is also important, as it

speaks directly to the straggler effect. Figure 6b shows that

TensorLights effectively reduces the variance of barrier wait

time. Compared with FIFO, the average (or median) variance

of barrier wait time under TLs-One is reduced by 26% (or

40%), and under TLs-RR by 15% (or 30%). These results con-

firm our previous observations that the priority strategy taken

by TensorLights is an effective approach to reduce the variance

of barrier wait time and mitigate stragglers (Section IV).

Result #3: TensorLights can increase machine utilization.

We further quantify the efficiency improvement in terms of

machine utilization. To precisely capture the machine utiliza-

TABLE II: Normalized utilization of CPU and network inter-

face under the placement #1. A host’s normalized utilization is

the average utilization during the “active window”, normalized

over that under FIFO scheduling. The presented utilization is

the average of all hosts of a specific type. Larger value is

better.

Resource type Host type TLs-One TLs-RR

CPU
PS 1.04× 1.03×

Worker 1.13× 1.12×

Network Inbound All 1.20× 1.21×
Network Outbound All 1.20× 1.21×

tion under steady state of the system, we define an active

window as a time period of fixed length when all concurrent

jobs are active. In our study, the active window is between the

100th and the 1250th second after the launch of concurrent

jobs. For each host in our testbed, we measure the userspace

CPU utilization with vmstat, and the network interface

utilization with ifstat. Table II shows the normalized

machine utilization during the active window under placement

#1. Compared with FIFO, TLs-One improves the average CPU

utilization by 4% on the host supporting PS and by 13% on

the hosts supporting workers. In terms of a host’s network

utilization, TLs-One achieves an improvement of 20% on

both the inbound and outbound directions. We also observe

similar improvement under TLs-RR. These results confirm our

previous observations that reducing stragglers helps to improve

machine utilization (Section III). The utilization improvement

would translate into fruitful cost savings in a large-scale

cluster [12].

Result #4: TensorLights can effectively handle contention.

The impact of network scheduling is more significant when

contention among PSes become more intense. To understand

the application performance under various levels of traffic

contention, we test a range of local batch sizes on placement

#1. A smaller local batch size requires less computation

overhead for a worker in each local step, resulting in more

frequent model (and gradient) updates and therefore more

intense traffic contention. In Figure 5b, under more intense

traffic contention due to smaller local batch size, TLs-One

(or TLs-RR) enlarges the improvement over FIFO in terms

of average job completion time to 31% (or 17%). In other

words, TensorLights becomes even more effective for very

heavy traffic contention scenarios.

The recent trends of scaling up DL applications continue to

introduce more traffic contention in the cluster network. At the

individual application level, to speed up computation, recent

trends are to deploy more workers and computation acceler-

ators such as GPUs [11], both of which would lead to even

heavier contention due to larger amount of data exchanged per

iteration and faster iterations. At the cluster level, contention

would also increase as the amount of DL workloads continues

to grow. With more traffic contention expected under these

trends, an efficient traffic scheduling policy would play an



increasingly crucial role to improve application performance

and cluster utilization to support distributed DL at scale.

VI. RELATED WORK

Optimizing communication for distributed DL: A large

body of prior works have explored various techniques to

improve the communication efficiency for distributed DL. At

the level of an individual application, existing works focus

on hiding communication cost in the presence of computation

by (1) increasing the fraction of computation with a larger

local batch size [36], (2) reducing the communication cost

with compressed gradient updates [37, 38], and (3) increasing

overlap between communication and computation with better

ordering of model parameters in transmission [19, 20, 21].

TensorLights is an inter-job traffic scheduler and thus is

complementary to these works – it aims to improve the

communication efficiency of distributed DL in a cluster setting.

At the level of supporting multiple DL applications in a cluster,

[13] proposed a customized cluster scheduler that optimizes

the performance of distributed DL jobs by dynamically ad-

justing the numbers and placement of parameter servers and

workers in each job. [22] proposed a new software/hardware

architecture to accelerate PS communications. The above prior

works require significant modifications to the DL stack at

various layers. In contrast, TensorLights is an end-host traffic

scheduler that does not require changes to the applications,

the cluster scheduler, or the hardware.

Mitigating stragglers in synchronization barrier: Dis-

tributed applications often need to apply a global barrier to

synchronize parallel workers. For example, in a MapReduce-

like application [39, 40, 41], an implicit barrier exists among

all mappers because a reducer needs to wait for the output from

all mappers before the next round of computation. A common

technique to mitigate stragglers is speculative scheduling [24,

42], where a few extra “backup” workers are added to mitigate

stragglers. This approach consumes extra compute resources,

and also requires modifying the application to coordinate with

the extra workers. In contrast, TensorLights consumes no extra

resources and requires no changes to applications.

Network scheduling for distributed applications: Several

recent works [43, 44, 45, 46] have demonstrated the benefits

of leveraging application-level traffic requirements using the

abstraction of Coflows [47] to improve the communication

efficiency for MapReduce-like applications [39, 40, 41, 48].

The communication patterns of a MapReduce-like application

are different from those of a distributed DL application. For

example, a MapReduce-like application usually organizes its

communication in several consecutive stages, and the traffic

patterns, such as the end points involved and traffic sizes,

can be different across stages. In a distributed DL application,

the traffic pattern for each repeated step is fixed during the

lifetime of the application. Furthermore, a DL model can take

up to millions of steps to train [35], while a MapReduce-

like application usually consists of tens of communication

stages [49]. To accommodate the dynamics in Coflows, the

Coflow-based solutions generally apply global coordination

to orchestrate Coflow transmissions. In contrast, TensorLights

only requires traffic priority configurations at local hosts.

VII. FUTURE WORK

Two interesting future directions of this work would be

optimizing communication efficiency for distributed DL (1)

at the cluster scheduler and (2) at the transmission layer.

At the level of the cluster scheduler, an effective approach

to mitigate contention due to model updates is to better

schedule the placement of PS tasks before starting a DL

job. The scheduler may be notified with the task type (e.g.

PS vs. worker) as well as the job type (e.g. distributed DL

vs. MapReduce-like), so that special treatment is applied

when scheduling PS tasks. This approach does not require

aggressively adjusting the application configurations at run

time as in [13]. Nevertheless, under novel cluster architectural

designs [22] where one logical node serves as the shared PS

for multiple DL jobs, the PS location becomes fixed.

At the level of the transmission layer, instead of us-

ing conventional network transmission protocols such as

TCP (e.g., as in PyTorch [15]) or gRPC/HTTP2 (e.g., as

in TensorFlow [14]), a customized protocol to coordinate

model/gradient updates may be deployed, so that the up-

date traffic would be orchestrated by a logically centralized

coordinator, which is similar to the strategies in [43, 50].

However, this approach incurs non-trivial coordination over-

head. It further requires modifications to various layers of the

cluster stack, such as modifying the application to use the

new protocol, modifying the host machines to install necessary

libraries, and even modifying the hardware to provide support

in the switches. Many existing solutions [43, 44, 45, 50, 51]

apply transmission rate control at the sender to orchestrate

traffic. However, inaccurate rate allocation would lead to lower

network utilization.

In summary, these future directions also require careful de-

signs to handle the subtle interactions among the applications,

the scheduler, and the underlying network architecture.

VIII. CONCLUSIONS

We have presented TensorLights, a traffic scheduler at end-

host NICs to mitigate the straggler effect for distributed DL

applications under traffic contention. TensorLights acts like

“traffic lights” for the model update traffic from the PS,

so that contending DL applications take turns to pass or

yield, which is helpful to improve all applications’ barrier

waiting efficiency. Testbed evaluations show that TensorLights

improves the average job completion time for distributed DL

by up to 31%, increasing the utilization of CPUs and network

bandwidth. As the trends of scaling up DL applications

continue to introduce more traffic contention in the cluster

network, an efficient traffic scheduler such as TensorLights

would play an increasingly crucial role to support distributed

DL efficiently at scale.



ACKNOWLEDGMENT

We thank the BOLD Lab members and the anonymous

reviewers for their useful feedback. This research is spon-

sored by the NSF under CNS-1422925, CNS-1718980, CNS-

1801884, and CNS-1815525.

REFERENCES

[1] The ImageNet dataset. http://image-net.org/about-stats.
[2] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+

questions for machine comprehension of text,” in Empirical Methods in

Natural Language Processing (EMNLP), 2016.
[3] M. Abadi and D. G. Andersen, “Learning to protect communications

with adversarial neural cryptography,” arXiv preprint arXiv:1610.06918,
2016.

[4] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in ACM HotNets, 2017.

[5] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in ACM SIGMOD, 2018.

[6] R. Evans and J. Gao. (2016) Deepmind AI reduces Google
data centre cooling bill by 40%. https://deepmind.com/blog/
deepmind-ai-reduces-google-data-centre-cooling-bill-40/ .

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

[8] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information

Processing Systems (NIPS), 2012.
[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of Go without human knowledge,” Nature, 2017.

[10] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: Training
ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[11] H. Mikami, H. Suganuma, Y. Tanaka, Y. Kageyama et al.,
“ImageNet/ResNet-50 training in 224 seconds,” arXiv preprint

arXiv:1811.05233, 2018.
[12] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys, 2015.

[13] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in EuroSys,
2018.

[14] TensorFlow. https://www.tensorflow.org/.
[15] PyTorch. http://pytorch.org/.
[16] Apache MXNet. https://mxnet.apache.org/.
[17] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,

M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging AI applications,” in USENIX OSDI, 2018.

[18] The Microsoft Cognitive toolkit (CNTK). https://www.microsoft.com/
en-us/cognitive-toolkit/ .

[19] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication architec-
ture for distributed deep learning on GPU clusters,” in USENIX ATC,
2017.

[20] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Accelerating
distributed deep learning with communication scheduling,” in SysML,
2019. [Online]. Available: http://arxiv.org/abs/1803.03288

[21] A. Jayarajan, J. Wei, G. A. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN training,” in
SysML, 2019.

[22] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: A rack-scale parameter server for distributed deep
neural network training,” in ACM SoCC, 2018.

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[24] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous SGD,” in International Conference on Learning

Representations (ICLR) Workshop Track, 2016. [Online]. Available:
https://arxiv.org/abs/1604.00981

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in USENIX OSDI, 2016.

[26] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: Yet another resource negotiator,” in ACM SoCC, 2013.

[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in USENIX NSDI, 2011.

[28] Amazon Web Services (AWS). https://aws.amazon.com.
[29] Microsoft Azure Cloud Computing. https://azure.microsoft.com/.
[30] G. Wang and T. E. Ng, “The impact of virtualization on network

performance of Amazon EC2 data center,” in IEEE INFOCOM, 2010.
[31] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

University of Toronto, Tech. Rep., 2009.
[32] TensorFlow on Github. https://github.com/tensorflow/tensorflow.
[33] TensorFlow benchmarks. https://github.com/tensorflow/benchmarks.
[34] TensorLights on Github. https://github.com/TensorLights.
[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in IEEE CVPR, 2016.
[36] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “FireCaffe:

Near-linear acceleration of deep neural network training on compute
clusters,” in IEEE CVPR, 2016.

[37] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems (NIPS), 2017.

[38] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “TernGrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in Neural Information Processing Systems (NIPS), 2017.

[39] Apache Hadoop. http://hadoop.apache.org/.
[40] Apache Tez. http://tez.apache.org.
[41] Apache Hive. http://hive.apache.org.
[42] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving MapReduce performance in heterogeneous environments,”
in USENIX OSDI, 2008.

[43] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in ACM SIGCOMM, 2014.

[44] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in ACM SIGCOMM, 2015.

[45] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: Toward automatically identifying and scheduling coflows in
the dark,” in ACM SIGCOMM, 2016.

[46] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: Near-optimal network design for coflows,” in
ACM SIGCOMM, 2018.

[47] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in ACM HotNets, 2012.

[48] Apache HDFS. https://hortonworks.com/apache/hdfs/.
[49] T. Chiba and T. Onodera, “Workload characterization and optimization

of TPC-H queries on Apache Spark,” in IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), 2016.
[50] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined WAN,” in ACM SIGCOMM, 2013.

[51] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila et al.,
“BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing,” in ACM SIGCOMM, 2015.

http://image-net.org/about-stats
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://www.tensorflow.org/
http://pytorch.org/
https://mxnet.apache.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://arxiv.org/abs/1803.03288
https://arxiv.org/abs/1604.00981
https://aws.amazon.com
https://azure.microsoft.com/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/benchmarks
https://github.com/TensorLights
http://hadoop.apache.org/
http://tez.apache.org
http://hive.apache.org
https://hortonworks.com/apache/hdfs/

