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Abstract—Data multicast is a crucial data transfer pattern
in distributed big-data processing. However, due to the lack
of network and system level support, data processing relies
on unicast-based application layer multicast. In recent years,
there has been a surge in interest in using various emerging
circuit switching technologies to build data centers having hybrid
packet-circuit switched rack-level interconnections, i.e., hybrid
data centers. These physical layer innovations fundamentally
change the inter-rack communication capability, especially the
capability of multicast communication. We propose Republic, a
complete system that addresses the challenging issues in achieving
high-performance data multicast in hybrid data centers. Republic
abstracts the underlying network complexity as a data multicast
service and provides a unified Republic API for data center
applications requesting data multicast. Republic is implemented
and deployed in a hybrid data center testbed. Testbed evaluation
shows that Republic can improve data multicast in Apache Spark
machine learning applications by as much as 4.0×.

Index Terms—data center networks, multicast, circuit switch

I. INTRODUCTION

We live in a world increasingly driven by big-data. Max-
imizing the value of such massive amount of data relies on
large-scale distributed data processing. Data multicast, or one-
to-many data dissemination, is a critical data transfer pattern
during the workflow of data processing [14], [35]. For exam-
ples, in the data preparation step, executing a database query
having a join operation may need one table to be delivered to
all the nodes having the partitions of the other table [13]; in
the data analysis step, an iterative machine learning algorithm
may require the updated training model to be copied to all its
computation nodes before each iteration [14].

Data multicast is an exorbitant operation for traditional
data center networks as it generates large traffic volume.
Unfortunately, big-data processing makes a demanding request
for high-performance data multicast. This is because 1) the
fan-out of the data multicast is large, as a data processing
job may need hundreds of worker nodes; 2) the size of the
multicast data is large, as database tables and the models of
machine learning jobs, e.g., natural language processing [23]
and computer vision, can easily reach hundreds of megabytes
or even gigabytes; 3) the data multicast happens frequently, as
it happens in each iteration in iterative machine learning jobs
and join operations in database queries.

Nowadays, large-scale data processing frameworks heavily
rely on application layer multicast mechanisms due to the
lack of in-network multicast support in data center networks.
For example, a variable in Spark can be delivered to workers
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Fig. 1. Hybrid rack-level interconnections with different circuit switching
technologies. Each of the ToR switches also connects to a fully connected
packet-switched network, which is not shown for illustration simplicity.

using either Cornet [14] which is a customized BitTorrent-like
overlay protocol, or naive unicast where the sender transmits
one copy of the data to each receiver. However, these unicast-
based mechanisms are far from the low cost and low latency
requirement as these solutions inject too much traffic into the
network especially when the multicast fanout goes up.

The emergence of hybrid rack-level interconnections re-
vives the in-network multicast in data centers. In addition to
the traditional packet-switched network connections, circuit-
switched rack-level interconnections built with optical circuit
switch (OCS) [16], [25], [32], free-space optics (FSO) [17],
[18] or millimeter wave (MMW) wireless [38] are introduced.
Some of these technologies have been extended to support
physical-layer multicast. As shown in Fig. 1, solutions based
on OCS use optical power splitters to divide data signals
from the input port to multiple output ports [27], [33], [35];
solutions based on FSO use a cascade of half-reflection switch
mirrors to divide light through partial reflection [11]; MMW-
based solutions can direct wireless signal to a group of
receivers through 3D beamforming antennas [28], [29], [36].

These circuit-switched rack-level interconnections over-
come the intrinsic difficulties of in-network multicast in
pure packet-switched data center networks [35]. The packet
switches in these traditional data centers are organized in
layers so the resulting multicast tree can be highly unbal-
anced, with receivers being at different hops from the sender
through different intermediate switches. This creates different
levels of bandwidth contention along the paths to different
receivers, making congestion control a daunting challenge.
Thus retransmission-based reliability mechanisms easily fall
into the vicious cycle of generating greater congestion and



more packet loss. However, with a circuit switch, the simple
and efficient multicast paths bypass the congested core layer
of the packet-switched network. This massively eliminates
unnecessary congestion and packet replication in the network.
As shown in Fig. 1, on the multicast path, only the first and last
hops are packet-switched hops on top-of-rack (ToR) switches
and these ToR switches are directly connected through the
circuit switch. The circuit hops between the ToR switches
are dedicated so that there is no bandwidth contention. With
judicious data multicast scheduling and network control, the
contention in the ToR switches can be minimized [33], [35].

Different from packet switch, a circuit switch passively
directs the signal from an input port to a destinated output port
without generating signals. From the perspective of sustain-
ability, such fundamental difference makes the circuit switch
massively surpass the interconnection purely built with packet
switches. First, the per-port power consumption of a circuit
switch is lower than the packet switch in at least an order of
magnitude. For example, a 48-port 10GbE electrical packet
switch consumes 180 Watt, while a 192-port optical circuit
switch only consumes 50 Watt. Second, the circuit switch is
agnostic to the bandwidth of the signal so that a network-wide
link bandwidth upgrade does not require a replacement of the
existing circuit switch. These superior properties have driven a
number of emergence of the research in circuit-switched rack-
level interconnections [16]–[18], [22], [25], [32], [38]. We
believe that hybrid rack-level interconnections will eventually
be deployed in the next generation of data centers.

Hybrid rack-level interconnections depart from the old as-
sumptions of pure packet-switched interconnections and for
the first time make in-network multicast a promising solution
in data centers. Accordingly, we claim that it is the right
time to revisit data multicast to bridge the gap between the
highly desirable physical-layer multicast capability provided
by the circuit switch and the far-from-efficient application-
layer multicast used by applications, such as the cluster
computation frameworks. The major difficulty lies in the lack
of abstraction through which application programmers and
system engineers can easily leverage the physical-layer tech-
nologies. We propose Republic as a data multicast service for
data centers equipped with hybrid rack-level interconnection
(“hybrid data centers” for short).

It is challenging to design a unified data multicast service
that employs the ever-emerging multicast enabling technolo-
gies. Different circuit switching technologies have different
circuit reconfiguration times. How to transmit multicast data
as soon as the multicast path is established? Circuit switch
provides dedicated links with high bandwidth capacity, e.g.
10 Gbps or even higher. How to enable the servers to send
and receive packets at a high rate? Although circuit switch
links are generally reliable, packet loss can still happen. How
to achieve reliability at small overhead under the context of
hybrid data center networks?

Although previous works [11], [27], [33], [35] have demon-
strated the potential of supporting data multicast in hybrid data
centers, Republic goes one huge step further. Republic is the

first effort towards addressing these system-level challenges
and providing a full-fledged solution. We view Republic as a
system plug-in for a data center. Republic has been deployed
in our testbed cluster having 40 servers. We adapt Apache
Spark as an example to use Republic’s data multicast service.
Compared to the state-of-the-art data multicast mechanisms,
Republic can speed up the end-to-end data multicast per-
formance by as much as 4.0× in iterative machine learning
algorithms and database queries.

II. CHALLENGES

Leveraging the multicast capability in hybrid data centers
faces the following challenges.

Expertise gap between big-data processing and network:
The rise of big-data processing has fundamentally changed the
dynamic between networks and their users. In the past, users
who produced large amounts of traffic also had the expertise
to optimize the data transfers in their applications. But today’s
data scientists, who often are not network specialists, regularly
use cluster computation frameworks to run data processing
jobs that produce large amounts of traffic. A simple SQL query
on a large data set can easily produce several GBs of multicast
data (Sec. VI-A). The prevalence and scale of data multicast in
these jobs necessitate more efficient handling of data multicast.
For example, if a server has multiple processes of a job,
these processes should share a single data transfer instead
of having multiple transmissions. Similarly, multiple senders
on the same server require coordination to share network
resources. Unfortunately, these desirable features all require
network expertise which data scientists do not usually possess.
Bridging this expertise gap is essential if big-data processing is
to fully exploit emerging network architectures having efficient
multicast support. We find abstraction as a promising bridge,
so that data scientists keep their focuses, while the network
experts work concurrently to guarantee multicast efficiency.
However, it remains a challenge to find the right amount of
abstraction that allows effective collaboration while reducing
efficiency loss from abstraction.

High-rate transfer: On a circuit switch, a circuit is dedi-
cated to the path from the input to the output, i.e., the output
of a circuit can only receive traffic from a single input on
the other side of the circuit. This property of circuit switch
is fundamentally different from a packet switch whose output
port can be shared by the flows from multiple input ports
through statistical multiplexing. Therefore, transmitting the
flow at a high rate is crucial to fully utilize the dedicated
circuits [19]–[21]. The end-to-end high-rate multicast trans-
mission needs to overcome many obstacles both at the end-
point servers and within the network: server bandwidth may be
simultaneously shared by multicast and unicast flows; network
stack overhead prevents processes from transmitting data at a
high rate; congestion may happen to the multicast flow at the
last packet-switched hop.

Reliable data delivery: In hybrid data centers, packets
can be lost due to various reasons. For example, packets can
be corrupted due to low signal quality after power split or



during circuit reconfiguration; packets could be dropped if
the receiver cannot process them at the rate of the incoming
multicast flow; the output queue of last hop switch port
may drop packets in multicast flows due to the congestion
with other flows. The design of the data multicast protocol
should consider and minimize all sources of packet losses.
Once losses occur, how to retransmit lost packets is still
an open question. There are questions such as whether the
retransmission should use the multicast path and whether the
retransmission should use a reliable or an unreliable transfer.
The solution should consider the properties of both the mul-
ticast path and the packet-switched unicast paths between the
sender and receivers.

Quick coordination between transmission and multicast
path setup: Ideally, the transmission should start immediately
after the multicast path is set up. This coordination must
be quick because any time lag results in a large bandwidth
waste given the high link capacity offered by circuits. How-
ever, for different circuit switching technologies, the circuit
reconfiguration time ranges from tens of µs [25] to tens of
ms [32]. Even for a single circuit switch, reconfiguration
time of each circuit also varies within a reconfiguration and
between reconfigurations. In addition to that, around the end of
a circuit reconfiguration, the circuit may experience a period
of transient state before the circuit is stably connected. During
the transient circuit state, the physical signal strength may be
unstable and oscillate due to the ringing effect [15], which
results in an intermittent circuit connection. Even a packet can
be delivered to a receiver, it doesn’t mean the circuit carrying
the packet is stable. This makes the coordination even harder.
At this stringent sub-second scale, hardware-level coordination
would be favorable for speed, but no commercial hardware
support is available today as far as we know. A software-level
solution is desirable for flexibility, compatibility, and cost, but
could be prone to more overhead. The design of an efficient
software-level coordination remains unknown. Again, due to
the variability in the circuit reconfiguration time, receivers
could start receiving packets at different times. This results
in different receiving states among receivers. The challenge is
to build a data multicast protocol with which a receiver just
connected to the multicast path could benefit from the ongoing
transfer without interrupting the already connected receivers
and without introducing unnecessary data transfer and extra
delay.

III. REPUBLIC

Republic addresses all the challenges in leveraging the data
multicast capability in hybrid data centers. Fig. 2 shows the
system architecture of Republic. Republic includes an agent
process on each of the servers and a centralized multicast
manager (Sec. III-B). The Republic agent exposes a unified
API (Table I) for the data processing applications to request
multicast data transfer. The agent handles the transfer using
a reliable and efficient data multicast protocol (Sec. III-A)
tailored for hybrid data center environment and requests the
multicast path via the Republic agent-manger interface (Ta-
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Fig. 2. System architecture of Republic

ble II). The Republic manager is responsible for managing
the network resources used for building multicast paths so
as to schedule the requested data multicast and configure
multicast path. Before diving into the design details of each
of the components, we briefly show the interaction among
applications and the Republic components.

Interaction between application process and local Re-
public agent (Table I): Each application generates a 16-byte
universally unique identifier (UUID) as its unique identifier
appID, which is known to all the processes of the application.
To use Republic, each application process needs to register
with the local agent. The application assigns each multicast
data with an application-wide unique 8-byte dataID. Repub-
lic decouples data transfer with data reading/writing so that
all the multicast data transfer can be handled by the agent in
an efficient way and be transparent to the applications. Before
requesting for sending data to a set of receivers through send,
the application process makes the data accessible by the local
agent (Sec. III-A2) and notify the agent through add. The
receiver process calls read to request the data from the local
agent.

Interaction between Republic agent and Republic man-
ager (Table II): In Republic, only the sender’s agent talks
with the Republic manager to request and return multicast
paths since the sender knows the list of receivers. Allowing the
receivers to talk to the manager leads to much more message
passings between the agents and the manager, which degrades
the throughput of the manager. A data multicast starts with the
sender agent requesting a multicast path from the Republic
manager through request. The manager replies the agent
(via response) with the scheduling decision (accepted or
denied) made by the scheduling algorithm running on the
manager. The manager sends the accepted response to the
sender agent only when the scheduling algorithm allows the
multicast transfer to start. After the sender agent receives
the response, it starts sending the data immediately using
the reliable data multicast protocol (Sec. III-A). The sender
agent calls release to return the multicast path back to the
manager once the transmission in the multicast path finishes.
To support the widest range of different scheduling policies,
Republic allows a multicast data transfer to be completed
in multiple transmission sessions. This means the scheduling
algorithm may accept partial data size for each request [30].



Interface Description

register
Register with the local agent before using the data
multicast service.

unregister

Unregister from the agent. The calling process
cannot use the data multicast service after it
unregisters.

add
Add the multicast data to the agent after the process
has written the data to the in-memory file system.
The process provides dataID of the multicast data.

send

Request to send the multicast data to a set of
receivers. The application process should add the
data to the agent before calling send. The process
provides dataID and the list of serverIDs of the
receivers.

read
Request to read the multicast data from the agent.
Return with file reading instruction when the data is
ready to read.

delete

Delete the multicast data from the in-memory file
system. Application processes should coordinate to
make the call if the data is no longer needed by the
processes on the server. The process provides
dataID.

TABLE I
REPUBLIC API. APPLICATION PROCESSES USE DATA MULTICAST SERVICE

VIA THIS API. THE CALLING PROCESS PROVIDES ITS APPID AND
PROCESSID WHEN MAKING THESE CALLS.

Interface Description

manager
.request

Called by the sender agent to request the multicast
path from the manager. The agent provides appID,
dataID, datasize, remainingDatasize,
serverID of the sender, a set of serverIDs of the
receivers and a locally generated unique requestID.

agent
.response

Called by the manager to notify the sender agent
about if the requested multicast path is accepted or
denied. Besides the scheduling decision, the manager
also provides a responseID created by the
manager, the requestID from the sender agent, and
accepted_size.

manager
.release

Called by the sender agent to return the received
multicast path back to the manager. The agent
provides the requestID in the corresponding
agent.request call and the responseID that
accepted the request.

TABLE II
REPUBLIC AGENT-MANAGER INTERFACE. USED BY AGENTS AND

MANAGER TO REQUEST, RESPONSE AND RELEASE MULTICAST PATHS.

If the sender agent receives a response partially accepting
the requested data, the sender agent should send another
request for the remaining data immediately.

A. Reliable and Efficient Data Multicast Protocol

The reliable data multicast protocol is a crucial component
in Republic since it directly impacts the performance of
multicast data transfer. The protocol runs between the sender
and the receivers of each single data multicast. The protocol
uses a data channel and a control channel (Fig. 2) that leverage
the properties of the multicast path and the unicast paths
respectively. The data channel uses the multicast path to
deliver the data content since the multicast path can deliver
the data to multiple receivers unidirectionally within a single
transmission. The data channel uses UDP packet for efficient
connectionless sending and receiving. The control channel
is for delivering the protocol control messages (Table III)
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Fig. 3. Timeline of the sender and two receivers in a data multicast example
in Republic.

Control
messages Description

INTL_SEQ
Receiver tells the sender the initial sn it receives.
The message includes the initial sn.

DATA_RCVD
Receiver acknowledges the sender that the data
has completely received.

DATA_FNSD
Sender tells the receiver that the data channel has
finished data sending.

PTCH_REQ
Receiver tells the sender the sn range of a
detected packet loss. This message contains a pair
of (starting sn, ending sn).

PTCH_DATA
Sender replies PTCH_REQ with the requested data
fragment.

TABLE III
CONTROL MESSAGES IN THE DATA MULTICAST PROTOCOL. A CONTROL

MESSAGE IS FOR A SPECIFIC MULTICAST DATA TRANSFER. SO A MESSAGE
INCLUDES THE APPID AND THE DATAID.

between the sender and the receivers. The control messages
are small unicast messages and require low latency and high
reliability. Therefore, the control channel uses packet-switched
unicast paths for delivering messages in low latency and it
adopts TCP for reliability.

The data is logically divided into fragments with a fixed
size (except for the last fragment) that fits into the payload of
a single Ethernet frame. Fragments are assigned contiguous 8-
byte sequence numbers (sns for short) starting from 0. Each of
the data packets has a header including the appID, dataID
and sn to identify the fragment. The data size is only put
into the data packet with sn 0 to minimize overhead. The
receivers can always get the data size in this way since all
data objects have the fragment with sn 0. For the case having
multiple transfer session, the receiver knows the sn containing
the size for the next transfer session is the next sn after the
largest sn of the previous session.

The sender transmits data packets to the data channel in the
increasing order of sn. However, the receivers on different
branches of the multicast path could begin receiving data at
different times due to the unpredictability and variability of
the circuit reconfiguration time (Sec. II). Therefore the sender
sends the data packets over the data channel in a wrap-around
manner until the data packets are sent to all the receivers. In
Fig. 3’s example, the sending start from sn 0 to 99. After sn
99 is sent, the sn goes back to sn 0 and continues another
round of sequential sending. The receiver tells the sender the
initial sn it received via INTL_SEQ and notifies the sender
about receiving completion via DATA_RCVD. Only these two



control messages are required for each receiver.
1) Coordinating Transmission with Circuit Setup: Network

hardware does not have an end-to-end view of the multicast
path connectivity. In a naive solution, after the sender receives
the accepted response, it starts sending after a predeter-
mined amount of waiting time. Unfortunately, this waiting time
has to be conservatively large, which leads to unnecessary
waiting at the sender. Alternatively, the sending starts right
after the accepted response is received. However, before
the path becomes stable, the sender bandwidth and CPU
cycles are wasted in sending data packets to a disconnected
or intermittently connected multicast path. Moreover, sending
high-rate packets to a circuit in a transient state results in a
considerable amount of packet losses. This is even worse than
receiving no packet because the received and lost packets are
interleaved, which results in a dilemma where either discarding
the received packets or retransmitting the lost packets results
in extra sender overhead.

Republic adopts a software-based mechanism to detect the
connectivity of the multicast path. It makes a good tradeoff
among efficiently utilizing the multicast path, reducing redun-
dant data packets and minimizing packet loss during transient
circuit states. The sender starts with an attempt sending phase
right after the requested multicast path is accepted, as shown
in Fig. 3. During this phase, data packets are sent at a fixed
time interval ia and are used as probes to test the connectivity
of the multicast path.

The value of ia depends on the reconfiguration time of the
circuit switch and can be determined by the network operator.
If ia is too short, the sender sends too many redundant packets
during the circuit reconfiguration and the transient circuit state,
which results in a considerable amount of packet losses. If
ia is too long, the notification to the sender about multicast
path connectivity is delayed, which results in a large delay
in starting high-rate transmission and inefficient usage of
the multicast path. Our experience suggests that an attempt
sending interval between 1% and 3% of circuit reconfiguration
time achieves a good tradeoff (Sec. VI-C). A carefully chosen
ia only slightly increases the data channel transfer time beyond
the theoretical minimum time. For example, in a data center
network with 10 GbE server bandwidth, 9KByte jumbo frame
and 0.5 ms round-trip time, the extra delay due to attempt
sending is only 0.85 ms when ia is 0.7 ms (10Mbps) and the
CPU usage during attempt sending is less than 5% on a single
core. For a multicast data with 500 MB, this extra delay only
accounts for 0.2% of the ideal transmission time.

When the multicast path is in the transient state, receivers
may get the initial sn. In Fig. 3’s example, sender starts
attempt sending from sn 0 and receiver 2 gets initial sn
58. However, starting a high-rate transmission (Sec. III-A2) at
this moment is too early since most part of the multicast path
is still in the transient state. To minimize packet losses due to
the transient state, the sender starts high-rate sending after it
collects INTL_SEQs from each of the receivers. In Fig. 3’s
example, the high-rate sending starts after sender gets
INTL_SEQ from receiver 1. Collecting the INTL_SEQ

from all receivers guarantees that the sender knows which sns
each receiver should have received from the data channel, so
the sender can stop the data channel transmission after it has
sent at least one round to each of the receivers. Therefore,
each of the data fragments are sent to each of the receivers
via the data channel at least once. In Fig. 3’s example, the
sender loops back to send sn 0 onward and stops after it sends
sn 59 in the next round.

2) Sending and Receiving Data Packets at High-rate:
Republic addresses the challenges in achieving high-rate mul-
ticast data transfer in three aspects.

High-rate in multicast path: The outgoing unicast flows
from the multicast sender and the incoming unicast flows to
the multicast receivers may compete with the multicast flow
for bandwidth. On one hand, reserving all server bandwidth
for multicast flows starves the unicast flows. On the other
hand, suppressing the rate of multicast flow decreases the
utilization of multicast paths, in which the circuit hops are
dedicated for the multicast flow. Republic makes a good
tradeoff between high circuit utilization and fairness between
unicast and multicast flows. At the sender side, the agent sends
multicast flows in a best-effort manner and allows the multicast
flows share the bandwidth with unicast flows fairly. Therefore,
when there is no unicast flow going out of the sender, the
multicast flow can be sent at line-rate of the server bandwidth.
At the receiver side, congestion could happen between the
multicast flow and unicast flows at the ToR switch ports
connected to the receiver since there are unicast flows coming
from other ToR ports. As the number of receivers increases, the
congestion becomes worse because the chance of having flows
sharing the receivers’ ToR switch ports increases. Allowing
other flows to arbitrarily interfere with multicast flows at
the receiver sides causes a large number of multicast packet
losses and corresponding retransmissions. Republic gives high
priority to the multicast flows on ToR switches to protect the
multicast data packets from being dropped due to congestion.
This can be achieved by setting a high priority value to the
forwarding rules for multicast flows.

High-rate in forwarding packets between Republic agent
and server NIC: Republic adopts kernel-stack-bypass frame-
works [26] to forward the data packets between the agent
process and the server NIC to reduce CPU overhead and
the number of memory copies. Republic also uses Ethernet
jumbo frames to reduce the number of packets that the agent
needs to process, so as to reduce the number of system
calls. Our Republic deployment experience shows that using a
kernel-stack-bypass framework can improve the multicast data
transmission rate from 5 Gbps to full line-rate in our testbed
with a 10 Gbps network.

High-rate in data reading/writing: To send/receive data at
high-rate, the agent should be able to read/write the data at
high-rate as well. The bandwidth of a modern server NIC can
be 10 Gbps, or even 40 Gbps on high-end servers. However,
the read/write speed of a hard disk drive(HDD) is at most
2 Gbps; even a solid state drive(SSD) cannot reach 10 Gbps.
Thus, data cannot be transferred at high-rate if it is stored
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in on an HDD or an SSD. Nowadays, commodity DDR3
memory can support at least 51.2 Gbps read/write speed and
DDR4 memory can even support read/write at 153.6 Gbps.
Thus, Republic uses a dedicated in-memory file system and
stores the multicast data as an in-memory file to enable high-
speed access at memory bandwidth. The sender agent reads
the fragments from the in-memory data file added by the
application. The receiver agent sequentially writes the data
fragments into an in-memory data file in the order they are
received from the data channel. In Fig. 3’s example, the
file starts from sn 60 to 99 and then from sn 0 to 59.
When reading the data, the application process starts from
the position of sn 0 to the end and then from the beginning
of the file to the position of sn 0.

3) Recovering Lost Packets Efficiently: According to our
deployment experience, three common factors lead to mul-
ticast packet losses in hybrid data centers and Republic is
designed to avoid and minimize all these types of losses.
First, packets are corrupted due to insufficient signal power
(type 1 loss). Type 1 loss mostly happens during the transient
circuit state where the power of the signal oscillates up and
down. These corrupted packets are dropped by the receiving
ToR switches so that it affects only the receivers in that
rack. Republic reduces type 1 loss using attempt sending
(Sec. III-A1). Second, the receiver process may be temporarily
too slow to keep up with high packet rate (type 2 loss).
The receiver drops the packets due to buffer overflow. Type
2 loss is not correlated because the packets are dropped
at individual receivers. The dropped packets usually have
contiguous sns. Republic effectively suppresses type 2 loss
by using the kernel-stack-bypass framework to send/receive
multicast data packets efficiently (Sec. III-A2). Third, unicast
flows sent to the multicast receivers contend with the multicast
flow leading to packet losses (type 3 loss). The ToR switches
drop packets at the queues of the congested output ports due
to overflow. Type 3 loss is not correlated since the packets are
dropped at individual switch ports connected to the receivers.
Republic eliminates type 3 loss by assigning the multicast flow
with a high flow priority (Sec. III-A2). In summary, Republic
is designed to suppress these common sources of packet
losses. Republic does not assume a loss-free environment in a
multicast data transfer because uncontrollable general packet
corruption and type 1 and type 2 losses may occur, albeit very
rarely.

Based on the above observations, packet losses in Republic

are not correlated and rare, and hence Republic adopts a
simple but efficient mechanism to recover the lost fragments
in a point-to-point manner. In Republic, recovery of lost
fragments is handled by control channel messages. Once the
receiver detects a packet loss, it immediately requests the
retransmission of the fragments from the sender.

To check packet losses, the receiver maintains three sn
pointers to the fragments received from the data channel, i.e.,
initial, prior and current sn (Fig. 4). The current sn is the just
received sn from the data channel. The prior sn is the sn
received prior to the current sn from the data channel. The
initial sn and the prior sn divide sn space into two exclusive
ranges. The “sent range” contains all the sns that have been
sent to the receiver; the “expected range” contains all the sns
yet to be sent to the receiver.

The receiver checks for packet loss whenever it receives
a new sn from the data channel. The current sn has three
possible cases in the sn space. If the current sn is in the
expected range and it is the sn right after the prior sn (case
1), then there is no packet loss. If the current sn falls in
other places in the expected range (case 2), the receiver knows
that sns in the range of (prior, current) are lost. The receiver
sends a PTCH_REQ message with the pair (prior, current) to
the sender for retransmission, where prior is the starting sn
and current is the ending sn of the loss range. If the current
sn falls in the sent range (case 3), the receiver knows that
sns in the range of (prior, initial) are lost. The receiver sends
a PTCH_REQ message with the pair of (prior, initial) to the
sender for retransmission and stops receiving the data from
the data channel. In the case where the receiver loses the last
sns and the sender has stopped sending, the receiver cannot
detect such packet losses since there are no more packets
being received. To handle this situation, the sender sends a
DATA_FNSD to the receiver once the sender has sent all the
sns to the receiver and has not received DATA_RCVD from
that receiver. The DATA_FNSD is sent after a timeout. After
receiving the DATA_FNSD, the receiver sends (prior, initial) to
the sender in a PTCH_REQ. Therefore, with such mechanism,
packet losses can always be detected by a receiver. In Fig. 3’s
example, receiver 1’s initial sn is 60. When the current
sn is 76 the prior sn is 73. The receiver detects a packet
loss since the current sn falls in the expected range but is
not the next sn after the prior sn. The receiver immediately
sends PTCH_REQ with the pair of (73,76) to the sender for
retransmission.

The sender responds to the PTCH_REQ with PTCH_DATAs.
Each of the PTCH_DATAs contains a fragment from the
starting sn to the ending sn (not including the boundary).
Although the receiver doesn’t know the number of lost packets
if the detected loss range covers sn 0 (sn 0 contains data
size), the sender knows exactly the lost packets given the
pair of sn pointers in the PTCH_REQ. Therefore, all the lost
packets can always be reliably delivered. This guarantees that
multicast data can be correctly received by the receivers. In
Fig. 3’s example, the sender retransmits sn 74 and 75 via
two PTCH_DATAs. To keep writing future fragments to the



received files at high-rate, the receiver writes file holes for the
lost fragments so that the writing is not blocked. The holes will
be overwritten by the fragments received from PTCH_DATAs.

B. Republic Manager

The data multicast scheduling decision is made by the
scheduling algorithm running on the Republic manager. The
scheduling algorithm can be specifically designed for a par-
ticular type of hybrid data center architecture or for different
scheduling objectives. For example, the previous work [35]
proposed a scheduling algorithm for OCS-based hybrid data
centers. Thus, designing data multicast scheduling algorithms
for hybrid data centers is out of the scope of this paper. Being a
universal framework, Republic allows a scheduling algorithm
to run on Republic manager as a plug-in module. This allows
Republic to support for various hybrid data centers.

To make scheduling decisions, these algorithms need to
know the availability of the network resources for building
multicast paths and the data multicast requests issued by the
agents. Republic manager provides a library for the schedul-
ing algorithm to access this information. For the network
resources, the manager maintains the availability of the ToR
ports connecting to the servers and the circuit switch, the
circuit switch ports, and the multicast devices (e.g., optical
splitter or half-reflection mirror). To avoid circuit reconfig-
uration overhead, the manager also remembers the circuit
connections on the circuit switch and the configuration on the
ToR switch (i.e. multicast forwarding rules) so that a new
configuration can reuse the existing circuits. The maintained
states are updated once the algorithm accepts the request or the
agent releases the multicast path. To improve parallelism, the
manager simultaneously accepts the request to the sender agent
and configures the multicast path so that the starting of attempt
sending is not blocked by the multicast path configuration.

IV. IMPLEMENTATION

Republic agent: Republic agent contains (1) the reliable
data multicast protocol (Sec. III-A), (2) the Republic API
(Tab. I) and (3) the agent side of the agent-manager interface
(Tab. II). These modules run in multiple threads to leverage the
parallelism in multicore CPUs so that the modules don’t block
each other. These threads communicate with each other via
Unix system pipe, which is an efficient and light weighted
inter-thread communication mechanism. We implement the
Republic agent program in 6K lines of C, which is efficient
in execution. The implementation leverages lock-free data
structures, such as hash map, priority queue and list from the
Apache Portable Runtime (APR) [2] library for efficient data
structures and operations.

In the protocol, the control channel and the data channel
are in different threads. The control channel is based on TCP
connections between the sender and the receivers. The data
channel adopts netmap kernel-stack-bypass framework [26]
to send/receive UDP packets efficiently. We choose netmap
because it is supported by multiple operating systems and
compatible with NICs from many vendors. With netmap, a
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Fig. 5. The deployment of Republic in hybrid data center testbed based on
optical circuit switching (OCS) (architecture in Fig. 1(a))

single CPU core can transmit packets at 10 Gbps with low
CPU overhead. Multicast data is stored in-memory temporary
file system (tmpfs) for fast access.

The Republic API is based on Unix domain socket so that
the application processes can talk to the local agent to request
multicast service efficiently. Accessing the data through the
Unix domain socket is too expensive for bulk transfer, so the
data is written to and read from the in-memory file directly
by the agents or the application processes. The communication
in the agent-manager interface is based on Apache Thrift [5].
We choose Thrift because it is an efficient and scalable cross-
language RPC framework.

Republic manager: Republic manager consists of (1) the
multicast request management, (2) the multicast path resource
management and configuration and (3) the manager side of the
agent-manager interface. This requires the Republic manager
to talk to many modules including the agents, the scheduling
algorithm, the packet switch controller and the circuit switch
controller. We implement the Republic manager in 2K lines
of Java. We choose Java because it provides rich and efficient
data structures and various libraries for inter-module commu-
nication. The multicast path configuration module talks to the
circuit switch controller and the packet switch controller via
RESTful API, which is widely adopted by many OpenFlow
controller platforms.

Republic agent [7] and manager [8] is open-source.

V. DEPLOYMENT

We build the OCS-based hybrid data center testbed in
Fig. 1(a) and it is shown in Fig. 5. The testbed is built with
40 servers, six 48-port 10 GbE OpenFlow [6] switches, one
192×192 OCS, sixteen 1×4 optical splitters and a Republic
manager server. Five of the OpenFlow switches are used as
ToR switches. Each ToR switch is partitioned into four logical
ToR switches. Each logical ToR switch is attached to two
servers and connects to the core OpenFlow packet switch. The



physical layer portion of a multicast path is established with
the optical splitters attached to OCS ports. The reconfiguration
time of the OCS is around 70 ms. The physical multicast
portion with fanout larger than 4 is achieved by cascading
multiple 1×4 splitters. Each of the 40 servers and the Republic
manager server has a 6-core Intel Xeon CPU E5-1650 v3
@ 3.50GHz, 128 GB of DDR4 RAM @ 2133 MHz and
one 10 GbE NIC. All servers, switches and the manager are
connected via an additional 1 GbE management network. The
Republic manager configures the ToR switches through a Ryu
OpenFlow controller [9] and configures the OCS through a
controller talking to the OCS using TL1/telnet commands.

VI. EVALUATION

Republic is evaluated in our OCS-based hybrid data cen-
ter testbed (Sec. V). The evaluation adopts a variety of
realistic applications workload (Sec. VI-A). This section
shows how and how much Republic reduce end-to-end mul-
ticast data transfer time as well as application running time
(Sec. VI-B); justifies the design decisions made in Republic
agent (Sec. VI-C); finally shows the performance of Republic
manager (Sec. VI-D).

A. Evaluation Workload

The evaluation uses two popular iterative machine learning
algorithms and a widely adopted benchmark for database
system. These applications run on top of Apache Spark [3]
(Sec. VI-B1 explained why the evaluation uses Apache Spark).
Details of the applications are as follows.

Neural word embedding: This is a machine learning
model that takes a text corpus as input and trains the vector
representations of words in the corpus. Such word embedding
operations are critical techniques commonly used in deep
learning and natural language processing. The evaluation uses
the Word2Vec [23] implementation in Spark MLlib. The input
corpus setting has the same properties as the Wikipedia corpus
used in [37]. In this Word2Vec implementation, the multicast
data is the training model, which is about 504 MB.

Latent Dirichlet allocation (LDA): This is a topic cluster-
ing machine learning model widely used in natural language
processing. The algorithm assigns the input documents to
a topic by training a model that represents the probability
of a word appearing in a topic. We use the Spark LDA
implementation in [12]. The input corpus is the synthetic 20
Newsgroups dataset [24] having one million documents. In this
implementation, the multicast data is the training vocabulary
model, which is about 735 MB.

Database management system (DBMS) queries: TPC-
H [31] is a widely adopted benchmark for database system.
The benchmark contains 22 business oriented database queries
designed to have broad industry-wide relevance. We run the
TPC-H queries on Spark SQL framework [13]. The overall
size of the database tables is 16 GB. The multicast data is
one of the input tables in the join operation. In a complete
benchmark run, there are 58 multicast data whose sizes range
from 4.0MB to 6.2GB and 48.3GB in total.

B. End-to-end Application Level Improvement with Republic

1) Comparison Methodology: The evaluation uses Apache
Spark [3] (v1.6.1) as an example among the distributed data
processing frameworks to evaluate Republic. The first reason
for choosing Spark is that Spark is a general-purpose, effi-
cient and popular cluster computing framework. A variety of
applications including machine learning algorithms, database
queries, stream processing, etc., have been implemented in
Spark. The second reason is that Spark provides multiple ded-
icated mechanisms to deliver multicast data (called “broadcast
object”).

Spark can easily use the data multicast service provided by
Republic. We only replace the broadcast module in Spark with
a module that uses the Republic API. This module sends the
“broadcast object” to the executors once the object is created.
This change is completely transparent to Spark user programs.
Other data center applications can adopt Republic in a similar
way.

In Sec. VI-B2, we compare Republic with the state-of-
the-art multicast mechanisms adopted in Apache Spark, i.e.
Torrent (Cornet in [14]) and HTTP, and show that Republic
yields a large improvement. The benefits can also apply to
other data center applications and distributed computation
systems. In Torrent multicast, after the broadcast object is
created at the master, the object is partitioned into multiple
blocks of 4 MB. For each of the blocks, the receiver randomly
chooses the source of the block from the master and other
executors having a copy of the block. After all blocks of
the object are received, they are reassembled into the original
object. Executors fetch the broadcast object on-demand, i.e.,
data transfer starts when the task in the executor starts using
the data. Since Spark runs in Java virtual machine (JVM),
there are two layers of serialization/deserialization since the
blocks are also objects that need to be serialized/deserialized.
In HTTP multicast, the master starts an HTTP server and
writes the serialized object to disk. An executor fetches the
serialized object via an HTTP GET request when the task
using the object is assigned to the executor. The fetch always
happens before the task starts using the object.

We set up a Yarn cluster with 25 worker servers in the
testbed. Each worker provides 4 cores/88 GB memory to
Yarn. Spark applications are submitted to the Yarn resource
manager server. An application request executors from Yarn.
For Spark applications, an executor is an independent JVM
having dedicated cores and memory. Each of the applications
randomly picks one executor of 4 cores/88 GB memory for the
application master and N=10 or 22 executors of 2 cores/44 GB
memory for the application slaves. There are up to four or two
applications running concurrently in the cluster when N=10
or 22 respectively. Each application is submitted to Yarn 8
times under each configuration. The two machine learning
applications run 10 iterations. When using Torrent and HTTP
for multicast, the packet-switched core bandwidth between
racks are 20Gbps; When using Republic, the packet-switched
core bandwidth is 10Gbps and the circuit switch bandwidth
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is 10Gbps. So the inter-rack bandwidth in both cases are the
same, however, the circuit switch only serves multicast traffic.
Attempt sending interval is set to ia is 2ms in Republic.

2) Reduced Broadcast Object Reading Time: Fig. 6 shows
the CDF of the broadcast object reading time on all the
executors. The broadcast object reading time is defined as the
duration from (1) the time when the object reading request is
issued by the program running in the executor to (2) the time
when the program finishes the deserialization of the object
(transferring an object between JVMs requires the object to be
serialized at the sender and deserialized at the receiver), and it
includes the circuit reconfiguration time. The broadcast object
reading time indicates the application level waiting time when
retrieving the broadcast object, which has greater practical
meaning than the pure network transfer time.

Republic shows great improvement in the broadcast object
reading time because Republic leverages the physical-layer
multicast capability in the hybrid rack-level interconnections
and has an efficient data multicast protocol. In Republic, the
network transfer is much faster than the deserialization, so
reading time is dominated by the deserialization time. In Tor-
rent and HTTP, the network transfer is slow, the deserialization
needs to wait for incoming bytes from the network. So the
reading is dominated by the network transfer.

For the application using 10 executors, in TPC-H queries,
comparing with HTTP, Republic achieves 3.72× and 2.85×
improvement at the 60th and the 90th percentile, respectively

(b)(a)

(c) (d)

Fig. 8. Efficient data multicast with attempt sending

(Fig. 6a); in the machine learning applications, Republic im-
proves the reading time by 2.9× at the 40th and 80th persentile
comparing with Torrent (Fig. 6b); . For the application using
22 executors, the reading time in Republic remains unchanged,
and it shows more improvement. This is because in Torrent and
HTTP, the amount of traffic sent to the network is proportional
to the number of executors, while in Republic data is sent only
once. In addition to that, Torrent has much protocol overhead
when checking the existence of the blocks on machines as
well as the overhead of two-level serialization. For example,
comparing with Torrent in the machine learning applications,
Republic achieves 4.0× and 3.6× improvement at the 40th and
the 80th percentile, respectively (Fig. 6d); at 100th percentile
in TPC-H, the improvement is 10.7× (Fig. 6c).

The application running time is also improved due to the
high-performance data multicast of Republic (Fig. 7). For
example, the running time of LDA is improved by 32.1%
comparing with Torrent when using 22 executors.

C. Efficient Data Multicast with Tuned Attempt Sending

The attempt sending interval (ia) has a great impact on the
data multicast performance. So ia needs to be carefully chosen
for a specific hybrid data center (Sec. III-A1). To quantitatively
understand the effect of ia, we examine the cases where ia
varies between 70 µs to 70 ms, which translates to 10% and
0.1% of the 10 Gbps server bandwidth.

For the redundant packets sent to the data channel (Fig. 8a),
on our testbed, when ia is larger than 700 µs, the redundant
bytes is less than 1 MB at the 99th percentile. This is because
the redundant packets are the packets sent before the last
receiver starts receiving packets from the data channel. The
larger the ia is, the fewer packets sent are redundant. For the
lost packets (Fig. 8b), when ia increases from 70 µs to 7 ms,
the number of lost packets reduces from 10.2K to 8 per data
receiving at the 99th percentile and the number of cases having
packet losses reduces from 29.4% to 1.4%. This is because,
with a large ia, fewer packets are sent during the transient
circuit state.



However, an excessively large ia unnecessarily extends the
attempt sending time, which delays the start of the best effort
high-rate sending and eventually increases the total sending
time. On our testbed, when ia is between between 700 µs
and 2 ms (1% and 0.3% of the server bandwidth), the attempt
sending time is very close to the attempt sending time that
achived when ia is 70 µs (Fig. 8c). The cases having attempt
sending time less than 20 ms reuse the existing circuits
(Fig. 8c). In these cases, the circuit reconfiguration delay
(about 50-60 ms in our testbed) is eliminated. The delay is
caused by rule installation to the packet switches. We use the
metric total extra time to shows the slow down in transfering
a multicast data. The total extra time is defined as the duration
from the time when the sender receives approve to the time
when the sender collects DATA_RCVDs from all the receivers
minus ideal line-rate data transfer time. The total extra time
spent on sending multicast data reaches the minimum under
the same ia range (Fig. 8d). However, when ia is 70 µs, the
extra time is significantly increased. This is because (1) the
retransmissions for a large number of lost packets compete
for the server bandwidth with the data packets sent to the data
channel and (2) the retransmission packets are delivered after
the data channel transfer finishes. Therefore, our evaluation
suggests that it is reasonable to set ia between 1% to 3% of
the average circuit reconfiguration time of the deployed circuit
switch.

Fig. 8 also compares with an alternative approach which
starts the high-rate sending after the sender receives the first
(instead of the last) INTL_SEQ from a receiver connected via
the circuit in the multicast path. In the alternative approach, the
high-rate sending starts early (Fig. 8c) due to the large variance
on the circuit reconfiguration time. However, starting high-rate
sending early cannot reduce the extra sending time (Fig. 8d).
This is because at a early time, more circuits are under an
unstable transient state so that more packets are prone to lose,
which results in more packet retransmissions. The alternative
approach also sends more redundancy packets under the same
ia, since some of the redundant packets are actually sent at
high-rate.

D. High Throughput of Republic Manager

We use manager response time to show the achievable
throughput of Republic manager. Manager response time is the
duration from the time when the sender agent calls request
to the time when it receives approve. The average response
time is 1.36 ms. This means that the manager can achieve
a throughput of 735 requests per second when the average
number of receivers in the request is 16, which is the value in
our experiment. Our experiments have about 0.1 request per
second, which implies that the Republic manager can handle
7.35K× more concurrent applications that are similar to the
applications in our experiments.

VII. RELATED WORK

Multicast-featured hybrid data centers: Republic is mo-
tivated by previous works building multicast-featured circuit-

switched rack-level interconnections. Wang et al. proposes c-
Through [32], a hybrid data center architecture that leverages
3D MEMS-based OCS for fiber optics. Wang et al. [33],
Samadi et al. [27] and Xia et al. [35] extend the 3D MEMS-
based OCS with passive optical splitters to enable physical-
layer multicast. FireFly [18] introduces transparency switch-
able mirror and galvo (rotating) mirror to direct the free-
space optical (FSO) signals between the racks. FlyCast [11]
augments FireFly with partial reflection mirror to enable the
physical-layer multicast with FSO. Zhou et al. [38] proposes
a rack-level interconnection solution based on wireless 3D
beamforming at 60 GHz. Technologies such as multi-user
3D beamforming [28], [29], [36] have potential in supporting
point-to-multipoint wireless data transfer. However, these pro-
totypes are still far from a complete system that applications
can leverage and each of them is specific to a particular
architecture. Instead, Republic goes significantly further by
building the first full-fledged cross-architecture system that
provides a universal data multicast service in hybrid data
centers featured with physical multicast capability.

Multicast in data center applications: Data multicast
is very common in data center applications, especially in
big data processing frameworks. We enumerate some of the
popular frameworks and the multicast mechanisms they adopt.
Spark [3] is a general large-scale data processing framework.
It provides “broadcast object” as a data type, which allows
the worker nodes to retrieve the data through the built-in data
multicast mechanisms including Torrent and HTTP (discussed
in Sec. VI-B1). In HDFS [1], a data block is replicated
to multiple storage nodes. The data block is propagated
along a chain from the source node to the storage nodes.
Tensorflow [10] is a distributed computation framework for
machine learning and deep neural networks. The workers
fetch the machine learning model from a group of tasks
via unicast transfer. Tez [4] is a data processing framework
for a complex directed-acyclic-graph (DAG) of tasks. The
mechanism used for broadcasting data to the tasks can be
customized by the application developer. These frameworks
can adopt Republic’s data multicast service to improve the
data multicast performance as we show in the experience with
Spark in the evaluation (Sec. VI-B1).

VIII. CONCLUSION

In this paper we present Republic, the first fully-fledged
solution to data multicast in hybrid data centers. We exploit
new physical multicast capabilities in hybrid data centers to
design a system that provides reliable and high-performance
multicast. Republic is structured as a service, with a simple
unified API, making it easily accessible to expert and non-
experts alike. We have deployed Republic in our OCS-based
hybrid data center testbed and modified Spark to use the
service. We observed as much as 4.0× improvement for
data multicast. We are currently preparing to open-source
the Republic framework so as to provide others with an
experimental platform for conducting future research on topics



such as multicast scheduling algorithms [30] and new inter-
rack network architectures [34].
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