
Stop Rerouting! Enabling ShareBackup for
Failure Recovery in Data Center Networks

Yiting Xia Xin Sunny Huang T. S. Eugene Ng
Rice University

Abstract
This paper introduces sharable backup as a novel solution
to failure recovery in data center networks. It allows the en-
tire network to share a small pool of backup devices. This
proposal is grounded in three key observations. First, the
traditional rerouting-based failure recovery is ineffective, be-
cause bandwidth loss from failures degrades application per-
formance drastically. Therefore, failed devices should be re-
placed to restore bandwidth. Second, failures in data cen-
ters are rare but destructive [11], so it is desirable to seek
cost-effective backup options. Third, the emergence of config-
urable data center network architectures promises feasibility
of bringing backup devices online dynamically. We design the
ShareBackup prototype architecture to realize this idea. Com-
pared to rerouting-based solutions, ShareBackup provides
more bandwidth with short path length at low cost.

1 INTRODUCTION
Data center networks should be reliable to guarantee ser-
vice performance. The mainstream solution to fault toler-
ance is rerouting: many data center network architectures pro-
vide redundant paths to increase bandwidth, and alternative
paths can be used to reroute traffic around failures [4, 5, 12–
14, 19, 21, 25, 26]. While rerouting maintains connectivity,
bandwidth is nonetheless degraded under failures, which may
jeopardize application performance drastically.

This concern has been validated by a measurement study: in
a path-rich production data center, 10% less traffic is delivered
for the median case of the analyzed failures, and 40% less for
the worst 20% of failures [11]. Because data center traffic is
expressed as sets of flows—known as coflows—to capture
the application-level requirements [8], a small number of
straggler flows influenced by failures can massively increase
the Coflow Completion Time (CCT). The effect of failure
is thus exacerbated on the coflow level. In our failure study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152452

(Section 2.2), a single failure can slow down CCT by several
hundred times even with proper rerouting.

Another approach that can restore bandwidth immediately
after failures happen is backup. Switches can keep a hot spare;
hosts are multi-homed to the primary and the backup switches;
and every link between two primary switches is duplicated
by a mesh amongst them and their shadows. In this way, a
switch can failover to its spare without bandwidth loss in the
network. However, this 1:1 backup consumes a large number
of backup switches and doubles the port requirements on
hosts and switches. The prohibitive cost of extra hardware
prevents the deployment of network-wide backup, so most
data centers only backup a few crucial devices.

Two recent trends provide new opportunities for network-
wide backup. First, commercial devices in data centers are
increasingly more reliable. Despite the disastrous effect, the
same measurement study shows failures are rare and transient:
most devices have over 99.99% availability; and failures usu-
ally last for only a few minutes [11]. Therefore, 1:1 backup
is unnecessary for occasional failure events. Second, config-
urable interconnects can facilitate physical-layer adaptation
of the network topology, and novel architectures have been
proposed to create paths on the fly according to traffic require-
ments [6, 7, 9, 10, 15, 16, 20, 22, 27, 29–31]. This configura-
bility can be repurposed for efficient failure recovery.

In this paper, we introduce sharable backup, where a small
pool of backup devices can repair failures on demand. This
solution is both desirable and achievable from the above evi-
dence. By connecting a group of switches and a few backup
switches to highly reliable configurable interconnects, e.g.
circuit switches, a backup switch can be brought online to
replace any failed switch via simple circuit reconfiguration.

We realize this idea in ShareBackup, a prototype failure
recoverable fat-tree network. We focus on fat-tree because
fat-tree and its variants are widely adopted by many industrial
data centers [3, 24]. The ShareBackup design faces many
challenges. How to design the architecture to share a pool of
backup switches? The per-port cost of small circuit switches
are considerably lower than large ones [9, 23, 28]. How to
leverage this cost benefit? For interface/link failures, instead
of replacing switches on both sides of the link, how to diag-
nose the problem and only replace the faulty switch? Backup
switches can replace regular switches on the physical layer,
but how to impersonate a replaced switch on the control
plane? Moreover, how to avoid extra delay from the imper-
sonation process and let ShareBackup recover failures as fast
as the highly responsive local rerouting? We address these

https://doi.org/10.1145/3152434.3152452

0 1 2 3 4 5
Percentage of node failure (%)

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

c
te

d
 c

o
fl
o

w
s
 (

%
)

0

5

10

15

20

25

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

c
te

d
 f
lo

w
s
 (

%
)

(a)

0 1 2 3 4 5
Percentage of link failure (%)

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

c
te

d
 c

o
fl
o

w
s
 (

%
)

0

5

10

15

20

P
e

rc
e

n
ta

g
e

 o
f
a

ff
e

c
te

d
 f
lo

w
s
 (

%
)

(b)

Fat-tree

(coflow%)

F10

(coflow%)

Fat-tree

(flow%)

F10

(flow%)

10
-2

10
-1

10
0

10
1

10
2

10
3

CCT slowdown

0

0.5

1

C
D

F

(c)

Fat-tree link failure

Fat-tree node failure

F10 link failure

F10 node failure

Figure 1: (a) and (b): impact of failures on flows and coflows; (c):
coflow performance degradation with rerouting under a single failure

challenges and analyze the properties of our proposed archi-
tecture. Compared to rerouting-based solutions, ShareBackup
provides more bandwidth with short path length at low cost.

2 MOTIVATION
2.1 Related Work
Many architectural solutions have been proposed to improve
failure resiliency of data center networks. Fat-tree [5], DCell [14],
BCube [13], VL2 [12], HyperX [4], and Jellyfish [25] build
high-performance data center network architectures with re-
dundant paths and provide customized rerouting schemes to
bypass failures. PortLand enhances fault tolerance of fat-tree
with a layer-2 routing and forwarding protocol [21]. F10 ad-
justs wiring of fat-tree to diversify alternative paths in the
network structure [19]. It also improves responsiveness to
failures by fast failure detection and local rerouting to longer
paths. Aspen Tree adds redundancy to fat-tree to reduce fail-
ure convergence time, at the price of partitioning the network
or introducing extra hardware [26].

The weaknesses of these rerouting-based solutions moti-
vate the design of ShareBackup. First, rather than bypass-
ing failures at compromised performance, we aim to replace
failed devices completely to restore bandwidth. Second, re-
dundancy may cause excessive hardware expenses [26], while
we enable sharable backup via circuit switches to save cost.
Third, alternative paths can have more hops [4, 14, 19, 25] and
path re-computation may be expensive [25], so ShareBackup
maintains original paths after failures to avoid rerouting over-
head and path dilation. Fourth, some solutions experience
slow failure propagation [5] or frequent state exchange [21],
so ShareBackup employs a responsive and light-weighted
control plane to achieve fast failure recovery.

Table 1: List of notations

Notation Meaning
𝑘 Fat-tree parameter: switch port count and # Pods [5]
𝑛 # backup switches shared by 𝑘

2 switches per failure group
𝐻𝑗 The 𝑗th host
𝐸𝑖,𝑗 The 𝑗th Edge switch in the 𝑖th Pod
𝐴𝑖,𝑗 The 𝑗th Aggregation switch in the 𝑖th Pod
𝐶𝑗 The 𝑗th Core switch
𝐶𝑆𝑙,𝑖,𝑗 The 𝑗th Circuit Switch in the 𝑖th Pod on the 𝑙th layer
𝐹𝐺𝑙,𝑢 The 𝑢th Failure Group on the 𝑙th layer
𝐵𝑆𝑙,𝑢,𝑣 The 𝑣th Backup Switch in 𝐹𝐺𝑙,𝑢

(a)$ (b)$

(c)$

Figure 2: A 𝑘 = 6 fat-tree [5]. To build a ShareBackup network from
it, the blocks of devices like in the shaded areas should be replaced
by the corresponding structures in Figure 3.

2.2 Failure study
We run the coflow trace of real data center traffic [1] on
packet-level simulators of the fat-tree [5] and F10 [19] net-
works. The trace contains aggregated rack-level traffic from a
150-rack 10:1 oversubscribed network, so we map the traffic
to similar-sized 𝑘 = 16 fat-tree and F10 networks with the
same oversubscription ratio at the edge switches. Fat-tree and
F10 both use ECMP routing. Under failures, fat-tree uses
global optimal rerouting, and F10 uses its local three-hop
rerouting [19]. To study the effectiveness of rerouting, we
simulate the final states after failures without the transient dy-
namics. We first measure the percentage of flows and coflows
affected by failures with the variance of failure rate. A flow is
considered affected if it traverses a failed node or link, and a
coflow is affected if at least one flow in its set gets affected.
Then we evaluate the effect of failures on Coflow Completion
Time (CCT), which is the lifetime of the most long-lived flow
in a coflow. Failures in data centers are rare, and most failures
last for less than 5 minutes [11]. To simulate the real-world
scenario, we create only one link or node failure at a time and
run 5-minute partitions of the coflow trace. We measure the
CCT slowdown, which is the CCT with failure divided by the
CCT without failure.

We observe from Figure 1(a) and 1(b) that the impact of
failures gets magnified significantly on the coflow level. The
percentage of affected coflows is 3.3× to 90× that of individ-
ual flows. The coflow curves climb faster in the beginning,
indicating a small number of failures have huge impact on
applications. With only a single node and link failure, as many
as 29.6% and 17% of coflows are affected respectively, and

0" 1" 2"

0" 1" 2"0" 1" 2"

0" 3" 6" 1" 4" 7" 2" 5" 8"

CS1,0,0&
|"

CS1,0,2&

E0,0&&&&&&&E0,2& BS1,0,0&
FG1,0&

Pod"0"

CS2,1,0&
|"

CS2,1,2&

Pod"1"

FG2,1&

FG1,1&

A1,0&&&&&&&A1,2& BS2,1,0&

E1,0&&&&&&&E1,2& BS1,1,0&H0&&&&&&&H8&

0" 1" 2" 0" 1" 2" 0" 1" 2"

0" 3" 6" 1" 4" 7" 2" 5" 8"

CS3,3,0&
|"

CS3,3,2&

CS3,4,0&
|"

CS3,4,2&

CS3,5,0&
|"

CS3,5,2&

Pod"3" Pod"4" Pod"5"

C0,&C3,&C6& BS3,0,0& C1,&C4,&C7& BS3,1,0& C2,&C5,&C8& BS3,2,0&

A3,0&&&&&&&A3,2& BS2,3,0& A4,0&&&&&&&A4,2& BS2,4,0& A5,0&&&&&&&A5,2& BS2,5,0&

FG3,0& FG3,1& FG3,2&

FG2,3& FG2,4& FG2,5&

(a)$ (b)$ (c)$

Figure 3: Substructures of a ShareBackup network where 𝑘 = 6 and 𝑛 = 1. The subfigures correspond to the shaded areas in Figure 2. Devices
are labeled according to the notations in Table 1. Edge and aggregation switches are marked by their in-Pod indices; core switches and hosts
are marked by their global indices. Switches in the same failure group are packed together, which share a backup switch in stripe on the side.
Circuit switches are inserted into adjacent layers of switches/hosts. The connectivity in shade is the basic building block for sharable backup.
The crossed switch and connections represent example node and link failures. Switches involved in failures are each replaced by a backup
switch with the new circuit switch configurations shown at the bottom, where connections regarding the original red round ports reconnect to
the new black square ports.

1 2 3

(c)$ (c)$ (c)$

0

0

0

0 0

0

1 2 3

(b)$ (b)$ (b)$

0

0 0

0 0

0

BS3,1,0'C0'

A3,0'

BS3,1,0'

A3,0'

BS3,2,0'BS3,1,0'C0'

A3,0'

A1,0'

E1,0'

BS3,2,0' C0' BS3,2,0'
A1,0'

E1,0'

A1,0'

E1,0'

Figure 4: Circuit switch configurations for diagnosis of link failures shown by examples (b) and (c) in Figure 3. Circuit switches in a Pod
are chained up using the side ports. Only “suspect switches” on both sides of the failed link and some related backup switches are shown.
Through configurations 1○, 2○, and 3○, the “suspect interface” on both “suspect switches” associated with the failure can connect to 3 different
interfaces on one or multiple other switches.

these percentages translate to CCT increase by orders of mag-
nitude as shown in Figure 1(c). There is bandwidth loss even
with a single failure, and rerouting traffic to alternative paths
may cause congestion. F10 has even worse CCT than fat-tree,
because its local rerouting uses longer paths and thus causes
heavier congestion.

An application can proceed only after an entire coflow
has finished, so occasional failures have devastating harm
to application performance, and rerouting is ineffective in
mitigating the adverse effect. These insights validate our mo-
tivation to resolve failures by hardware replacement and to
seek cost-effective sharable backup for a few failures.

3 NETWORK ARCHITECTURE
Fat-tree has 𝑘

2 edge and aggregation switches per Pod. To
align with the architecture, we cluster 𝑘

2 switches into a failure
group and allow them to share 𝑛 backup switches. We lever-
age small-scale circuit switches to enable sharable backup at
low cost. All switches in a failure group, including the backup
switches, must connect to the same set of circuit switches with
the same wiring pattern. In this way, a backup switch can be

brought online at run time to replace a failed switch or failed
links associated with it. Figure 2 and Figure 3 give intuitions
of the architecture design, with notations listed in Table 1.

Figure 3(a) illustrates the basic building block for sharable
backup. The edge switches in the same Pod form a failure
group. We place 𝑘

2 units of (𝑘2+𝑛+2) by (𝑘2+𝑛+2) circuit
switches between the edge switches and the hosts. Every
switch, regular and backup switch alike, connects to these
𝑘
2 circuit switches each with a link. As shown in Figure 4,
these 𝑘

2 switches are chained together via 2 side ports, which
are omitted in Figure 3 for simplicity. Hosts connect to the
edge switches via straight-through connections on the inter-
mediate circuit switches. The ports to backup switches are
unconnected internally. When a switch is down, the internal
connections to it on all the circuit switches are reconfigured
to connect to a backup switch, which thus replaces the failed
switch completely. A switch whose links are down is replaced
in the same manner so as to fix the link failures.

In Figure 3(b), the aggregation switches in the same Pod
form a failure group. Edge and aggregation switches in their
failure groups repeat the building block of connectivity in

Figure 3(a) to another set of 𝑘
2 circuit switches. In a fat-tree

Pod, an edge/aggregation switch connects to each and every
aggregation/edge switch, so we use a rotational wiring pattern
in the circuit switches to achieve this shuffle connectivity, i.e.
the different internal connections on 𝐶𝑆2,1,0 to 𝐶𝑆2,1,2.

Similarly, aggregation switches in each failure group shown
in Figure 3(c) are connected upward to 𝑘

2 circuit switches
with the wiring pattern in the building block. As Figure 2
shows, the connections from aggregation switches in each
Pod iterate through all the core switches in consecutive order.
Because the aggregation switches are already connected to
the circuit switches, we wire up the core switches and the
circuit switches to achieve the fat-tree connectivity. The core
switches connect to 𝑘

2 circuit switches with a stride of 𝑘
2 ,

and we set up straight-through connections in the circuit
switches. Similar to the building block for sharable backup
in Figure 3(a), only switches connected to the same set of
circuit switches can be put into a failure group. As a result,
core switches whose indices are in 𝑘

2 intervals form a failure
group. We give each failure group 𝑛 backup switches and
connect them up in the same way as regular switches.

In fat-tree, edge and aggregation switches are packaged into
Pods for ease of deployment. In each ShareBackup Pod, there
are 𝑛 additional edge and aggregation switches respectively
as backup switches, and 3 sets of 𝑘

2 circuit switches between
adjacent layers of switches and hosts. It is straightforward to
package the backup switches and the circuit switches into the
original fat-tree Pods with simple changes of wiring as shown
in Figure 3. In practice, the core switches can be placed as in
the original fat-tree, with the backup core switches added to
the end. The reordering depicted in Figure 3 is unnecessary.
By streamlining the connectors from within each Pod, we can
maintain the original Pod-host and Pod-core wiring patterns
in fat-tree.

4 CONTROL PLANE
4.1 Fast Failure Detection and Recovery
ShareBackup uses a logically centralized network controller
for failure detection and recovery. Switches send keep-alive
messages continuously to the controller. When the controller
detects a node failure, it allocates an available backup switch
to failover to and reconfigures the circuit switches associated
with this failure group. As shown in Figure 3(a), in these
circuit switches, original connections to the failed switch
should reconnect to the backup switch.

We adopt the rapid failure detection mechanism in F10 [19]
to detect link failures, where switches and hosts keep sending
packets to each other to test the interface, data link, and
forwarding engine. When a link is down, it takes time to
determine which end has lost connectivity. For the purpose of
fast recovery, the switches on both sides of the failed link are
replaced. Both of the switches notify the network controller of
the failure, and the controller reconfigures the circuit switches
in the same way as they handle node failures. Figure 3(b)
and 3(c) show examples of this approach.

4.2 Offline Failure Diagnosis
We run failure diagnosis in the background to find which
“suspect interface” (and the “suspect switch” it belongs to)
has caused the link failure. We chain up circuit switches in the
same layer of a Pod as a ring through the side ports. Figure 4
shows the circuit switch configurations, through which the
suspect interface on either end of the failed link can connect
to 3 different interfaces, either on the same switch (as 𝐴1,0,
𝐸1,0, and 𝐶0) or on different switches (as 𝐴3,0).

The controller changes the circuit switch configurations
and enforces the switches to exchange testing messages. A
suspect interface that has connectivity in at least one configu-
ration is redressed as healthy, so is the corresponding suspect
switch. Failure diagnosis only involves suspect switches al-
ready taken offline and backup switches not in use, so it is
completely independent of the functioning network.

Failure diagnosis requires both sides have at least one
healthy interface, so that both suspect interfaces can be tested.
If this condition is not met, both suspect switches are con-
sidered faulty. Since all hosts are actively in use, the offline
failure diagnosis is not supported between hosts and edge
switches. We assume switches are at fault for link failures to
hosts. If the problem is not fixed after replacing the switch,
we mark the switch as healthy and trouble-shoot the host.

After a failed switch is repaired or a suspect switch is
exonerated, it is unnecessary to switch back to the original
connectivity. Backup switches and regular switches are equal
in functionality, so we keep the backup switch online and
turn the replaced switch into a backup switch for future use.
This design saves the reconfiguration overhead and avoids
disruptions in the network. The network controller keeps track
of the current backup switches in their failure groups.

4.3 Live Impersonation of Failed Switch
Traffic is redirected to the backup switch in the physical layer
after a failed switch is replaced. The backup switch needs to
impersonate the failed switch by using the same routing table.
Fat-tree uses Two-Level Routing, where each switch has a
pre-defined routing table [5]. To avoid the additional delay of
inserting forwarding rules into the backup switch, we aim to
preload the routing table and make the backup switch a hot
standby. Regular switches recovered from failures can work
as backup switches, so every switch needs to store the routing
tables of all the switches in the failure group. The challenge
is to resolve the conflicts between different routing tables.

In fat-tree, all the core switches and all the aggregation
switches in the same Pod have the same routing table. There-
fore, in the aggregation and core layers of our network, switches
in a failure group only keep a common routing table. For in-
bound traffic, edge switches in a Pod, also a failure group,
have the same set of 𝑘

2 forwarding entries that match on the
suffix of the end host addresses. For out-bound traffic, each of
these edge switches has 𝑘

2 different entries. We use VLANs
for differentiation. We first edit the original fat-tree routing
tables by assigning every edge switch in the Pod a unique

Table 2: Cost of compared architectures, where the data center uses
electrical (E-DC) and optical (O-DC) transmissions respectively.

Architecture Cost

Fat-tree 5
4𝑘

3𝑏+ 𝑘3

2 𝑐

ShareBackup 3
2𝑘

2(𝑘
2 + 𝑛 + 2)𝑎 + 5

2𝑘
2𝑛𝑏 + 5

4𝑘
2𝑛𝑐 + fat-tree cost

Aspen Tree 𝑘3

2 𝑏 + 𝑘3

4 𝑐 + fat-tree cost
1:1 Backup 15

4 𝑘3𝑏 + 3
2𝑘

3𝑐 + fat-tree cost

Variable Meaning Price Notes
𝑎 Per-port cost of $3 E-DC Electrical crosspoint switch [18]

circuit switches $10 O-DC 2D MEMS optical switch [28]
𝑏 Per-port cost of $60 $3000 for a 48-port

packet switches 10Gbps bare metal switch
$81 E-DC 10m 10Gbps DAC [2]

𝑐 Cost per link $40 O-DC 10Gbps transceiver ($16) × 2 +
10m 10Gbps optical fiber ($8) [2]

VLAN ID and adding it to the out-bound routing table entries.
The edited routing tables from all the edge switches are then
combined together and stored in every switch in the failure
group. A host knows which edge switch it should connect
to, so it tags out-going packets with the VLAN ID of the
edge switch. No matter what switches in the failure group are
active, by matching the VLAN ID, packets can always refer
to the correct routing table. This combined routing table from
𝑘
2 edge switches has 𝑘

2 in-bound entries and 𝑘2

4 out-bound
entries. This total number is within the TCAM capacity of
commercial switches even for large-scale fat-tree networks.
For instance, the table contains 1056 entries for a 𝑘 = 64
fat-tree with over 65k hosts.

5 ARCHITECTURE PROPERTIES
5.1 Capacity to Handle Failures
Switch failures: In a failure group, 𝑛 backup switches are
shared by 𝑘

2 switches. Thus, ShareBackup can handle 𝑛 con-
current switch failures per failure group. In data centers, fail-
ures are independent; most devices have over 99.99% avail-
ability; and failures usually last for only a few minutes [11].
As a result, a small 𝑛 is sufficient for a large-scale data center.
For instance, let 𝑛 = 1 for a 𝑘 = 48 fat-tree with over 27k
hosts, the backup ratio is 𝑛/𝑘

2 = 4.17%, which is more than
400× higher than the 0.01% switch failure rate.

Link failures: ShareBackup handles link failures as node
failures. With failure diagnosis, we can identify the interface
at fault, so we consume only one backup switch at the faulty
end. For each failure group, ShareBackup can handle 𝑛 in-
dependent link failures, which translates to up to 𝑘𝑛 link
failures rooted at those 𝑛 switches. Link failures are rare, and
concurrent link failures are especially uncommon [11]. It is
sufficient to target at a few link failures with a small 𝑛.

Circuit switch failures: Circuit switches are highly reli-
able. They are passive physical-layer devices with less than
10−12 bit-error rate [18, 28], and their bare-minimum con-
trol software for circuit reconfiguration receives infrequent
requests only when switch and link failures happen. In the
rare case that a circuit switch is down, switches connected
to it will report link failures to the network controller. If the

16 20 24 28 32 36 40 44 48

k (Fat-tree parameter)

0.01

 0.1

 1

 10

A
d

d
it
io

n
a

l
c
o

s
t

re
la

ti
v
e

 t
o

 F
a

t-
tr

e
e

(a) Copper cables

ShareBackup n=1 ShareBackup n=2 ShareBackup n=4

16 20 24 28 32 36 40 44 48

k (Fat-tree parameter)

0.01

 0.1

 1

 10

(b) Optical fibers

Aspen Tree 1:1 Backup

Figure 5: Additional cost of ShareBackup, Aspen Tree, and 1:1
Backup relative to fat-tree at different network scales using market
prices in Table 2

controller receives a large number of link failure reports as-
sociated with one circuit switch in a short period of time, i.e.
over a pre-defined threshold, it will stop failure recovery and
request for human intervention. A rebooted circuit switch
can get up-to-date circuit configurations from the controller.
Circuit switch port failures are sensed as link failures and
handled by regular failure recovery.

Controller failures: The logically centralized network
controller can be implemented as a small cluster of controller
machines. The switches and hosts report status to them at the
same time. A primary controller is elected to react to failures.
When the primary controller fails, another controller will be
elected to take its place.

5.2 Cost Analysis
To save cost, we choose the implementation technology of cir-
cuit switches based on the existing devices already deployed
in the data center. If the data center has copper DAC cables,
we can use electrical crosspoint switches whose per-port cost
is only $3 [18]. Although circuit switches split some cables
into two parts, they generate no extra cabling cost. Cables
connected to the passive circuit switches do not need active
elements. With proper manufacturing, the cost of two cables
each with one active element at the packet switch end is
equivalent to the cost of the original cable.

We choose optical circuit switches for data centers with op-
tical transceivers and fibers. Moderate-scale low-cost switch-
ing technologies, e.g. 2D MEMS, can be used. 2D MEMS
costs only $10 per port and scales to 32 ports [23, 28]. Its in-
sertion loss can be overcome by the commercial transceivers
already deloyed [2], so amplifiers are not needed. The cost
of two shorter fibers split by the circuit switch is roughly the
same as the original fiber, so the cabling cost stays the same.

We calculate ShareBackup’s additional cost to fat-tree and
compare to Aspen Tree [26] and 1:1 backup, which also add
hardware to fat-tree to improve robustness. Table 2 lists the
cost equations of these architectures and the market price
of necessary devices. 1:1 backup requires twice as many
switches as fat-tree, and the switch port count needs to be
doubled. Assuming constant price of a switch port, the cost

Table 3: Performance characteristics of different architectures

Architecture No bandwidth loss? No path dilation? No upstream repair?

ShareBackup ✓ ✓ ✓
Fat-tree × ✓ ×

F10 × × ✓
Aspen Tree × ✓ ✓/×

of 1:1 backup is 4× that of fat-tree. Aspen Tree repurposes
links between switches in adjacent layers. The lower-layer
switches can disconnect half of the upper-layer switches to
duplicate connections to the other half. One more layer of
switches are needed to connect the partitioned network, so
there are 𝑘2

2 more switches and 𝑘3

4 more cables.
ShareBackup has 5

2𝑘 failure groups, each with 𝑛 backup
switches, and each Pod contains 3 sets of 𝑘

2 circuit switches
with (𝑘2+𝑛+2) by (𝑘2+𝑛+2) ports. Thus, ShareBackup has
5
2𝑘𝑛 more switches, 5

4𝑘
2𝑛 more cables, and 3

2𝑘
2(𝑘2 + 𝑛+ 2)

circuit switch ports. ShareBackup is less costly than As-
pen Tree and 1:1 backup because it uses sharable backup
and cheap circuit switches. As shown in Table 2, 𝑎 is much
cheaper than 𝑏 and 𝑐, and 𝑛 is a small constant in practice.
Compared to Aspen Tree and 1:1 backup, ShareBackup re-
duces the power of 𝑘 in 𝑏- and 𝑐-related terms, and the factor
𝑎 limits the additional term to a relatively small value.

Figure 5 shows ShareBackup is multi-folds less expensive
than 1:1 backup and Aspen Tree. For a fixed 𝑛, the relative
additional cost of ShareBackup decreases as the network
scales up, because the backup switches can be shared by more
switches in the failure group. As discussed in Section 5.1, 𝑛
= 1 is sufficient for a 𝑘 = 48 fat-tree network. In this case, the
additional cost of ShareBackup is merely 6.7% and 13.3%
of the cost of fat-tree with copper cables and optical fibers
respectively, while Aspen Tree costs 6.5× and 3.2× as much.
Even if 𝑛 is increased to 4, which renders backup ratio as
high as 16.7% for 𝑘 = 48, ShareBackup is still cheaper than
Aspen Tree. The cases where ShareBackup out-costs Aspen
Tree show the flexibility of improving robustness by adding
more backup switches.

5.3 Performance Characteristics
Scaling to large data centers with high robustness. The
scalability of ShareBackup is determined by the port count of
circuit switches, i.e. (𝑘2 + 𝑛 + 2). 256-port electrical cross-
point switches are common place today [18], and 32-port 2D
MEMS optical switches can be realized [28]. Even with the
32-port limit, we have 𝑘

2 +𝑛+2 = 32, or 𝑘
2 +𝑛 = 30. When

𝑛 = 1, ShareBackup can support a 𝑘 = 58 fat-tree network
with over 48k hosts. The backup ratio is 𝑛/𝑘

2 = 3.45%, which
is significantly higher than the 0.01% switch failure rate. For a
sizable 𝑘 = 48 fat-tree with 27k hosts, 𝑛 can reach 6, leading
to a backup ratio as high as 25%. These parameters relating
to scalability and robustness can be tuned to meet practical
needs of the data center.

Recovering failures as fast as state of the art. F10 and
Aspen Tree reroute traffic locally as soon as a switch detects a

failure [19, 26], so the recovery delay is the failure detector’s
probing interval plus the time of redirecting packets to a
different NIC interface. Rerouting requires change of at least
one routing table entry. Using SDN, it takes ∼1ms to modify
a forwarding rule [17]. In ShareBackup, the controller probes
switches for node failures, and switches probe each other for
link failures and inform the controller. We assume the same
probing interval as F10 and Aspen Tree. With the failure
information, the controller sends requests to circuit switches
to reset circuits. The circuit reconfiguration delay is negligible,
which is only 70ns for crosspoint switches [18] and 40𝜇s for
2D MEMS [28]. The communication channels are actively
on for probing. With efficient controller implementation, e.g.
as a kernel module, the delay of switch-to-controller and
controller-to-circuit-switch communications can be reduced
to sub-ms level. Therefore, failure recovery in ShareBackup
is as fast as that in F10 and Aspen Tree.

No bandwidth loss, no path dilation, and no upstream
repair. Table 3 compares key features of failure-resilient
architectures. Because ShareBackup replaces failed hard-
ware completely, it does not have bandwidth loss. All other
rerouting-based solutions have to cope with the remaining
bandwidth resource, and we have demonstrated in Section 2.2
that a single link or node failure can be disastrous to appli-
cation performance. Fat-tree requires failure announcements
to propagate multiple hops so rerouting can be performed
upstream. To improve responsiveness, F10 reroutes traffic lo-
cally through longer paths, and Aspen Tree creates duplicate
paths with extra hardware. As Figure 5 shows, the additional
cost of Aspen Tree is high, so it provides the option of par-
tial duplication that requires upstream repair. With sharable
backup, our proposal replaces failed devices locally without
path dilation at minimal additional cost to the network.

6 CONCLUSION
The concept of sharable backup goes beyond this work. Like
fat-tree, most data center network architectures have sym-
metric structures [4, 12–14]. Sharable backup is thus readily
applicable to these networks, with different plans for parti-
tioning failure groups. Non-uniform failure groups should
also be explored, so that this idea can be extended to unstruc-
tured networks, such as Jellyfish [25], and we can have more
backup on critical devices and less backup on unimportant
ones. Several questions are worth further studies. First, the
efficiency of the control plane depends on the implementation
of the network controller, so the real-world performance is yet
to be tested. Second, it is desirable to use distributed network
controllers to share the burden and reduce the latency of fail-
ure detection and recovery. The placement and coordination
of controllers remain open questions. Third, when backup
switches are idle, they can be activated to add bandwidth to
the network. How to make better use of backup switches to
improve performance with guaranteed fault tolerance is an
interesting research topic.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their
thoughtful feedback. This research was sponsored by the NSF
under CNS-1422925, CNS-1305379 and CNS-1718980.

REFERENCES
[1] Coflow-Benchmark, https://github.com/coflow/coflow-benchmark/.
[2] FS.COM, http://www.fs.com/.
[3] Introducing data center fabric, the next-

generation Facebook data center network,
https://code.facebook.com/posts/360346274145943/introducing-data-
center-fabric-the-next-generation-facebook-data-center-network/.

[4] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber.
HyperX: Topology, Routing, and Packaging of Efficient Large-scale
Networks. In SC ’09, pages 41:1–41:11, Portland, Oregon, USA, No-
vember 2009.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In SIGCOMM ’08, pages 63–74,
Seattle, Washington, USA, August 2008.

[6] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen. OSA: An Optical Switching Architecture for
Data Center Networks with Unprecedented Flexibility. In NSDI ’12,
San Joes, CA, April 2012.

[7] K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, and Q. Dong. Wave-
Cube: A Scalable, Fault-tolerant, High-performance Optical Data Cen-
ter Architecture. In 2015 IEEE Conference on Computer Communica-
tions (INFOCOM), pages 1903–1911, April 2015.

[8] M. Chowdhury and I. Stoica. Coflow: A Networking Abstraction for
Cluster Applications. In HotNets-XI, pages 31–36, Redmond, WA,
2012.

[9] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Centers. In
SIGCOMM ’10, pages 339–350, New Delhi, India, August 2010.

[10] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper.
ProjecToR: Agile Reconfigurable Data Center Interconnect. In Pro-
ceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference,
SIGCOMM ’16, pages 216–229, Florianopolis, Brazil, August 2016.

[11] P. Gill, N. Jain, and N. Nagappan. Understanding Network Failures in
Data Centers: Measurement, Analysis, and Implications. In Proceed-
ings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages
350–361, New York, NY, USA, 2011. ACM.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible
Data Center Network. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, SIGCOMM ’09, pages 51–62,
New York, NY, USA, 2009. ACM.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. In SIGCOMM ’09, pages
63–74, Barcelona, Spain, August 2009.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A Scalable
and Fault-Tolerant Network Structure for Data Centers. In SIGCOMM

’08, pages 75–86, Seattle, Washington, USA, August 2008.
[15] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Aug-

menting Data Center Networks with Multi-gigabit Wireless Links. In
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 38–49, Toronto, Ontario, Canada, August 2011.

[16] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer. FireFly: A Reconfigurable Wireless Data
Center Fabric Using Free-space Optics. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, pages 319–330,
Chicago, Illinois, USA, August 2014.

[17] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan. Measuring Control Plane Latency in SDN-
enabled Switches. In Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research, SOSR ’15, pages
25:1–25:6, Santa Clara, California, 2015.

[18] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron, H. Williams, and
X. Zhao. XFabric: A Reconfigurable In-Rack Network for Rack-Scale
Computers. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 15–29, Santa Clara, CA, 2016.
USENIX Association.

[19] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A Fault-
Tolerant Engineered Network. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), pages 399–412, Lombard, IL, 2013. USENIX.

[20] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav. Quartz: A New Design
Element for Low-latency DCNs. In SIGCOMM ’14, pages 283–294,
Chicago, Illinois, USA, August 2014.

[21] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: A Scalable
Fault-tolerant Layer 2 Data Center Network Fabric. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication,
SIGCOMM ’09, pages 39–50, New York, NY, USA, 2009. ACM.

[22] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat. Integrating Microsecond
Circuit Switching into the Data Center. In SIGCOMM ’13, pages
447–458, Hong Kong, China, August 2013.

[23] M. Schlansker, M. Tan, J. Tourrilhes, J. R. Santos, and S.-Y. Wang.
Configurable optical interconnects for scalable datacenters. In Optical
Fiber Communication Conference and Exposition and the National
Fiber Optic Engineers Conference (OFC/NFOEC), 2013, pages 1–3.
IEEE, 2013.

[24] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In SIGCOMM ’15, pages 183–197,
London, United Kingdom, August 2015. ACM.

[25] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Net-
working Data Centers Randomly. In NSDI ’12, pages 1–14, San Jose,
California, USA, April 2012.

[26] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo. Aspen Trees: Balanc-
ing Data Center Fault Tolerance, Scalability and Cost. In Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’13, pages 85–96, New York, NY, USA,
2013. ACM.

[27] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng,
M. Kozuch, and M. Ryan. c-Through: Part-time Optics in Data Centers.
In SIGCOMM ’10, pages 327–338, New Delhi, India, August 2010.

[28] M. C. Wu, O. Solgaard, and J. E. Ford. Optical MEMS for Lightwave
Communication. Journal of Lightwave Technology, 24(12):4433–4454,
December 2006.

[29] Y. Xia and T. S. E. Ng. Flat-tree: A Convertible Data Center Network
Architecture from Clos to Random Graph. In Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, HotNets ’16, pages 71–77,
Atlanta, GA, November 2016.

[30] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. E. Ng.
A tale of two topologies: Exploring convertible data center network
architectures with flat-tree. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17,
pages 295–308, New York, NY, USA, 2017. ACM.

[31] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng. Mirror Mirror on the Ceiling: Flexible Wireless Links
for Data Centers. In Proceedings of the ACM SIGCOMM 2012 Confer-
ence on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages 443–454, Helsinki,
Finland, August 2012.

	1 Introduction
	2 Motivation
	2.1 Related Work
	2.2 Failure study

	3 Network Architecture
	4 Control Plane
	4.1 Fast Failure Detection and Recovery
	4.2 Offline Failure Diagnosis
	4.3 Live Impersonation of Failed Switch

	5 Architecture Properties
	5.1 Capacity to Handle Failures
	5.2 Cost Analysis
	5.3 Performance Characteristics

	6 Conclusion
	References

