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Abstract

Clos networks are easy to implement, whereas random graphs
have good performance. We propose flat-tree, a convertible
data center network architecture, to combine the best of both
worlds. Flat-tree can change the network topology dynam-
ically, so the data center can be implemented as a Clos net-
work and be converted to approximate random graphs of dif-
ferent sizes. To serve the heterogeneous workloads in data
centers, flat-tree can organize the network into functionally
separate zones each having a different topology. Workloads
are placed into suitable zones that best optimize the perfor-
mance. Simulation results demonstrate that flat-tree has sim-
ilar performance to random graphs.
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1. INTRODUCTION

The fundamental trade-off in data center network design
is easy implementation versus good performance. Clos, or
multi-rooted tree, is the de-facto standard data center net-
work architecture because of easy implementation [[1, [21]].
Figure[2p shows an example Clos network. The central wiring
between switches in adjacent layers are relatively easy to
manage, and the network can be expanded to arbitrary size
by adding stages. Bandwidth oversubscription can occur at
any layer of switches to save cost. Modular Pods are usually
adopted as building blocks to further ease network deploy-
ment and management. However, Clos networks have sub-
optimal throughput, as traffic needs to traverse up and down
the network hierarchy and the resulting inefficiency exacer-
bates oversubscription.

In contrast, random graphs are proven to have optimal through-

put [22} [23]]. Without rigid structures, switches are more di-
rectly connected at shorter path lengths. If implemented us-
ing the same switches and servers as a Clos network, a ran-
dom graph can provide richer bandwidth and effectively al-
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Figure 1: Converter switch configurations

leviate the oversubscription problem. To address the hetero-
geneous workloads in data centers, it is desirable to construct
random graphs at different scales to adapt to the various ser-
vice cluster sizes [0, |8, 9} |17]], e.g. a network-wide random
graph to serve large clusters and regional random graphs as
part of the network to serve small ones. Yet the neighbor-
to-neighbor wiring between random switch pairs are compli-
cated, making real-world implementation a daunting task.

This dilemma poses a natural question: is it possible to
have random-graph-like performance at various scales with
Clos-like implementation simplicity?

We address this question by an unconventional proposal: a
convertible data center network architecture called flat-tree!,
which converts topologies between Clos and approximated
random graphs. We combine the best of both worlds by
building the data center as a Clos network and converting
it to approximate random graphs at different scales.

Flat-tree leverages inexpensive small port-count converter
switches to convert topologies dynamically. By changing the
configurations of the converter switches, cables are rewired
to different outgoing connections, as if they were unplugged
and replugged manually. Flat-tree takes a pragmatic approach
to start from a Clos network and addresses challenges of
flattening the tree structure to approximate random graphs.
Specifically, how to equalize switches in different layers and
relocate servers from edge to aggregation and core switches?
How to break the hierarchy and connect the network core and
edge directly? How to enable connections between switches
in the same layer at minimum wiring complexity?

Flat-tree inherits the merits of packaging and wiring from
Clos networks. It adopts the modular Pod design. Addi-
tional hardware and wiring are packaged in Pods, leaving
the same external connectors as a Clos counterpart. Pods are
connected to core switches with a customized regular wiring
pattern. Adjacent Pods are interconnected through multi-link
side connectors to allow simple neighbor-wise wiring.

"The name “flat-tree” captures the dual nature of the proposed ar-
chitecture. It can function as approximated random graphs (“flat”
networks) and Clos (multi-rooted “tree”). It is as easy to implement
as a “tree” network and has good performance as “flat” networks.
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Figure 2: Example flat-tree network and some achievable topologies. Core switches in stripe, aggregation switches in grid, edge switches in shade, and servers
as circles. Gray lines are connections in the original Clos network, which are replaced with the dashed links connected to converter switches to form flat-tree.
The converter switches show the configuration for approximated random graph. Flat-tree uses a customized wiring pattern to connect Pods to core switches.

Flat-tree can approximate random graphs at different scales,
ranging from a Pod, to a subnetwork comprising multiple
Pods, to the entire network. It can also function as Clos,
which benefits applications that require rich equal-cost re-
dundant links, predictable path length, and rack-level local-
ity. Flat-tree can operate in hybrid mode: the network is
organized into functionally separate zones each having a dif-
ferent topology. Workloads are placed into suitable zones
to optimize their performance. As the workloads change, the
network can be reorganized to adapt to the new requirements.

Simulation results show that the performance of flat-tree is
close to random graphs. Compared to a network-wide ran-
dom graph, the difference in average path length is within
5% and the difference in throughput for large-clustered traf-
fic is negligible. Flat-tree in hybrid mode optimizes traffic in
different zones without interference and achieves the same
throughput as separate flat-tree networks.

2. FLAT-TREE ARCHITECTURE
2.1 Motivating Example

We use the simple flat-tree example in Figure2]to demon-
strate how to convert a Clos network to an approximated ran-
dom graph. The gray lines represent original connections in
the Clos Pod that need to be replaced by the dashed links in
the flat-tree Pod. The most notable differences between Clos
and random graphs are server distribution and types of wires.
In Clos networks, servers are attached to edge switches only
and all links are hierarchical, either between edge and aggre-
gation switches or between aggregation and edge switches.
All switches are equal in random graphs. Servers are uni-
formly distributed to the switches, and the links are between
random switch pairs. So, the first step of conversion is to
relocate servers to aggregation and edge switches and to di-
versify the types of links.

These can be achieved by small port-count converter switches.

As shown in the zoomed-in Pod, flat-tree breaks an edge-
server link and an aggregation-core link in the Clos network,
and connects the corresponding server, edge, aggregation,
and core switches to a converter switch. Figure [T]illustrates

the valid configurations of 4-port and 6-port converter switches.

The “default” configuration enables the original Clos con-
nections. The “local” configuration relocates the server to
the aggregation switch and connects the core and edge switches

directly. This change is local in the Pod.

4-port converter switches should not be used to relocate
servers to core switches. If we connect the server and the
core switch, the edge and aggregation switches must be con-
nected as well, otherwise we waste a link. There are suffi-
cient edge-aggregation links in the Pod, so this change fails
to diversify the types of links. 6-port converter switches in-
troduces side ports, through which two converter switches
can be interconnected. The “side” and “cross” configura-
tions both relocate servers to core switches, but connect edge
and aggregation switches to their peers in different ways. We
only allow 6-port converter switches in adjacent Pods to be
interconnected for simple neighbor-to-neighbor wiring.

The number of 4-port and 6-port converter switches are de-
termined by the layout of the Clos network. In Figure[2] each
pair of edge and aggregation switches are connected to a 4-
port converter switch and a 6-port converter switch, which
show the approximated random graph configuration. Con-
verter switches and the additional wiring are packaged in the
Pod, keeping the same core connectors as a Clos Pod. The
side connectors of 6-port converter switches are bundled as
multi-link connectors to simplify inter-Pod wiring. Flat-tree
Pods are connected to core switches via a customized wiring
pattern (details in Section [2.3). In this example, the uplinks
from Pods are swapped in different ways, so that servers are
distributed uniformly across the core switches.

Flat-tree converts between multiple topologies with dif-
ferent converter switch configurations. Figure Zb shows the
Clos network, when all converter switches take the “default”
configuration. Figure 2t shows an approximated global ran-
dom graph, with the 4-port “local” and 6-port “side” con-
figurations. In practice, we can also use the 6-port “cross”
configuration to swap connections. Figure [2d shows approx-
imated local random graphs in each Pod. It is configured in
a way that half servers are connected to the edge switches
and half to the aggregation switches. In this example, we use
4-port “local” and 6-port “default” configurations. Flat-tree
can also operate in hybrid mode, with different combinations
of the above topologies each in a number of Pods.

This paper limits the discussion to one Pod layer connected
by core switches. Flat-tree can be extended to multi-stages
of Pods: the lower-layer Pods consider the edge switches in
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the upper-layer Pods as core switches; intermediate switch-
only Pods take relocated servers from lower-layer Pods as
their own servers. We leave the details to future work.

2.2 Flat-tree Pod

Figure [3|depicts a flat-tree Pod. Without loss of generality,
we assume the number of edge switches is a multiple of the
number of aggregation switches. There are d edge switches
and d/r aggregation switches. We pair up each edge switch
E; with aggregation switch A;/, and connect them to n 4-
port converter switches and m 6-port converter switches. n
and m represent the number of servers that can be relocated
dynamically to aggregation and core switches. We place the
converter switches evenly on the two sides of the Pod: those
connected to Fy to E;/o 1 locate on the left of the Pod and
those connected to Fg/o to Eq_1 locate on the right. This
forms a n x d/2 matrix of 4-port converter switches, i.e.
blade A in figure, and a m X d/2 matrix of 4-port converter
switches, i.e. blade B in figure, on each side of the Pod.

For both types of blades, converter switch (7, j) on the
left blade is connected to edge switch F; and aggregation
switch A; /.., and that on the right is connected to edge switch
E; 4/2 and aggregation switch A(; 4/2)/,. Each 4-port con-
verter switch connects to a core switch and a server, so blade
A has n x d/2 core connectors and server connectors. Each
6-port converter switch has a pair of side connectors as well,
so blade B has m x d/2 core connectors, server connectors,
and double side connectors. There may be remaining core
connectors on the aggregation switches and server connec-
tors on the edge switches. The total number of core con-
nectors and server connectors are equal to those in a Clos
counterpart. If d is odd, a middle converter switch can be
on either side, but the side connectors of the 6-port converter
switch are unused.

2.3 Pod-Core Wiring

In a Clos network, all Pod-core connections are between
aggregation and core switches. Suppose each aggregation
switch has h uplinks. As Figure 4h illustrates, aggregation
switches with the same index ¢ in different Pods are con-
nected to the same group of h core switches via the aggrega-
tion connectors. Repeatedly for each Pod, this wiring pattern
links the h connectors for each aggregation switch consecu-
tively to core switches.

In flat-tree, as shown in Figure[3] there are 3 types of core

connectors. Core switches can be connected to servers via
blade B connectors, to edge switches via blade A connectors,
and to aggregation switches via aggregation connectors. The
Pod-core wiring determines the distribution of servers and
different types of links (to an edge or aggregation switch)
across the core switches, thus affecting how close flat-tree
approximates a random graph.

As each aggregation switch corresponds to r edge switches,
the h aggregation connectors in Clos are replaced with n x r
blade A connectors, m X r blade B connectors, and h — m X
r — n X r aggregation connectors. The Clos wiring pat-
tern is based on aggregation switches, each connected to h
core switches. Since flat-tree has edge-core connections, its
wiring pattern should be based on edge switches. Each edge
switch corresponds to n blade A connectors, m blade B con-
nectors, and h/r — m — n aggregation connectors, which
connects to overall h/r core switches.

We offer two wiring options, shown in Figure @b and [.
Connectors corresponding to the edge switches with the same
index j in different Pods are connected to the same group of
h/r core switches. Both wiring patterns connect the group
of core switches consecutively to blade B connectors, fol-
lowed by blade A connectors and aggregation connectors.
They rotate in different ways across Pods. Pattern 1 packs
blade B connectors continuously Pod by Pod throughout the
set of core switches. Pattern 2 moves them forward by one
more core switch as the Pod index grows. Both patterns wrap
around within the group.

Physically, we suggest wiring Pod 0 first, by linking every
m blade B connectors, n blade A connectors, and h/r —m —
n aggregation connectors in turn to core switches consecu-
tively. We start from the left blades and move on to the right
blades, until all connectors in the Pod are consumed. In this
process, we mark the mapping between each edge switch and
the corresponding group of h/r core switches. For the fol-
lowing Pods, connectors corresponding to each edge switch
are connected to the marked h/r core switches according to
the rotating patterns.

These wiring patterns have the following properties:

Property 1: For both wiring patterns, servers are distributed
uniformly across the core switches.

Property 2: For both wiring patterns, the core switches
have equal number of links of the same type.
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Figure 4: Pod-Core wiring for the same set of connectors across Pods. All connectors are on aggregation switches in Clos; flat-tree has 3 types of connectors
on blade A, B, and aggregation switches, enabling core-server, core-edge, and core-aggregation connections respectively.

Flat-tree maintains structures to ease implementation, so
servers and links must be permuted by wiring. These proper-
ties ensure that flat-tree well-approximates a random graph.

Because these patterns follow straightforward rules, they
have low wiring complexity. Pattern 1 has better perfor-
mance, because a core switch does not connect to servers
from adjacent Pods at the same time, thus it takes advantage
of side connections between adjacent Pods to the greatest
extent. Yet when h/r is a multiple of m, different Pods are
likely to repeat the same pattern, thus reducing the wiring
diversity. In this case, pattern 2 is more favorable.

2.4 Server Distribution

In arandom graph, servers are distributed uniformly across
the switches, because the random links roughly connect the
switches in a uniform manner. Yet flat-tree maintains struc-
tures, e.g. the Clos connections between edge and aggrega-
tion switches, core switches connected to the Pods, though

using customized wiring patterns, and the neighbor-to-neighbor

wiring restricted to adjacent Pods. The path length of switch
pairs is not uniform for flat-tree, so we should place servers
intelligently to leverage the shorter paths in the network.

Recall that 6-port converter switches can relocate servers
to core switches, and 4-port ones can relocate servers to ag-
gregation switches, so the server distribution is determined
by the choice of m and n. Because flat-tree aims at con-
verting generic Clos networks, which may have very differ-
ent layouts, it is difficult to pre-define the m and n values
for optimal transmission performance. We suggest a profil-
ing scheme: under the preferred Pod-core wiring pattern de-
scribed in Section[2.3] vary m and n until they result in the
shortest average path length over all server pairs. We show
an example of the profiling process in Section[3.2]

2.5 Inter-Pod Wiring

For adjacent Pods p and p+1, the 6-port converter switches
on the left blade B of Pod p + 1 are connected to those
on the right blade B of Pod p by the side connectors. Re-
call from Figure [3] that the converter switches in the same
column connect to the same pair of edge and aggregation
switches. We want to connect an edge/aggregation switch to
as many different switches as possible in the adjacent Pod,
so we design a shifting wiring pattern such that the con-
verter switches in the same column of the right Pod are con-
nected to converter switches each in a different column of
the left Pod. Specifically, let ¢ and 5 be the row and col-
umn of the converter switch matrices, converter switch (7, 5)

on the left of Pod p 4+ 1 is connected to converter switch
(1,(d/2 — 1 — 5 +14)%(d/2)) on the right of Pod p, which
represents the converter switch in the same row ¢ and in the
column ¢ slots shifted from the mirrored column d/2 —1—j.
We want the converter switches to be interconnected by dif-
ferent configurations, so we have both peer-wise and edge-
aggregation connections across Pods. If ¢ is even, they take
the 6-port “side” configuration (in Figure[T); if ¢ is odd, they
take the 6-port “cross” configuration. To streamline the con-
nection of adjacent Pods, the side connectors on the same
side of a Pod are bundled as a multi-link connector that inte-
grates this wiring pattern.

2.6 Control Plane

Flat-tree requires a control plane to change the network
topology and to conduct routing accordingly. Because a data
center is administered by a single authority, we follow the
recent trend of using a centralized network controller for
global network management. Flat-tree has several operation
modes with pre-known topologies. The controller changes
among these options to optimize workloads, either as ex-
plicitly instructed by the network manager or in an adap-
tive manner through network measurement. It may coor-
dinate with workload placement software to take advantage
of the topologies. The topology is changed by configuring
converter switches, via specific control mechanisms depend-
ing on the realization technology. For instance, most optical
switches can be programmed via a software interface. We
adopt the suggested routing schemes for each network topol-
ogy. For Clos, we use ECMP [15], two-level routing [5]],
or customized SDN routing with pre-computed paths [21]].
We use k shortest paths routing for approximated random
graphs [23]]. Because flat-tree maintains structures when ap-
proximating random graphs, instead of learning routes, it is
possible to have prior knowledge of the shortest paths and
program the routing decisions via SDN.

2.7 Cost Analysis

Converter switches can be realized by various switching
technologies, as long as they are software configurable. As
Figure [T| shows, they have only a few configurations. If im-
plemented using packet switches, traffic can be piped point
to point with no bandwidth contention. This bare-minimum
switching functionality does not require expensive proces-

sor/buffering, sophisticated routing protocols, or general-purpose

OS, etc. Cheap switching chips with support for simple port-
to-port forwarding rules would suffice. If implemented using
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Figure 5: Average path length of server pairs in the entire network

circuit switches, the cost is related to switching delay and
port count. Flat-tree changes topology infrequently, so it im-
poses no rigid restriction on switching delay. For some low-
cost circuit switches, the signal losses limit the port count
to modest scale [28| [12]]. Because converter switches have
small port-count, these technologies can apply. Given the
large number of eligible low-cost switching technologies, we
envision the cost of converter switches in flat-tree to be min-
imal compared to that of the high-end servers and switches
in data centers.

3. EVALUATION
3.1 Simulation Methodology

We evaluate the performance of flat-tree by simulations.
Although flat-tree targets at converting generic, especially
oversubscribed, Clos networks, our evaluations are based on
fat-tree [5]. Because generic Clos networks can have very
different layouts, e.g. arbitrary number of switches and servers,
oversubscription at any possible layer, it is difficult to have
a “typical” example for evaluation. Fat-tree gives the upper-
bound performance for Clos networks, thus serving as a stress
test for our solution. We construct fat-tree, random graph,
and our flat-tree using the same equipments with the variance
of k, the fat-tree parameter that defines the switch port count,
the number of Pods, as well as the number of switches in
each layer. We consider two flat-tree configurations: approx-
imated network-wide random graph and approximated local
random graphs in each Pod. When flat-tree approximates lo-
cal random graphs, we compare it with two-stage random
graph, which first forms random graphs in each Pod with the
same number of links as flat-tree, and takes the Pods as super
nodes to form another layer of random graph together with
core switches. We also evaluate flat-tree in hybrid mode:
having different proportions of the network functioning as
approximated global and local random graph respectively.

We use average path length in hops and throughput as the
evaluation metrics. We assume converter switches function
in the physical layer and do not contribute to path length.
The throughput experiments follow a well-adopted method-
ology [22| [23]. We assume optimal routing and solve the
maximum concurrent multi-commodity flow problem [18]]
using a linear programming solver. All links have one unit
bandwidth. We relax the bandwidth constraints at the servers
to show the switch-level capacity, which is relevant to the
maximum number of servers a topology can accommodate.
Measurement studies show two pervasive traffic patterns in
data centers: broadcast/incast traffic from/to hot spots to/from
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Figure 6: Average path length of server pairs in each Pod

a large number of servers, and all-to-all traffic within small
clusters [6, 9 [17]. We simulate them by broadcast/incast
traffic from/to a random target in 1000-server clusters and
all-to-all traffic in 20-server clusters. We consider strong,
weak, and no locality of workload placement to evaluate
the topologies’ sensitivity to it. Specifically, the workload
is placed continuously across servers, randomly in Pods, or
randomly in the entire network.

3.2 Average Path Length

We first determine m and n for flat-tree through the pro-
filing mechanism described in Section Flat-tree has the
same equipments as the fat-tree counterpart, so m+n < k/2.
We vary m and n at the interval of k/8, rounded to the clos-
est integer if fractional. This process can happen at finer
granularity with smaller intervals. We use Pod-core wiring
pattern 2 when k is a multiple of 4 and pattern 1 otherwise
for reason discussed in Section

Figure [5] compares the average path length of flat-tree un-
der the settings of different m and n against that of fat-tree
and random graph. The desirable values for m and n are
k/8 and 2k /8, when flat-tree has the minimal average path
length. It is notably shorter than that of fat-tree, and within
only 5% difference to random graph. k as multiples of 4 are
hard cases where pattern 1 tends to repeat frequently. Pat-
tern 2 successfully maintains the average path length at a
relatively low level. These results demonstrate that with the
right choice of m and n, flat-tree approximates global ran-
dom graph well and it improves against fat-tree significantly.
We set m = k/8 and n = 2k/8 for the rest experiments.

We further evaluate the average path length between server
pairs in the same Pod, when flat-tree functions as approxi-
mated local random graphs within each Pods. Figure[6]shows
the result against fat-tree, global random graph, and two-
stage random graph. Random graph performs the worst as
servers scatter around the network, followed by fat-tree whose
servers at the edge switches have locality. Flat-tree moves
half the servers from edge to aggregation switches, reduc-
ing the distance between servers connected to different types
of switches. Surprisingly, it outperforms two-stage random
graph. In flat-tree, servers evenly distributed over edge and
aggregation switches are connected by the regular Clos edge-
aggregation links, which is more efficient than pure random-
ness in server distribution and inter-switch connections.

3.3 Throughput

We create 1000-server clusters, each server being involved
in a single cluster. One random server in each cluster is the
source/destination of broadcast/incast traffic to/from all the
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Figure 7: Throughput of broadcast/incast traffic in 1000-server clusters

other servers in the same cluster. In the locality case, we pack
clusters continuously across the servers; in the no locality
case, we place them randomly throughout the network. Each
Pod has k%/4 servers, so one cluster spans multiple Pods
even for large k£ under the locality setting. Flat-tree approx-
imates a global random graph to accommodate such large
clusters, so we compare its throughput with fat-tree and ran-
dom graph. As shown in Figure[7} the throughput of flat-tree
is very close to that of random graph and is 1.5x that of fat-
tree. The throughput grows linearly with k, the switch port
count, as the few hot spots have increasing sending/receiving
capacity. None of the topologies is sensitive to locality, due
to heavy cross-Pod traffic. This set of results demonstrate
that with arbitrary workload placement, flat-tree can achieve
near-optimal performance for the prevalent broadcast/incast
traffic at hot spots.

Then we create 20-server clusters featuring all-to-all traf-
fic, which can fit in the Pod for most k. Flat-tree approx-
imates local random graphs within each Pod to accommo-
date small clusters in Pods. So, besides fat-tree and ran-
dom graph, it is also compared with two-stage random graph.
We consider workload with locality, clusters packed continu-
ously across servers, and workload with weak locality, clus-
ters packed randomly in Pods as long as there are remaining
servers. Weak locality is the worst-case simulation of re-
source fragmentation in workload placement.

Figure [§] shows flat-tree well approximates local random
graph. It outperforms two-stage random graph for small net-
works (k < 14), and the difference in throughput is less than
6% and 9% respectively with strong and weak workload lo-
cality for larger networks. Flat-tree has shorter average path
length in Pods, as shown in Figure[f] whereas two-stage ran-
dom graph forms closer inter-Pod connections. The result is
the outcome of the interplay between these factors. Traffic
locality has greater impact on flat-tree, because the regular
direct links between adjacent Pods are more likely to bene-
fit consecutively packed servers. Fat-tree is highly sensitive
to workload placement. It has sweet spots, such as k = 20,
when most traffic is local in Pods. Its throughput drops sig-
nificantly for weak locality, as even local traffic in Pods takes
more hops through aggregation switches. Random graph has
moderate throughput as it does not specialize in local clus-
tered traffic, but it is the least sensitive to workload local-
ity. In reality, we expect the performance of flat-tree to be
between the locality and the weak locality curves, given a
reasonable level of fragmentation. In summary, flat-tree op-
timizes all-to-all traffic in small clusters effectively.
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16 18 20
k (Fat-tree Parameter)

Figure 8: Throughput of all-to-all traffic in 20-server clusters

3.4 Hybrid Flat-tree

Flat-tree can work in hybrid mode with different topolo-
gies each in a number of Pods. Workloads placed in different
zones share the network core. We use experiments to answer
the question whether flat-tree can optimize multiple work-
loads in separate zones without interfering with each other.

We construct flat-tree with 30 Pods, i.e. & = 30, and
organize the network into two separate zones with varying
proportions at an interval of 10%. We let flat-tree operate
as an approximated global random graph in one zone and
as approximated local random graphs within each Pod in the
other zone. Each topology gets the same traffic pattern as the
corresponding complete network as described in Section[3.3]
We observe that regardless of the proportion, each zone con-
stantly achieves the same throughput as that of the corre-
sponding complete network under the same locality setting.
Therefore, flat-tree in hybrid mode is as effective as building
separate flat-tree networks, and the workloads in different
zones can be segregated perfectly.

4. RELATED WORK

Flat-tree is distinguished from other data center network
architectures such as [5} 23} |14} |13} |3, 4] by its convertibility.
Each of these fixed topologies has sweet spots for particular
traffic patterns [22]], whereas flat-tree is able to convert the
topology to adapt to different workloads. Flat-tree also goes
beyond the recent proposals of configurable data center net-
work architectures. Some solutions provide local remedy by
adding or changing a small number of connections to allevi-
ate hot spots [24, |11} |10} 30, 29} 26, 27, |16} 25} |7]. Others
create a flexible network core for small scale networks [20}
19} 2]|. Flat-tree has a more ambitious goal of creating glob-
ally convertible data center networks at any size.

5. CONCLUSION

The concept of convertible data center networks is power-
ful. Flat-tree is merely one design point in the broad space
for exploration. It motivates the further study of relation-
ships between different network topologies, those that com-
plement each other, beyond Clos and random graph, with de-
sirable properties that cannot coexist traditionally. Besides
traffic optimization, convertibility can play a broader role
in network management, e.g. self-recovery of the topology
from failures and automatic up/down-scale the network at
busy/idle time. Convertible network topology gives greater
flexibility to routing and workload placement, making the
joint optimization a potentially interesting research topic.
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