
Inferring a Network Congestion Map with Zero
Traffic Overhead

Florin Dinu T. S. Eugene Ng
Computer Science Department, Rice University

Abstract—This paper proposes a purely passive method for
inferring a congestion map of a network. The congestion map
is computed using the congestion markings carried in existing
traffic, and is continuously updated as traffic is received. Conse-
quently, congestion changes can be tracked in a real-time fashion
with zero traffic overhead. Unlike active congestion reporting
methods, our novel passive method is more robust during periods
of congestion because there are no congestion report messages
that could be lost and existing congestion is never aggravated.
Our solution has several applications ranging from informing
IP fast re-route algorithms and traffic engineering schemesto
assisting in inter-domain path selection.

I. I NTRODUCTION

Information about congestion is of great importance to a
network. Congestion indicates a severe degradation of the
service level provided by the network and even a possible
danger to the stability of the basic routing functionality [21].
Several distributed router level algorithms can benefit from
congestion information. For example, IP fast re-route algo-
rithms are currently ignorant of congestion [18][17][22].It
is important that these algorithm be extended to properly
take network congestion into account because their routing
decisions could cause congestion and also the efficiency of
their decisions is impacted by existing congestion. Automated
verification mechanisms that use multiple vantage points to
verify the correct functioning of routers [19][15][24] canuse
congestion information to reason whether packet loss was
caused by congestion or by errors in protocol implementations.
Distributed traffic engineering algorithms [13] can use con-
gestion information to balance the load in the network. At the
inter-domain level, congestion information can be leveraged
in the selection of suitable inter-domain routing paths.

Our novel proposition is that a congestion map of the
network can be locally obtained at any router by processing
the congestion information carried in the existing traffic that
passes through that router. No extra traffic is added into the
network. Our solution combines path level congestion informa-
tion with routing information. Today, both types of information
can be obtained from standardized protocols. First, the explicit
congestion notification (ECN) protocol alongside an active
queue management (AQM) protocol enables existing traffic to
carry aggregate, path level congestion severity information. We
present a complete method for inferring path level congestion
information by leveraging the congestion markings from ACK
and data packets. Subsequently, information from a link-state
intra-domain routing protocol can be used to break down the

path level congestion information into detailed link levelcon-
gestion location and severity information. At the inter-domain
level our solution allows a local border router to extend its
congestion map with aggregate inter-domain path congestion
information. In our solution, at a border router, each reachable
remote network is abstracted as a virtual link connected to the
border router. The congestion inference method for a virtual
link is precisely the same method used in the local autonomous
system (AS). A congestion map is the union of all the link
level and path level congestion information inferred at a router.

Our inference method is useful in inter-domain scenarios
where, due to administrative boundaries, routers in different
ASes cannot be actively queried for their congestion level.
In addition, even in the local AS, our method has several
important advantages compared to methods that rely on active
congestion reporting. First, our method does not aggravate
congestion episodes. In contrast, active congestion report mes-
sages increase the severity of congestion episodes. Even more,
with our solution, routers also have the flexibility to choose
different sampling granularities locally without affecting the
network traffic. In contrast, to obtain fine-grained real-time
congestion information, an active reporting method must resort
to increasing the reporting frequency, further increasingthe
traffic overhead and exacerbating existing congestion. This
weakness of active congestion reporting is especially detrimen-
tal because precisely during congestion periods fine-grained
real-time congestion information is most useful. Second, our
method is more robust during congestion periods since there
are no report messages that could be lost because of conges-
tion. Third, our method computes a fine-grained congestion
map that is continuously updated in real-time as traffic is
received, yet incurs zero traffic overhead.

We test the accuracy of our method against several im-
portant factors using numerical analysis and ns-2 simulations.
The factors include sudden variations in the congestion level,
the type of AQM used and multiple consecutive congestion
points. We also analyze the effect of factors that can distort
the sequences of packet markings. Despite the influence of all
these factors our solution can infer congestion at a remote link
with good accuracy and at fine time scales.

The rest of the paper is organized as follows.§II describes
prerequisites and overviews the solution.§III discusses the
inference of aggregate path level congestion.§IV details the
computation of link level estimates.§VI and §V evaluate the
accuracy of our method.§VII discusses our solution further,
§VIII presents related work and§IX concludes.



II. OVERVIEW

Prerequisites: Our solution infers congestion inside a local
AS and on the inter-domain paths that take traffic to and away
from the AS. For local inference our solution uses the traffic
that originates in and is destined to the same AS. For inter-
domain inference the inter-domain traffic that has either the
source or destination in the local AS is used. To have their
congestion level inferred by our solution, local routers need
an AQM algorithm [12][5][9] and the ECN protocol [20] for
explicit congestion marking. The more AQM/ECN enabled
routers are present in the network the more complete the
inference is. The AS also needs to use a link state intra-
domain routing protocol (e.g. OSPF). At the inter-domain
level, as long as the routers at strategic points most susceptible
to congestion (e.g. traffic exchange points) are AQM/ECN
enabled, our solution will provide benefit.

Background: An AQM enabled router may mark data
packets instead of dropping them. Specifically, the AQM al-
gorithm [12][5][9] at a router computes a congestion measure
for the router’s outgoing links. This measure can be as simple
as a function of the router queue size (e.g. RED [12]) or a
more complex expression based on incoming traffic rate and
available bandwidth (e.g. REM [5]). The router can then mark
each outgoing data packet probabilistically, as a functionof
the congestion measure of the link they are sent on.

ECN [20] is the protocol that enables congestion marking.
It makes use of four packet header bits: ECN-Echo (ECE)
and Congestion Window Reduced (CWR) in the TCP header
and ECT (ECN-Capable Transport) and CE (Congestion Ex-
perienced) in the IP header. ECN capable data packets have
the ECT bit set. Congested routers can mark such packets by
setting the CE bit. When receiving a data packet with the CE
bit set, a TCP destination sets the ECE bit in the subsequent
ACK and continues to do so for all following ACKs until it
receives a data packet with the CWR bit set. The CWR bit
is set by a TCP source to signal a decrease in the congestion
window. This can happen as a result of receiving an ACK with
the ECE bit set or for other reasons. The ECN markings on
the two halves of a TCP connection are independent.

Definitions and notations:We use the term data or forward
path to refer to the path taken by data packets and ACK path
to refer to the path taken by ACK packets. We call a packet
with the ECE bit set amarked ACKpacket and a packet with
the CE bit set a marked data packet. Unmarked packets do
not have those bits set. As explained, a TCP receiver can mark
multiple ACKs as a result of receiving one marked data packet.
Consequently, the sequence and percentage of the markings
in the data packets can be modified when the TCP receiver
echoes the markings to the ACKs. We refer to this process
as thealteration caused by the TCP receiver. For brevity we
useMP to denote marking probability andLMP andPMP to
denote link level and path level marking probabilities. A group
of unmarked ACKs is a maximal sequence of consecutive
unmarked ACKs. A group of unmarked ACKs of size zero
is considered to appear whenever the echoing of markings in

ACKs finishes but has to resume immediately. This situation
arises when a data packet has both the CE and CWR bits set.

Overview of the solution: Our solution allows a router to
locally infer the congestion severity at other routers and net-
work paths. In this paper we use the MP as the representation
of congestion severity because the MP is common to several
AQM algorithms.

Our solution applies to any network topology on a per-
path basis. Routers first analyze the data and ACK markings
received on separate network paths. The analysis of data packet
markings leverages the percentage of marked data packets and
allows congestion inference to be performed on the path taken
by the data packets from the source until the analyzing router.
The analysis of ACK markings relies on the size of the groups
of unmarked ACKs and allows congestion inference on the
entire forward path of flows. This path level analysis yields
aggregate PMPs. After computing PMPs, a router can leverage
link state routing information which is reliably disseminated
and is sufficient to allow each router to compute the hop level
path that a packet takes from a source to a destination. Using
both PMPs and the hop level path description, aggregate PMPs
for increasingly shorter paths can be derived. Thus, LMPs can
also be computed with this approach. The set of all PMPs and
LMPs inferred by a router forms a congestion map.

Inter-domain congestion inference: Aggregate congestion
information for inter-domain paths can be computed with the
same mechanism that applies to the problem of congestion
inference for the local AS. Since one AS typically has no
topology information about other ASes, we abstract the path
from a local border to an external destination as one virtual
link connected to the border router. Local border routers obtain
aggregate congestion information for these virtual links.In
this inter-domain scenario, data packet congestion markings
convey congestion information about ingress routes. ACK path
congestion markings give the local border routers congestion
information about egress routes. The obtained congestion in-
formation can be leveraged when selecting good inter-domain
paths and when advertising paths to neighbors. One advantage
of our solution is that as re-routing occurs outside the local
AS on an inter-domain path, our solution always tracks the
congestion on the currently used path. Given the large number
of destination reachable in the inter-domain, an operator may
wish to restrict the number of destinations for which the
inference is performed or can perform inference on demand.
For the rest of the paper we consider that an AS network
topology includes these virtual links. As a result of applying
our solution to this topology both the detailed congestion map
of the local AS as well as the aggregate inter-domain path
congestion information will be obtained.

III. I NFERRINGPATH LEVEL CONGESTION INFORMATION

In this section, we describe the initial building block for
obtaining a congestion map of the network: the inference of
PMPs from packet markings. PMPs can be obtained from
either data or ACK markings. However, the analysis of these
two types of markings presents different challenges. In this



Fig. 1. Sampling and estimation intervals

paper we solve the more difficult problem of ACK based
inference. ACK based congestion inference is vital becauseit
conveys information about downstream router paths, exactly
the paths that carry forwarded traffic.

A. Estimation and Sampling Intervals

Our inference solution uses two parameters: a sampling
interval (SI) and an estimation interval (EI). For each SI,
a singlesample is obtained from all the markings received
during the SI. Choosing a very low SI value may result in
too few packet markings to compute a meaningful sample.
On the other hand, a large SI value biases the sample towards
the periods where bursts of packets are received. One cause
for these bursts is the burstiness inherent in the use of TCP.
We found that an SI on the order of the RTT of the network
performs well because it works at the scale of TCP’s burstiness
while at the same time providing enough packets for the
inference.

The EI represents the granularity at which inference is
performed. The inferred LMPs and PMPs represent congestion
at the scale of an EI. Figure 1 depicts the relationship between
the EI and the SI. An EI is a multiple of an SI. For each EI, an
estimateof the congestion severity is computed by averaging
all the samples obtained during the EI. The trade-off present
in choosing an EI value will become clear after we describe
our solution.

B. Data Packet Based Inference

The data packet markings are exactly the markings set by
routers. They are never altered until the data packets reachthe
destination. To compute a sample for a path using data packet
markings a router counts the total number of data packets and
the total number of marked data packets it receives across all
flows traversing the path. Using these two counters, the ratio
of marked data packets is obtained. This ratio serves as the
sample for an SI.

C. ACK Packet Based Inference

The ACK markings are the result of the echoing performed
by the TCP receiver. The challenge is to infer accurate con-
gestion estimates despite the alteration caused by the echoing.
At first glance, computing a sample using ACK markings
could also leverage the percentage of marked ACKs. On
closer inspection, such a solution is unfortunately inadequate
because the alteration of the markings can cause a significant
overestimation of the MP. In [10] we use a theoretical model
that quantifies the effect of the alteration. We find that the
overestimation can be severe. For a TCP window of 8 packets
and a real MP of 0.15 the inferred MP overestimates by a
factor of 4 [10]. In this section, we present our solution for

Fig. 2. The computation of a sample

inference using ACK packets. The key insight is that groups
of unmarked packets can be leveraged instead of individual
packet markings. Using the groups allows meaningful samples
to be computed despite dealing with the altered versions of the
initial congestion markings.

Figure 2 depicts our congestion inference solution. Routers
monitor a limited number of TCP flows for each network path.
In the figure, as a simple illustration, 4 out of many flows
are monitored. During each SI, the length of each group of
unmarked ACKs in each monitored TCP flow is measured.
Then, an average group length is computed across all the
monitored flows. Letq be this average size,p be the marking
probability andn the possible size of groups of unmarked
ACKs ranging from 0 to∞. The relation betweenq andp is:

q =

∞∑

n=0

n ∗ (1 − p)n ∗ p =
1 − p

p
(1)

After q is obtained from counting the groups of unmarked
ACKs, the samplep can be derived using equation (1).

Monitoring flows: Flows constantly begin and finish, there-
fore the set of monitored flows needs to be periodically
refreshed. In this paper, we refresh the set of monitored flows
at the beginning of every new EI by randomly selecting a new
set of flows. If desired, other refresh intervals can also be used.
For simplicity, in this paper, for every new EI we remove the
information computed for the previous EI. A simple extension
to our solution can allow information to be shared across EIs
for flows that are chosen for monitoring in consecutive EIs.

At the beginning of each EI, the first few samples are not
computed. Those first few SIs serve only to begin selecting
a number of flows to monitor. In our evaluation we find that
selecting flows during the first 2 SIs is sufficient for good
accuracy. The samples from the subsequent SIs are averaged to
obtain the estimate. During these subsequent SIs flows can still
be chosen for monitoring until a desired maximum threshold
is reached. These flows are used for inference starting with
the SI following the SI where they were first encountered.

Incomplete groups: Groups of unmarked ACKs can span
multiple SIs. During one EI, these groups are counted in the
SI where they end. Even so, incomplete groups of unmarked
ACKs may be encountered at the start or end of an EI. Such
groups begin or end in a different EI. Since we treat each SI
separately, the correct size of the incomplete groups cannot



be correctly measured and this can skew the results. Thus,
incomplete groups are not considered for inference. It should
now become clear why choosing very small EI values may
impact accuracy. If for exampleEI = SI, an important
percentage of groups will be incomplete and cannot be used by
the inference. On the other hand, if the EI contains multiple
SIs, fewer incomplete groups will appear since many larger
groups will end and will be used for the inference.

Identifying groups of size zero:Our solution can leverage
groups of unmarked ACKs of size zero. Recall that such
groups are considered to appear when the CWR data packet
that signals the TCP receiver to stop setting the ECE bit
is also marked. To correctly identify groups of size zero a
router remembers the sequence numbers of the last byte of the
CWR packets it observes in the each of the monitored flows.
The ACK corresponding to a CWR packet can be identified
by its sequence number which is the first value larger than
the remembered value. If both the ACK corresponding to a
CWR packet and the previous ACK are marked, this signals
the presence of a group of unmarked ACKs of size zero.
To ensure that every ACK packet can be checked against its
corresponding data packet, for each flow and EI, the sequence
number of the first detected data packet is stored and only the
ACKs with a greater sequence number are considered.

Benefit of groups of size zero:The use of the groups of
size zero benefits the accuracy of our solution. As described,
to use such groups, routers must be both on the forward and
on the ACK path of a flow. However, it is important to note
that our solution still works without the groups of size zero. If
the groups of size zero are not used, a small change is required
to (1). In that case, the MP can be computed as the inverse of
the average group size of groups of positive size. The entire
derivation is available in [10].

The increase in accuracy when using groups of size zero
comes from the fact that in environments with high levels
of congestion the number of groups of unmarked ACKs
of size greater than zero alone may not provide statistical
significance. The reason is that the ratio of groups of size
zero is proportional to a path’s MP and therefore becomes
significant when the MP is large. Using groups of size zero
does not, however, strictly require routing to be symmetric.
If the first-hop and last-hop router for a flow are unique, as
is usually the case, those routers will always be able to take
advantage of the groups of size zero, irrespective of the degree
of asymmetry of the entire end-to-end path.

Storage overhead:The state that routers need to store for
our inference solution is small and comprised only of simple
counters. For each flow, a counter keeps track of the size of
the current group of unmarked ACKs. Over all flows, one
counter holds the total size of all group of unmarked ACKs
and a third counter keeps track of the number of groups.
Additionally, if groups of size zero are used, for each flow, the
sequence number of the last byte in the CWR packets needs
to be stored. In the common case, only one CWR packet per
RTT is expected for a given flow and it can be discarded after
it is matched to the corresponding ACK.

Fig. 3. A sample network with link weights

IV. I NFERRINGL INK LEVEL CONGESTIONINFORMATION

We next describe the building blocks for computing link
level estimates. Recall that a router’s congestion map is the
set of all inferred MPs. To support our explanations, we use
the sample network in Figure 3 where routing is shortest-path.
Unless otherwise stated, the route throughR5 is not used.
We useSij to denote the path from routerRi to Rj . Pij is
the estimated MP overSij . If Ri andRj are neighbors then
Pij = Lij , whereLij is the LMP.

A. Building Blocks

The first building block is the set of PMPs that a router
can infer. These PMPs can then be further broken down using
the second building block, a set of equations that directly
result from leveraging link state routing information. We next
characterize the set of PMPs that a router can infer when using
our congestion inference solution.

Scenario 1 - Only data markings:A routerRi that observes
only the data packets from the traffic sent by some sourceRs

can infer Psi. In other words,Ri can infer the MP on all
paths that carry data traffic to it. In Figure 3, ifR0 and R1

send traffic toR4, then,R2 can inferP02 andP12 = L12.
Scenario 2 - Only ACK markings - Groups of size zero not

used: In this case, when groups of size zero are not used, a
routerRi that observes only the ACKs from the traffic between
a receiverRd and a sourceRs can inferPsd as in §III-C. In
other words,Ri can infer the MP over the entire forward path
from Rs to Rd. In Figure 3, consider thatR0 sends traffic to
R4 using R1 as a next hop but the reverse ACK traffic goes
throughR5. In this case, from ACK analysis,R5 infers P04.

Scenario 3 - ACK and data markings - Groups of size zero
can be used:A router Ri that observes both the ACK and
data packets sent between some senderRs and some receiver
Rd can infer bothPsi and Psd. Psi can be computed as in
Scenario 1.Psd can be computed as described in Scenario 2.
In our example, suppose there is traffic fromR0 to R4 and it
is taking the route throughR1. R1 can inferP01 by analyzing
data packet markings andP04 by analyzing ACK markings.

All scenarios described above regularly appear in practice.
Let Fwdsd and Revsd be the set of routers on the forward
path and on the ACK path for traffic generated byRs for Rd.
If Ri ∈ Fwdsd

⋂
Revsd then Scenario 3 applies. If routing is

asymmetric, then, a router can possibly find itself on eithera
forward path or an ACK path for which it is neither source
nor destination. IfRi ∈ Fwdsd \ Revsd Scenario 1 applies. If
Ri ∈ Revsd \ Fwdsd Scenario 2 applies.

The second building blockis the method used for breaking
down the inferred aggregate PMPs. Link-state routing infor-
mation plays a vital role as it allows routers to compute the set



of links comprising paths with known PMPs. With this, PMPs
can be further broken down into PMPs for shorter portions
of the initial path. We can formally represent these ideas as
follows.

A router Ri can compute the path level estimatePjk if it
knows Ptj and Ptk (t = i usually, but not necessarily), and
Stj is a strict subset ofStk:

Ptj + (1 − Ptj)Pjk = Ptk → Pjk =
Ptk − Ptj

1 − Ptj

(2)

A similar equation can be derived ifPjt andPkt are known
instead. To exemplify the use of the equations, consider
Scenario 3, wherePsi and Psd are inferred. Using equation
(2) a router can computePid. For example, fromP01 andP04

a router can deriveP14. In other words, in Scenario 3,Ri can
now infer the MP on both the paths carrying traffic to it and
away from it.

We use the model described above to approximate the effect
of congestion marking in reality. In practice, the probabilistic
marking and the inference errors could causePtj > Ptk. In
those cases 0 should be used as the numerator in equation (2).
The following evaluation section appraises the accuracy ofour
model in practice.

V. SIMULATION

A. Methodology

We conduct ns-2 simulations for evaluation because they
provide us with fine granularity, router level congestion in-
formation to compare against. We next describe our default
experimental setup. Exceptions are discussed with the corre-
sponding experiments. The groups of size zero are used in all
experiments.

Our solution considers each network path in isolation, infers
path level congestion estimates and then breaks these down
into link level estimates. In this section, we look at several
scenarios that can appear on a network path. We then obtain
link level estimates and use them to quantify the accuracy of
our approach. Figure 4 describes our default 10 hop network
path. Link bandwidth is limited to 500Mbps in order to keep
the simulation times tractable. However, we also discuss the
effects of changes in bandwidth. The propagation delay on
each link in our network is 5ms. All the inferences presented
are from the point of view of nodeR0.

AQM configuration: The function used by AQM algo-
rithms to map congestion measures to MPs influences the
inference accuracy. We evaluate the effect on inference of
both the linear functions (PI [9], RED [12]) and exponential
functions (REM [5]) present in ns-2 AQMs. By default, we use
a linear marking function. We use RED to represent this group
of functions since it is standardized and widely implemented
[8][16]. For RED we disable the waiting between marked
packets (the ns-2 waitparameter) in order to be compliant
with the RFC. We set the MP to linearly increase to 1 (maxp
in ns-2) as the average queue size grows to maxthresh. The
queue measuring function and the marking probability are
defined per-byte. The minthresh is 25% and maxthresh is

R0 R1 R8 R9

5ms

500Mbps

TCP: R0 to all

TCP: Ri to Ri+2

UDP UDP R2 R10UDP UDP

Fig. 4. A particular network path inside a network

75% of the router buffer size. As it is common today [4],
the buffer size is the product of the link capacity and average
network RTT.

Traffic: We use the ns-2 TCP Reno and UDP sources to
generate traffic. Packet size is 500 bytes. The TCP flows used
are FTP flows that once started last for the entire duration
of the simulation. However, in§V-B4 we also evaluate the
influence of small flows. There is TCP traffic from nodeR0

to each of the other nodes:

N0−>i = Nr. F lows from R0 to Ri = N ∗ i2 (3)

N is tunable and by default is 250.N0−>i increases with
the distance fromR0. We made this choice to minimize the
bias that TCP has against flows with larger RTTs. Background
traffic is simulated by 100 TCP flows started from any node
Ri to nodeRi+2. We also wish to understand the effect of
congestion variation on the inference. We use UDP sources
to induce variation in the congestion level. Compared to
TCP sources, UDP sources offer more flexibility in creating
congestion level variations because they do not adapt to
the network conditions. We devised a custom UDP source
that changes its sending rate by a percentage of the link
bandwidth every second while continuously cycling between0
and 500Mpbs. The default value is 2% (10Mpbs). Such sources
are started between every consecutive pair of routers. Notethat
the use of UDP sources reduces the number of TCP markings
available for inference. In reality, some networks may see a
significantly smaller percentage of UDP traffic. In those cases
the accuracy of our solutions can improve. All the TCP and
UDP flows described are set up on the forward path. The ten
links comprising our network path show average MPs for each
EI ranging from a high of roughly 0.3 for (R0, R1) to 0.12
for (R8, R9). The link (R9, R10) marks packets with roughly
0.05 probability.

Parameter values: Unless otherwise stated an SI of 0.5s
(roughly our network’s average RTT) and an EI of 3s are
used. Each simulation runs for 500s. The results include the
initial phase in which flows are started are congestion suddenly
ramps up.R0 monitors at most 1000 flows per EI for eachRi.
Note that this is the maximum allowed; some EIs will observe
less flows. As described in§III-C the first 2 SIs are not used
for inference but rather for selecting an initial set of flowsto
monitor.

Metric: To quantify the inference accuracy we use the 50th
and the 90th percentiles of the following metric:

Accuracy Metric = |Inferred MP − Real MP | (4)
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Fig. 5. Error vs ratio of EI and SI

Let EIs and EIf be the start and finish time of an EI used
by R0 for inferring the LMP on some link(Ri, Rj) using
ACK markings. The estimate cannot be directly compared to
the real MP on the link from timeEIs to EIf because of the
delay from(Ri, Rj) to R0. Therefore, we considerEIa and
EIz be the times during some EI at whichR0 receives the
first and last ACKs corresponding to data packets forwarded
by Rj . EIs ≤ EIa ≤ EIz ≤ EIf . Also let ta and tz be the
times at which those data packets were forwarded byRi. The
real MP on(Ri, Rj) against which we compare is the time
weighted average over all MPs atRi over the interval that
starts atta − (EIa − EIs) and ends attz + (EIf − EIz). If
no packets are received fromRj during an EI the real MP is
computed from timeEIs to EIf .

We perform numerical comparisons between the inferred
and real MPs. While in practice a discrete representation of
congestion (e.g. low, medium) should suffice for most appli-
cations, performing direct numerical comparisons allow usto
better present the strengths and limitations of our approach.

A reference solution: To assess any potential impact that
altered markings have on the inference accuracy, we compare
against a reference solution that does not suffer from alteration.
This solution uses an alternative echoing scheme in which
TCP receivers mark an ACK if and only if the corresponding
data packet was marked. This basically reduces the problem
of ACK packet inference to that of data packet inference
where the sample can be calculated based on the ratio of
marked packets. Therefore, even though in this paper we focus
on ACK packet inference, the accuracy of inference using
data packets can still be discerned from the accuracy of the
reference solution.

B. Experimental Results

1) Sensitivity to the length of the EI: We analyze the
effect that the EI length has on inference accuracy. The results
are shown in Figure 5 for an SI of 0.5s. The x-axis is in
logarithmic scale. Our solution’s accuracy is comparable to
that of the reference solution. We observe that the inference
for small EI/SI ratios is more error-prone than for larger
ratios. For small ratios fewer packets and groups are available
for inference. The inference error also increases with the
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number of congested links. This is because each congested
link introduces small variations in the aggregate MP as flows
cannot all be marked with precisely the same probability.
Uncongested links do not introduce such variations since their
marking rate is 0. Nevertheless, even in such a network where
every link is congested, for an EI of 3s (ratio 6) the 90th
percentile of the error for the 5th hop is within 0.05. If an
EI of 15s is used, the error for all hops is within 0.05. More
importantly, even for very small EI values (1s), only the most
distant hops (9th hop in this experiment) have an inference
error of more than 0.1.

2) Performance in high bandwidth environments: We
next analyze the sensitivity of the inference to an increase
in bandwidth. We start with a link bandwidth of 100Mbps
and go up to 1Gbps. Intuitively, an increase in bandwidth
provides more groups for the inference. Results are shown in
Figure 6. As bandwidth increases there are far more packets
exchanged betweenR0 and the other routers and therefore
more groups of unmarked packets. Since the inference process
benefits from more data points the accuracy increases with
the bandwidth. Note that the improvement diminishes when
bandwidth is scaled up to 1Gbps because the inference process
is already provided with many data points. Note also the
increased variability in the inference for the last hop which is
caused by the relatively smaller number of packets and groups.

3) Sensitivity to sudden changes:The default behavior
of RED is to smooth out variations in the congestion severity
and therefore the MP. To test our solution in scenarios where
the MP varies suddenly and substantially we instruct the UDP
sources to change their sending rate by 50Mbps (10% of link
bandwidth) every second while cycling between 250Mbps and
750Mbps (50%, 150% of link bandwidth). Every 10s we also
stop the UDP sources for a random duration between 0s and
10s. Every 10s we start 3000 TCP flows between a random
pair of nodes in the network. Each of these 3000 flows finishes
after sending for a random time between 0s and 10s. The
resulting MP variation at the EI scale for the second hop is
presented in Figure 7. The other hops present a comparable
pattern of variation. Packet drops are often encountered inthis
experiment.

The results are presented in Figure 8. Even with these
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Fig. 8. Error for EI of 3 and 10 for each hop

sudden changes in the MP and with an EI of just 3s the 50th
percentile of the error is still under 0.05 for the first seven
hops. The inference for the 1st hop is affected by the small
number of flows started toR1. As a result, very few flows are
monitored fromR1. As the EI is increased to 10s the accuracy
improves to the point where the 90th percentile of the error is
under 0.1 for most hops.

4) Sensitivity to flow size: In practice, a significant number
of flows are small flows. To simulate such scenarios we
consider a percentage of the total number of flows to be small
flows. We use 10%, 50% and 90% as the values. We then
limit the number of packets counted from these flows. If the
limit is 2, then only the first two counted packets of a flow
are considered for inference; exactly as if the flow had only
two packets. The results are presented in Figure 9 for the 4th
and 7th hop. Other hops show similar trends.

If 90% of the monitored flows are small flows, the effect on
the accuracy become visible. However, even when 50% of the
flows are small the inference result is good. This is because
over all flows there are still enough groups for inference.
We also evaluated the reference solution. As expected, the
reference solution is less affected by the size of the flows
because it uses packets instead of groups of packets. This
experiment shows that accurate results can be obtained even
when a significant number of flows are small flows.

5) Robustness against false positives:A specific case
of measurement inaccuracy is inferring an uncongested link
as congested. This overestimation can occur because of the
probabilistic nature of our algorithm that can yield minute
differences in the MP of flows on the same path. In this
experiment we congest only the first network link and analyze
the overestimation on the other links. To congest only (R0, R1)
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we remove all traffic unless started fromR0. We perform
several runs with each run varying the MP on (R0, R1) by
starting a variable number of flows fromR0 to R1 and by
varying the rate at which UDP sources send traffic from
50Mbps to 200Mbps in 25Mbps increments. In Figure 10 we
present the inference errors for the uncongested links for a
representative run. The overestimates are very small. If coarse
congestion estimates (e.g low, high) are used, the severityof
the congestion will be correctly inferred in most cases.

6) Sensitivity to different AQM algorithms: Alongside
RED, we also evaluate REM and PI. The default ns-2 parame-
ters are used for REM and PI. The inference accuracy depends
on the function that the AQM algorithm uses for mapping
congestion measures to MPs. For REM this is an exponential
function. It creates abrupt variations in the MP for small
changes in the congestion measure. RED and PI use a linear
function. The results for our proposed solution are shown in
Table I. The inference for the reference solution yields very
similar results. PI exhibits good performance, similar to RED.
REM, however, does not perform well. REM’s exponential
marking function is far more likely to suffer from an effect
we call limited visibility, than the linear marking functions of
RED and PI. For REM, in our experiment, the limited visibility
is a factor as soon as the second hop. Limited visibility is
discussed in§VI.

7) Additional experiments: Additional experiments are
available in our technical report [10]. In one experiment we
show that the variation in the delay from the inferring router
to end-hosts has little effect on the inference accuracy in the
common case when the delay variation is smaller than the EI



Hop RED RED PI PI REM REM
50th 90th 50th 90th 50th 90th

1 0.002 0.006 0.026 0.035 0.001 0.014
3 0.009 0.023 0.028 0.068 0.999 0.999
5 0.014 0.034 0.035 0.103 0.999 0.999
7 0.030 0.068 0.047 0.132 0.999 0.999
10 0.055 0.086 0.079 0.175 0.999 0.999

TABLE I
ABSOLUTE ERROR FOR DIFFERENTAQMS
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length. In [10] we also tested the accuracy of our solution
when groups of size zero are not used. We observed that, in
a scenario with a bottleneck link with an MP under 0.5, the
loss in accuracy is minimal. The accuracy decreases if the MP
continues to increase because the proportion of groups of size
zero becomes predominant.

VI. N UMERICAL ANALYSIS

Next, we perform a numerical analysis to understand the
effect of two factors that can affect our inference solution
by distorting the sequences of congestion markings in ACK
packets: the TCP delayed ACK algorithm and packet loss.
Moreover, we also analyze the limited visibility effect and
using real topologies, we quantify the extent of the coverage
of a router’s congestion map.

A. Effects of Delayed ACK

The delayed ACK algorithm [7] allows a TCP receiver to
acknowledge up to two data packets at once. In this case,
the congestion marking echoed in the delayed ACK packet
becomes the logical disjunction of the markings in the two data
packets acknowledged [20]. This process alters the number and
sizes of the sequences of unmarked ACKs compared to a TCP
that does not use delayed ACK. For our numerical analysis we
consider a large number of data packet markings set with some
MP. An ACK marking is created for every two data packets
according to the delayed ACK algorithm. Figure 11 shows
the results. We compare against a perfect inference to point
out theadditional inaccuracy caused by using delayed ACK.
Even though the delayed ACKs cause an overestimation in the
inference, the severity of the inferred MPs is comparable to
that of a perfect inference.

B. Sensitivity to Dropped Packets

With AQM/ECN networks packet loss should be rare be-
cause packet markings function as early congestion warnings
for TCP. Nevertheless, we next analyze the effect of dropped
data and ACK packets on the ACK based inference. In the

Fig. 12. Numerical analysis - additional inaccuracy causedby dropped ACKs

ideal case, the distribution and sizes of the sequences of
unmarked ACKs that a router observes should be consistent
with the aggregate MP on the corresponding forward path.
Dropped ACK and data packets could affect these conditions.
Drops may also limit the number of packets available to the
inference algorithms.

Dropped data packets can appear when congested non
ECN routers coexist with AQM/ECN enabled routers. Dropped
data packets have negligible effect on the accuracy of our
solution as long as enough groups are left for inference. The
reason is that the probabilistic drops will not change the MP.
Therefore, the sequences of unmarked ACKs will still be
consistent with the MP. See [10] for a more detailed discussion
and an experimental validation.

Dropped ACK packets: Pure ACKs are not ECN capable
and can be dropped during congestion. Since our solution uses
the sequences of ACKs for computation, pure ACK losses can
impact the inference accuracy. In this experiment we analyze
the degree of inaccuracy that ACK lossadds to a perfect
inference. To this end, we use a numerical model where a
large number of markings are created with some probabilityp
and dropped with a probabilityd for flows with a window size
of w. This model allows us to discuss results for all values of
d, p andw whereas in a realistic simulation such parameters
cannot be precisely controlled.

The worst case is for largew values. This case is pictured
in Figure 12 for aw of 50 packets. The inaccuracy appears
because the reduction in the number of unmarked ACKs due
to the drops is not coupled with a comparable reduction in
the number of groups and this skews the average group size
calculation. If w decreases, the error also decreases because
there is a greater chance of dropping all the markings between
groups of unmarked packets. This will cause groups to unite
which leads to fewer groups and therefore smaller errors
compared to a largerw. Note thatd must be in excess of
0.5 for the inference error to top 0.1. For comparison, forw
of 4 packetsd must be in excess of 0.65 for the error to top
0.1. Such high drop probabilities are never desired as they
significantly degrade end-user performance.

C. Path Level Visibility

A very high aggregate MP on a path can make the in-
ference of downstream links more challenging. To provide
more insight into this effect, which we termlimited visibility,
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we perform a numerical analysis. We use a simple network
consisting of three links, from routerR0 to R3. We consider
that flows are started fromR0 to all other routers, fromR1

to R2 and fromR2 to R3. We fix the LMP on (R2, R3) at
0.36 (any value is equally good this illustration) and vary the
LMP on (R1, R2). The purpose of the analysis is to see the
degradation in the inference for the link (R2, R3) when the
LMP on (R1, R2) increases to 1.

The results are shown in Figure 13. The effect of limited
visibility can be seen at high MPs. As the MP increases,
and fewer and fewer packets leave routerR1 unmarked, it
is increasingly more difficult to encode the LMP on (R2, R3).
In the extreme case (LMP of 1 on (R1, R2)) there are no more
unmarked packets to carry useful information about (R2, R3)
so R0 considers the MP for (R2, R3) to be 0. The resulting
error is 0.36, exactly the value of the LMP on (R2, R3). A
threshold at which the limited visibility commences depends
on multiple factors including number of packets received, the
aggregate MP on the paths and the variation of MP on the
measured path. However, a significant level of congestion is
necessary. In our simple experiment, the inference accuracy is
impacted only when more than 95% of the packets are marked.

D. Extent of Congestion Map Coverage

If all-to-all traffic exists between the routers, the coverage
of the congestion maps is high. Such a traffic pattern ensures
that routerRi’s congestion map contains estimates for all the
links that carry data traffic to and away fromRi. In this
type of traffic pattern,Ri is a first hop for flows and can
therefore analyze both their data and ACK packets. Therefore,
as described in Scenario 3 from§IV-A, Ri can compute an
estimate for the paths to and from all other routers in the
network. Equation (2) can then be used to calculate the LMPs.
The all-to-all traffic pattern is very common today. A large
number of networks deploy routers to aggregate traffic from
entire cities, and there is usually traffic flowing between any
two cities.

To understand what percentage of the LMPs can be inferred
in practice under an all-to-all traffic pattern, we analyze six
real network topologies: Internet2, TEIN2 (Trans-Eurasia),
iLight (Indiana), GEANT (Europe), SUNET (Sweden) and
NLR (National LambdaRail) assuming shortest-path routing.
We find that on average, the congestion map of a router
from NLR, Internet2 and GEANT contains around 60% of
LMPs. Under the assumed routing configuration the remaining
LMPs are less important because the corresponding routers
cannot carry traffic to the inferring routers. When those links

begin to carry traffic, their congestion level can be quickly
inferred. Moreover, the maps of routers from TEIN2, iLight
and SUNET contain on average as much as 91%, 94% and
95% of the LMPs.

As it can be seen from the results above, an inferred
congestion map may not always contain all LMPs. One case
is when markings from a link never reach an inferring router.
For the example in Figure 3, the link (R3, R4) never carries
packets from flows that reachR0, since it is not on the shortest
path fromR0 to any router. Therefore,R0 will not be able
to infer P34 = L34. Maps may also not contain all LMPs
when the traffic pattern is not all-to-all. In these cases some
PMPs cannot be completely broken down into LMPs. This
can happen, when one of the routers on a path is not the first
hop for traffic that reaches the inferring router. In Figure 3,
suppose that the only traffic is fromR0 to R5 and fromR0 to
R4 usingR5 as the first hop. While (R6, R4) does carry traffic
to and fromR0, R0 will not be able to infer the LMPP64

becauseR0 does not receive ACKs fromR6. Nevertheless,R0

can infer the PMPP54. PMPs also provide useful information
to applications.

We do not expect the use of Equal-Cost Multipath (ECMP)
to limit the coverage of the maps as long as the rule used
by a router to choose between the equal cost paths can be
discerned by other routers. One such algorithm called hash-
threshold has been proposed [14]. It hashes the packet header
fields that identify a flow using a well known hash function
(e.g. a CRC code).

VII. D ISCUSSION

Incremental deployment: Universal deployment of AQM
and ECN is not necessary for our approach to be effective. Our
solution can be incrementally deployed. It can be deployed on
specific AQM/ECN enabled paths in the network. Moreover,
it can be deployed around non AQM/ECN enabled routers.
The only condition is that the position of the non AQM/ECN
enabled routers be known by all other routers in the network.
Their presence can be factored out by the algorithm because
their marking rate is effectively zero.

Deployment in heterogeneous environments:Using the
MP as a congestion measure makes our solution applicable to a
broad range of environments. One example are heterogeneous
environments with multiple AQMs types or configurations.
We do not require routers to use the same AQM algorithm
nor the same parameters for the AQM algorithm. All that is
needed is that congestion marking is used alongside an AQM
algorithm that marks packets probabilistically as a function of
a congestion measure.

Robustness under re-routing:After a re-routing decision,
a link state routing protocol reliably disseminates new link
state information into the network. When routers that use our
solution obtain the new link state information they reset all the
counters for the paths affected by the change and immediately
start computing congestion estimates for the new paths using
the markings from the re-routed flows. This ensures there is
only a minimal interruption in the inference process.



VIII. R ELATED WORK

The Re-ECN protocol [6] is a method for holding flows
accountable for the congestion they create. It requires a non-
standard use of header bits for TCP receivers to convey path
level congestion information upstream. The TCP sources use
an extra header bit to mark the data packets according to
the information received. Policers placed on forward pathsof
flows can then use the source markings along with the ratio
of ECN CE markings to obtain upstream and downstream
path level congestion information. Policers can then detect
misbehaving flows that create more congestion than permitted
under current conditions. In contrast, our solution allows
congestion information to be sent upstream without requiring
any changes to either protocols or end-hosts. Moreover, theuse
of routing information allows us to obtain fine-grained link
level congestion information whereas Re-ECN routers only
obtain aggregate path level information.

DCTCP [2] is a TCP-like transport protocol for data centers
that leverages ECN to provide feedback to end-hosts. In order
to facilitate the transmission of congestion information from
receivers to senders, DCTCP proposes changes to the ECN
algorithm that allow the sender to recover all the markings seen
by the receiver in the data packets. Our solution can provide
the same functionality in transmitting congestion information
without requiring changes to ECN.

Most methods developed for inferring the congestion sever-
ity are designed for TCP end-hosts and help them change
their data sending rate according to current network conditions.
TCP end-hosts are concerned only with the overall quality of
the end-to-end paths. As a result, most of today’s algorithms
convey path level congestion information [23], [1]. Other
approaches [3] report only the most congested link on a
particular path. Our solution goes beyond these methods and
uses the path level measurements to allow the routers to obtain
fine grained link level congestion information.

Network tomography [11] deals with the inference of link
properties from end-to-end path measurements. This usually
requires solving a system of equations where the link charac-
teristics are the unknowns. For the end-to-end measurements,
active probing packets (multicast or unicast) are used. In con-
trast, our solution allows the measurement of path congestion
in a completely passive fashion. Oftentimes, the problem that
network tomography tries to solve is ill-posed. There are
multiple possible solutions that can explain a set of end-to-
end measurements. In contrast, the hop-by-hop nature of our
solution allows in many scenarios the inference of unequivocal
link level congestion information.

IX. CONCLUSIONS

We presented a novel approach that routers can use locally
to passively infer a network-wide congestion map from mark-
ings already present in existing traffic. As a result, the maps
are continuously updated with fine-grained real-time conges-
tion information. Our solution can be leveraged by several
distributed router level algorithms to allow more intelligent
decisions to be made. Our solution is incrementally deployable

and can also be used in heterogeneous environments. We
showed that the inference accuracy is good using numerical
analysis and simulations on environments with multiple con-
gestion points and sudden changes in the congestion pattern.
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