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Abstract— Ethernet’s high performance, low cost and ubiquity
have made it the dominant networking technology for many
application domains. Unfortunately, its distributed forwarding
topology computation protocol – the Rapid Spanning Tree Proto-
col (RSTP) – can suffer from a classic “count-to-infinity” problem
that may lead to a forwarding loop under certain network
failures. The consequences are serious. During the period of
“count-to-infinity”, which can last tens of seconds even in asmall
network, the network can become highly congested by packets
that persist in cycles in the network, even packet forwarding
can fail as the forwarding tables are polluted. In this paper, we
explain the origin of this problem in detail and study its behavior.
We find that simply tuning RSTP’s parameter settings cannot
adequately address the fundamental problem with “count-to-
infinity”. We propose a simple and effective solution calledRSTP
with Epochs. This approach uses epochs of sequence numbers in
protocol messages to eliminate stale protocol informationin the
network and allows the forwarding topology to recover in merely
one round-trip time across the network.

I. I NTRODUCTION

Ethernet1 is the dominant networking technology in en-
vironments ranging from home networks, office networks,
data center networks, campus networks, and is becoming
more popular in metropolitan-area networks as well. By far
the most important reasons for Ethernet’s dominance are its
high performance-to-cost ratio and its ubiquity. Virtually all
computer systems today have an Ethernet interface built in.
Ethernet is also fully plug-and-play, requiring no error-prone
manual configuration. Moreover, because Ethernet is a layer
2 technology, many layer 3 protocols can easily co-exist on
Ethernet networks.

Even though Ethernet has all of these compelling bene-
fits, mission-critical applications also demand high network
dependability. The dependability of Ethernet in the face of
partial network failure is the focus of this study.

Ethernet has a unique combination of features enabling
plug-and-play operation. First, Ethernet requires no manual
interface address configuration for switches or end systems.
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Ethernet addresses are simple globally unique identifiers,usu-
ally assigned by hardware manufacturers, that do not have any
special hierarchical structure for packet forwarding. To deliver
a packet from a source to an unknown destination address,
Ethernet switches flood the packet throughout the network to
ensure it reaches its destination. However, flooding is highly
inefficient. Fortunately, an Ethernet switch can observe the
flooding of a packet to determine the switch port at which a
packet from a particular source addressS arrives. This switch
port then becomes the outgoing port for packets destined for
S and so no flooding is required to deliver future packets
to S. Thus, an Ethernet network dynamically discovers the
topological locations of interface addresses and dynamically
builds packet forwarding tables accordingly. This mechanism
is called address learning.

To support the flooding of packets for unknown destinations
and address learning, an Ethernet network also dynamically
and distributedly computes a cycle-free active forwarding
topology using the Rapid Spanning Tree Protocol (RSTP).
This active forwarding tree is a logical overlay on the un-
derlying physical topology. Cycles in the underlying physical
topology provide redundancy in the event of a link or switch
failure. It is critical to not allow cycles in the active forwarding
topology. Otherwise, first of all, flooded packets will persist
indefinitely in the network cycle causing congestion. Secondly,
address learning will not function correctly because a switch
may receive packets from a sourceS via multiple switch ports,
making it impossible to build the forwarding table correctly.

The dependability of Ethernet therefore heavily relies on
the ability of RSTP to quickly recompute a cycle-free active
forwarding topology upon a partial network failure. Some
pathological causes for forwarding loops in RSTP have been
previously documented by Cisco [2]. However, even under
normal operation, RSTP may exhibit a “count-to-infinity”
problem which can allow a temporary forwarding cycle to
exist in the network for tens of seconds. During this period,
network congestion may sharply increase and packets may be
forwarded incorrectly. This highly unacceptable behaviorwas
mentioned by Myerset al. [11]. To the best of our knowledge,
however, no comprehensive examination of this problem exists
in the literature.

This paper presents an in-depth examination of this count-
to-infinity problem in RSTP and provides a simple yet effec-
tive solution to the problem. The contributions of this study
include:



• Identify the count-to-infinity problem with specific pro-
tocol details in the IEEE 802.1D (2004) specification.

• Demonstrate the exact conditions under which the count-
to-infinity problem manifests itself.

• Provide a thorough study of the behavior of the count-
to-infinity problem under different network topologies
and protocol parameter settings. We show that protocol
parameter tuning cannot adequately improve the conver-
gence time of RSTP.

• Propose and evaluate a simple yet effective solution that
removes the count-to-infinity problem and dramatically
improves the convergence time of the spanning tree
computation upon failure to roughly one round-trip time
across the network.

The rest of this paper is organized as follows. Section II
provides an introduction to the RSTP protocol. Section III
describes how a temporary forwarding loop can form under
RSTP. Section IV describes our solution to this problem, the
RSTP with Epochs protocol. Section V evaluates this protocol.
Section VI discusses related work. Section VII concludes this
paper.

II. T HE RAPID SPANNING TREE PROTOCOL (RSTP)

RSTP is the current standard Ethernet spanning tree proto-
col. The Spanning Tree Protocol (STP) is the predecessor of
RSTP. As background, we provide a brief overview of both
STP and RSTP.

The spanning tree protocols are link management protocols
that are designed to allow for redundancy while preventing
loops in the active topology. Redundancy is important for fault
tolerance to link or bridge failures. However, having loops
in the active topology can result in packets persisting in the
network as Ethernet packets do not have a time-to-live field.
The Spanning Tree Algorithm (STA) builds a unique spanning
tree out of the network of bridges. The tree is rooted at the
bridge with the lowest ID in the network and spans all bridges
in the network. A path from any bridge to the root bridge is
guaranteed to be of minimum cost. Traffic is forwarded along
these paths within the tree. Since the active topology is a tree,
it is by definition loop free. Redundant links are kept in a
standby mode (blocked). The STA enables these standby links
whenever it detects some failure or a change in the cost of
some tree path motivating a reconfiguration of the tree.

Bridge Protocol Data Units (BPDUs) are used by bridges to
exchange information regarding their state. The STA uses the
BPDU information to elect the root bridge. Each bridge uses
the information conveyed in BPDUs to choose the port which
lies on the shortest path to the root bridge (its root port) and
the ports that connect it to its children in the spanning tree(its
designated ports). The root port is the port that has received the
best information for a path to the root. Other ports in the bridge
send BPDUs with their path cost to the root to other bridges
in the network. Ports that receive inferior information than the
one they are sending are chosen to be designated ports. Bridges
send a BPDU everyHelloTime which acts as a heartbeat.
A BPDU has a message age that represents the age of the

message and is capped by aMaxAgevalue, when the message
age exceeds the MaxAge value the message gets dropped.
Each bridge port caps the number of BPDUs it can transmit
every second. It has a counter (TxCount) that keeps track of
the transmitted BPDUs, if the counter reaches Transmit Hold
Count (TxHoldCount) no more BPDUs can get transmitted
during the current second. The counter is decremented by one
every second.

A topology change can result in the invalidation of a
bridge’s learned address location information. This is because
a topology change can result in the reconfiguration of the
spanning tree which may lead to some network segments to
appear as if they have moved from one bridge’s perspective.
This requires the flushing of the forwarding database that
caches stations’ locations. STA implements this by making
a bridge send a Topology Change (TC) message whenever a
port is becoming a part of the active topology, it sends such
message on all its ports participating in the active topology. A
bridge receiving a TC message forwards it on all its ports
participating in the active topology except the one it has
received the TC message on. Whenever a bridge sends a TC
message on one if its ports, it flushes the cached forwarding
information at that port.

The following two sections present the differences between
the two spanning tree protocols - the Spanning Tree Protocol
(STP) and its successor Rapid spanning Tree Protocol (RSTP)
- that are relevant to this paper.

A. Spanning Tree Protocol (STP)

In the event of a topology change, STP relies on timers
before switching ports to the forwarding state. This is to ensure
that the new information has been spread across the network.
The total waiting time can get up to 50 seconds [2]. This
conservative value for the waiting time is to protect against
prematurely switching a port to the forwarding state resulting
in a forwarding loop. Whenever a bridge gets disconnected
from the root bridge, it waits until the information cached at
its root port is aged out, then it starts accepting other BPDUs
from other bridges to discover another path to the root.

In STP the root bridge sends a hello message every Hel-
loTime. Other bridges relay such messages to their children
after adjusting the appropriate fields (ex: message age, path
cost, ...). A bridge losing a hello message could be due to a
problem anywhere along the path to the root.

B. Rapid Spanning Tree Protocol (RSTP)

RSTP tries to overcome the shortcomings of STP’s long
convergence time by introducing few optimizations that in-
tend to reduce the convergence time without affecting the
functionality of the protocol. For the purpose of this paper
we will present the relevant subset of these optimizations.
RSTP relies on a handshake between bridges to transition a
designated port into the forwarding state rather than waiting
for timers. Unlike in STP where a bridge just forwards
the root’s BPDU messages, in RSTP every bridge sends a
BPDU every HelloTime that acts as a heartbeat indicating the
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Fig. 1. A simple topology vulnerable to temporary forwarding loop.

liveness of such bridge. This allows for better detection of
failed components. If a bridge misses three consecutive BPDU
messages on some port, it assumes that the connection has
failed and ages out the information at such port. Physical link
failures are detected even faster. If a bridge detects failure
at its root port, it falls back immediately to an alternate port
if it has any. An alternate port is a port with an alternate
path to the root bridge [3]. A port is chosen to be either an
alternate port or a backup port if it is not the root port and
receives superior information than the one it is transmitting. In
a switched Ethernet a backup port is a port directly connected
to another port on the same bridge. In this paper we are mainly
interested in alternate ports. For RSTP a topology change
event is when a port that was not forwarding switches to be
forwarding.

III. C OUNTING-TO-INFINITY IN RSTP

This section explains how a temporary forwarding loop may
form under the RSTP protocol. A temporary forwarding loop
may form when there is a cycle in the physical topology
and that this cycle loses connectivity to the root bridge due
to a network failure. Figure 1 gives a simple example of a
vulnerable topology. The path between bridge 1 (the root) and
bridge 2 does not have to be a direct link. A failure in this
path can result in a count-to-infinity situation in RSTP that
may create a temporary forwarding loop.

A. Counting-to-Infinity: An Example

To illustrate this problem we will first give a specific
example and relate the behavior to clauses in the IEEE 802.1D
(2004) [9] standard. In the next section, a general proof is
given.

First we state 8 relevant rules that govern the operation of
RSTP. Each rule is identified from the IEEE 802.1D (2004) [9]
standard.

1) If a bridge can no longer reach the root bridge via its
root port and does not have an alternate port, it declares
itself to be the root.(Clause 17.6)

2) A bridge sends out a Bridge Protocol Data Unit (BPDU)
immediately after the data it is announcing has changed,

e.g. when it believes the root has changed or its cost to
the root has changed.(Clause 17.8)

3) A designated port becomes the root port if it receives a
superior BPDU to what the bridge had received before.
That is, this BPDU announces a better path to the root
than via the current root port.(Clauses 17.6 and 17.7)

4) An alternate port is a port with an alternate path to the
root bridge. A port gets the alternate port role if the
BPDU it is to transmit, conveying the cost to the root
through itself, is inferior to the one received from its
peer. An alternate port caches the information received
in the superior BPDU, subjected to a timeout, so that the
information can use later if the alternate port becomes
the root port.(Clauses 17.6 and 17.7)

5) Bridges (not only the root bridge) send periodic BPDUs,
to guard against packet loss and to assist in detecting
failed components.(Clause 17.8)

6) A bridge waits for 3 consecutive missing BPDUs from
its designated bridge before assuming it to be dead; this
is only if the bridge cannot physically detect its failure.
After missing three consecutive BPDUs the cached
information at the port is aged out. While waiting for the
three heartbeats, the bridge generates and transmits its
own BPDUs based on its cached information.(Clause
17.21.23)

7) BPDU M1 is superior to BPDU M2 if(Clause 17.5)

a) M1 is announcing a root with a lower bridge ID
than that of M2, or

b) Both BPDUs are announcing the same root but M1
is announcing a lower cost to get to the root, or

c) Both BPDUs are announcing the same root and the
same cost but M1 was lastly transmitted through a
bridge with a lower ID than that last transmitting
M2, or

d) Both BPDUs are announcing the same root, the
same cost and are transmitted last through the same
bridge but M1 was transmitted from a port with
lower ID than the one last transmitted M2, or

e) Both BPDUs are announcing the same root, the
same cost and both were transmitted last through
the same bridge and the same port but M1 was
received on a port with a lower ID than the one
last received M2.

8) The message age is incremented on receipt, and the
information discarded if it exceeds the MaxAge. Thus
the number of Bridges the information can traverse is
limited. (Clause 17.9)

Now consider the example in Figure 2 showing a network
of bridges. A box represents a bridge; the top number in the
box is the bridge ID, the lower set of numbers represent the
root bridge ID as perceived by the current bridge and the
cost to this root. The link costs are all 20 (this value is not
important). Figure 2(a) shows the stable active topology at
time t1. Figure 2(b) shows the network at timet2 when the
link between bridge 1 and 2 dies. Bridge 2 declares itself to
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Fig. 2. An example of count to infinity.

be the root since it has no alternate port (rule (1)). Bridge 2
announces to bridges 3 and 4 that it is the root (rule (2)). At
time t3 bridge 3 makes bridge 2 its root as it does not have
any alternate port. Bridge 4 however has an alternate port for
bridge 1 and incorrectly uses this alternate port as its rootport,
making bridge 3 its designated bridge (parent in the tree) to
the now dead bridge 1 (rule (4)). This is because bridge 4
has no way of knowing that this cached information for the
alternate port is stale. At timet4 bridge 4 announces to bridge
2 that it has a path to bridge 1, spreading this stale information
and initiating the count-to-infinity (rule (2)). Bridge 2 makes
bridge 4 its designated bridge to bridge 1 and updates the
cost to bridge 1 to 80 (rule 3). At timet5 bridge 3 sends
a BPDU to bridge 4 saying that bridge 2 is the root. Since
bridge 3 is bridge 4’s designated bridge, bridge 4 accepts this
information and makes its cost to bridge 2 to be 40. At time
t6 bridge 2 sends a BPDU to bridge 3 saying that it has
a path to bridge 1. Bridge 3 makes bridge 2 its designated
bridge updating its cost to bridge 1 to be 100. Note that at
time t3, bridge 4’s port to bridge 2 is in a temporary blocked
state but it becomes forwarding as soon as bridge 2 chooses
bridge 4 as its designated bridge and put its port to bridge
3 in a temporary blocked state (timet4). Bridge 2’s port to
bridge 3 becomes forwarding again at timet6 when bridge 3
confirms that bridge 2 is its designated bridge. Thus at time
t6, all ports are forwarding creating a forwarding loop.

When bridge 2 receives the next BPDU from bridge 4,
bridge 2 will transmit BPDUs to reassert its root status.
However, the stale information about bridge 1 is still being
transmitted by bridge 3 to bridge 4 and continues to go
around the cycle in a count-to-infinity situation until thisstale
information reaches its MaxAge which is supposed to be a
timeout with a default value of 20 seconds. However, in reality,
the age of a message is incremented by 1 only when it is
passed. Thus, a MaxAge of 20 only ensures that the stale
information cannot be passed around more than 20 times. As a
result, the stale information can actually persist in the network
for longer than 20 seconds. (rules 6 and 8).

As the fresh and stale BPDUs cycle around the loop, the
bridge ports will eventually reach their TxHoldCount limit.

R
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Fig. 3. General network scenario considered in Lemma 1.

Subsequently, a BPDU will only be transmitted by a bridge
port when the transmit counter is decremented which happens
once a second when the bridge’s internal timer ticks. Then
depending on when and where the fresh and stale information
get stuck in the loop and the clock skew of the bridges, the
stale information may catch up with and eliminate the fresh
information. When this happens, all the bridges in the loop will
believe in the stale information until its MaxAge is reached, all
ports in the loop forward packets, thus creating a forwarding
loop that lasts until count-to-infinity terminates. On the other
hand, the fresh information may catch up with the stale one
ending the count-to-infinity.

B. Counting-to-Infinity: The General Case

We now give a general proof that whenever a network is
partitioned, if the partition that does not contain the previous
root bridge has a cycle, there exists a race condition that
can result in the count-to-infinity behavior which may lead
to a temporary forwarding loop. The proof proceeds by first
demonstrating that one bridge in the partition without the
previous root bridge must declare itself the new root and start
transmitting BPDUs. These BPDUs will race around the cycle.
Depending on the outcome of the race, count-to-infinity may
occur.

Lemma 1: If a network is partitioned, the partition without
the previous root bridge must contain a bridge that has no
alternate port.
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Proof: Consider the general network scenario illustrated
in Figure 3. A dotted line represents a network path that may
contain unknown intermediate hops. A solid line representsa
direct bridge to bridge connection. Before the partition,R is
the root bridge in the network. Every bridgeNx has a certain
shortest path toR with a cost ofcx. Upon the partition, bridges
N0 to Nk form a partition that has no connectivity toR.

The proof is by contradiction. Let us assume that bridgesN0

to Nk all have one or more alternate ports toR immediately
after the partition. Consider bridgeN0. SinceN0 has at least
one alternate port, it must be directly connected to another
bridge in the partition, sayN1, which has an alternate path
to R that does not includeN0. Without loss of generality,
assume the BPDU sent byN1 is superior than the BPDU sent
by N0. Thus,N0 has an alternate port throughN1. Similarly
for N1, it must have an alternate port toR via another bridge,
say N2, and N2’s BPDU is superior toN1’s so N1 has an
alternate port throughN2. This argument applies till bridge
Nk−1. However, since there is a finite number of bridges,Nk

must obtain an alternate port toR via one of the bridgesN0

to Nk−2. However, this is impossible becauseNk’s BPDU is
superior to the BPDUs from all other bridges. Thus, we have
a contradiction.

Because there exists at least one bridge in the partition
that does not contain the previous root that has no alternate
port, by the RSTP protocol (rule (1)), this bridge, when it
detects that its root port is no longer valid, it must declare
itself the new root and begin sending BPDUs announcing itself
the root. These BPDUs will be flood along the partition. The
next lemma shows that if the partition contains a cycle, then
there exists a race condition such that if the BPDU arrives
at a bridge with an alternate port via its root port first, stale
information cached at its alternate port about the previousroot
will be spread into the network, creating the count-to-infinity
situation.

Lemma 2: If a network is partitioned, and the partition
without the previous root bridge contains a cycle, a race
condition exists that may lead to count-to-infinity which can
create a temporary forwarding loop.

Proof: From Lemma 1, in the partition containing
the cycle, one or more bridges without alternate port must
eventually declare themselves as roots and send their own
BPDUs to the rest of the bridges in the partition. In addition,
before the partition, the cycle must contain one or more bridges
with an alternate port to the root. This is because, before the
partition, assuming no forwarding loop exists, the cycle must
be cut in the active forwarding topology by RSTP. An alternate
port therefore exists at the link where the cycle is cut.
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Fig. 5. Convergence time in a network of 16 bridges after failure of the root.

Now consider Figure 4 where the link between bridges i
and j is where an alternate port exists in the cycle. Bridge i
is connected to the rest of the loop with a root port on its
left and has a designated port that links it to bridge j. Bridge
j is connected to the loop by its root port on its right and
connected to bridge i by an alternate port. After the partition,
BPDUs from bridges declaring themselves to be root will race
around the cycle.

If bridge j receives such BPDUs on its root port before
receiving them on its alternate port, it will find that its alternate
port has superior cached information suggesting a path to a
superior root that is no longer reachable. Thus bridge j will
then make the alternate port its root port and start sending
BPDUs conveying the information it has cached to bridges on
its right as it believes it has superior information than theone
it received. Afterwards, bridge j would get BPDUs on its new
root port through bridge i from bridges declaring themselves
to be root. Bridge j will then know that the information at its
root port is stale and will accept the new information and also
forward it to its right. This will result in a situation where
fresh BPDUs chasing stale BPDUs around the loop resulting
in a count-to-infinity situation and may create a temporary
forwarding loop.

On the other hand if bridge j receives the fresh BPDUs
from other bridges declaring themselves to be root on its
alternate port first before receiving them on its root port, the
stale information at the alternate port will be discarded and no
count-to-infinity would occur.

Count-to-Infinity may even occur without a network parti-
tion. For example if the loop in the physical topology loses
its cheapest path to the root and picks another path with a
higher cost. This new information will race around the loop
until it reaches an alternate port caching stale, but superior
information. Again this stale information will chase the new
information around the loop counting to infinity. This will keep
going until the stale information reaches its MaxAge, or the
cost reported by the stale information increases to exceed that
of the new information. This is because the cost reported by
the stale information increases while it is circling aroundthe
loop, counting to infinity.

In summary, the problem is bridges cache information from
the past at alternate ports, then use it blindly in the futureif
the root port becomes invalid, without knowing whether this
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Fig. 6. Convergence time after failure of the root varying the TxHoldCount.

information is stale or not. Then the bridge starts spreading this
stale information to other bridges via its BPDUs potentially
resulting in a temporary forwarding loop.

C. Coping with Counting-to-Infinity in RSTP

1) Reduce Max Age:In RSTP, BPDUs include aMessage
Age that is initialized to zero by the root. Every bridge that
passes the BPDU along the network increments the BPDU’s
Message Age by one before forwarding it. When a BPDU’s
Message Age reachesMaxAgeit gets dropped. The value of
MaxAge prescribed by the standard is 20. This results in stale
information eventually getting flushed out of the network.
Thus, one potential strategy to cope with the counting-to-
infinity problem is to reduce MaxAge. Unfortunately, reducing
MaxAge under the current RSTP standard also unnecessarily
limits the network diameter and thus the scalability of Ether-
net.

But much more importantly, the MaxAge parameter does
not effectively bound the time counting-to-infinity can persist.
One may think that count-to-infinity can last for at most a
few milliseconds as the stale BPDUs are dropped after they
traverse at most 20 hops around the loop. Unfortunately RSTP
has a per port Transmit Hold Count (TxHoldCount) that limits
the number of transmitted BPDUs per port per second. Each
time a BPDU is transmitted through a port, the transmit
count is incremented until it reaches the TxHoldCount, where
no more BPDUs can be transmitted. The transmit count is
decremented every clock tic, which occurs every one second.
The purpose of such limit is to protect a bridge from being
overwhelmed by processing a lot of BPDUs, specially if
the bridge is serving multiple VLANs. The TxHoldCount
exacerbates the count to infinity problem by delaying the
transmission of the BPDUs. Depending on the complexity of
the network topology, the volume of BPDUs will vary. Thus
the time it takes for a BPDU to reach Max Age also varies
with network complexity.

To illustrate this problem, we simulate a network of 16
bridges that is initially configured in a ring topology. Then
we randomly add redundant links to increase complexity until
we reach a fully connected graph. After adding each link
we simulate the failure of the root bridge and measure the

convergence time. What we mean by convergence time is the
time, measured in seconds, after which all the bridges in the
network have agreed on the same correct root bridge. Figure 5
shows that adding more redundant links dramatically increases
the the convergence time. The reason for that is adding more
redundant links results in more alternate ports per bridge.If the
root bridge is unreachable and the bridge has many alternate
ports, it may try all its alternate ports one after another. Every
time a bridge switches to a new alternate port, this port goes
forwarding triggering a topology change event that makes the
bridge send topology change message on all its forwarding
ports. For example in Figure 2(c) and (d), when bridge 4 takes
its alternate port as its new root port, a topology change is
triggered. Bridge 4 sends a topology change message on all
its forwarding ports. Thus switching between a few alternate
ports can result in all the ports in the active topology reaching
their TxHoldCount limit due to the transmissions of all the
topology change messages. This increases the convergence
time as BPDU updates cannot be transmitted promptly.

2) Increase Transmit Hold Count:It follows that another
potential way to cope with RSTP’s counting-to-infinity is
to increase the TxHoldCount at the expense of increasing
the BPDU processing load on bridges. One may think that
by increasing the TxHoldCount, the duration a stale BPDU
can persist in a network should be proportionally reduced.
Unfortunately, that is not the case in reality.

To illustrate, we simulate a fully connected network of 4
bridges and measure the convergence time after the death of
the root bridge. Figure 6(a) shows the convergence times for
ten runs when varying the TxHoldCount according to the
value range allowed by the standard. We can see that the
convergence time exhibits a multi-modal behavior. Even when
the TxHoldCount is increased to 10, the worst case conver-
gence time is still 8 seconds, not the 10 times improvement
one might expect when comparing to a TxHoldCount of 1.
Clearly, the benefit of increasing TxHoldCount is non-linear
and limited. This is because once the transmit count reaches
the TxHoldCount limit, it gets decremented by one every
second allowing for only one BPDU to be transmitted per
second irrespective of the TxHoldCount value. Figure 6(b)
shows the measured convergence time for a simpler topology,
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namely the topology in Figure 2(a). Even in this simple
topology, increasing the TxHoldCount does not dramatically
improve convergence time.

3) Use Restricted Topologies:Another potential way to
cope with RSTP’s counting-to-infinity is to avoid it by using
restricted network topologies in which the problem cannot
manifest. Since counting-to-infinity can happen when thereis
a cycle in the physical topology and this cycle gets partitioned
from the root, topologies having physical cycles that can get
partitioned from the root should be avoided when using RSTP
bridges.

A safe topology therefore should have every cycle pass
through the root bridge. A family of topologies that satisfythis
requirement and is not prone to partitioning after the deathof
the root bridge is topologies having all their cycles intersect
at two bridges in which one is the root bridge. Figure 7 is an
example of such topologies. In this example the root should
be selected among bridges A and B. This can be done by
manipulating the bridge’s priority to guarantee that it hasthe
lowest bridge ID in the network. A ring topology is a special
case of such family of topologies.

IV. RSTPWITH EPOCHS: EXTENDING RSTPTO

ELIMINATE THE COUNT TO INFINITY

In this section, we introduce the RSTP with Epochs protocol
that solves the count to infinity problem that we presented in
Section III. The RSTP with Epochs protocol is an extension
to the RSTP protocol [9] that relies on the root adding a
sequence number to each BPDU that it generates. Designated
bridges generate and transmit their own BPDUs based on the
latest root’s BPDU and including the root’s latest sequence
number. The purpose of these sequence numbers is to identify
stale BPDUs or stale cached information from a retired root.
However sequence numbers by themselves are not sufficient.
For example, consider in a network of bridges where there is
the old root bridge A and a new bridge B with lower bridge
ID than A that has just joined the network. Bridge B is now
eligible to become the root, so when it receives a BPDU from
A, it starts sending out its own using a sequence number higher
than the one in A’s BPDU. This is to override A’s BPDUs and
assert itself as the new root causing A to back-off. However,
by the time B’s BPDU reaches A, A may have sent out one or
more BPDUs having higher sequence numbers. Thus A will
view B’s BPDUs as stale and it will not back off and the
network will not converge.

Using epochs solves this problem. An epoch is an interval
starting when the true root bridge achieves root status and ends
with another bridge contending for root status. Another bridge
will contend for root status because it did not hear from the
previous root, or because it finds its bridge ID to be lower
than that of the previous root. A bridge may not hear from the
previous root if the previous root has retired, or the root may
still be reachable but the contending bridge has lost its path to
the root without having any other alternate ports. A bridge may
find it has a lower bridge ID than the root because it has just
joined the network and its bridge ID is lower than the current
root’s bridge ID, so it’s eligible to be the new root. If the
previous root has retired and the contending bridge is eligible
to be the root, the new root will use a sequence number higher
than the highest sequence number it received from the retired
root signaling a new epoch with a new root bridge. If the old
root is reachable and is still eligible to be the root, it pumps
up its sequence number to override the contending bridges’
sequence numbers to re-take the network and this signals a
new epoch as well but with the same root bridge as in the
previous epoch. Each bridge has a local representation of an
epoch with an interval of sequence numbers it heard from the
same root bridge. The interval is represented by two sequence
numbers, FirstSeqno and CurrentSeqno. FirstSeqno is the first
sequence number this bridge has heard from the current root.
CurrentSeqno is the current or latest sequence number the
bridge has heard from the root. Back to the example given
above, epochs allow the new root B to catch up with the old
root’s sequence numbers to eventually be able to take over the
network. When B’s BPDU reaches A, A may have already
sent BPDUs with higher sequence numbers, but since B’s
BPDU sequence number lies within the interval representing
the current epoch, A realizes that B coexists with it in the same
epoch and thus it backs away. Subsection IV-A presents the
RSTP with Epochs protocol in details. Then subsection IV-B
further discusses the operation of the protocol.

A. Protocol Definition

In detail, the RSTP with Epochs protocol modifies the RSTP
protocol as follows:

1) The periodic BPDUs sent by the root have increasing
sequence numbers (BPDU.Seqno), where the period is
typically a HelloTime. The sequence number is incre-
mented by the root bridge at the beginning of each
period. Children bridges generate their BPDUs including
the root’s latest sequence numbers.

2) Each bridge records two values, FirstSeqno and Cur-
rentSeqno, the first and last sequence numbers, respec-
tively, that it has received from the current root bridge.
These two sequence numbers define the current epoch.
The purpose of this epoch is to identify stale BPDUs. A
BPDU with a sequence number less than the recorded
first sequence number must be a stale BPDU belonging
to an earlier epoch.

3) Bridges disregard the sequence numbers when com-
paring BPDUs declaring the same root. However, if
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a BPDU arrives declaring a different root than the
one perceived by the bridge, the bridge checks if the
BPDU’s sequence number is larger than the last recorded
sequence number for the perceived root. If this is the
case, it signals the beginning of a new epoch. The
new epoch has a different root declared by the received
BPDU. The first and last sequence numbers are set to
the sequence number reported by the received BPDU.
On the other hand, if the sequence number reported by
the BPDU is larger than or equal to the first recorded
sequence number but smaller than or equal to the largest
recorded sequence number of the current root, the bridge
with the lowest ID - among the ones declared by the
BPDU and the current root - is deemed superior; and it
is the one accepted by the bridge as the current root.

4) When a bridge detects disconnection from its designated
bridge, it first checks to see if it has any alternate ports.
If it does, it adopts one of these alternate ports as its
new root port. However, if the bridge does not have
any alternate ports, it declares itself as the new root and
starts broadcasting its own BPDUs that have a sequence
number larger than the last sequence number that it
received from the old root.

5) If a bridge receives a BPDU declaring another bridge
with an inferior bridge ID to its own as the root, the
bridge starts sending BPDUs declaring itself as the root.
These BPDUs are given a sequence number that is larger
than that received from the inferior bridge. When one
of these BPDUs reaches the inferior bridge, it will stop
declaring itself as the root.

Figure 8 explains how a bridge handles the event of the
death of its designated bridge; this is the same way an RSTP
bridge handles this event. Figure 9 explains the handling of
a the receipt of a BPDU for the RSTP with Epochs protocol.

B. Discussion

Sequence numbers can wrap around. The way to deal with
that is to consider zero as bigger than the largest sequence
number. A side effect of doing that is when a new bridge
joins the network starting off with sequence number zero may
be able to temporarily take over the network although it has a
bridge ID higher than the legitimate root. When the legitimate
root receives the new bridge’s BPDU, it can then pump up its

sequence number and re-take the network. This may result in
a brief period of disconnectivity. A work around this problem
is to make a new bridge joining the network listen for a while
for BPDUs, if it receives a BPDU from a superior root, it
should not send its own BPDU. If no superior BPDUs are
received the new bridge can then start sending its own BPDU
declaring itself to be the root.

The advantage of RSTP with Epochs when compared to
RSTP is that it avoids count-to-infinity. On the other hand, its
disadvantage when compared to RSTP is the small overhead
that can result from its comparative pessimism. To elaborate,
let us reconsider the topology in Figure 1. Suppose the link
between bridge 2 and 3 dies. Under both protocols, bridge
3 will emit a new BPDU. The difference is, in RSTP, the
propagation of this BPDU will be stopped once it reaches
bridge 5 because bridge 5 has an alternate port to the root
via bridge 6. In effect, by default RSTP assumes that the root
bridge is still alive. In contrast, in RSTP with Epochs, this
BPDU creates a new epoch and thus is superior to the cached
information at the alternate port at bridge 5. Consequentlythe
propagation will not be stopped until it reaches bridge 1. In
effect, RSTP with Epochs pessimistically assumes that the root
bridge is inaccessible.

In absence of a count-to-infinity, both RSTP and RSTP
with Epochs generate the same topology change events and
thus generate the same number of BPDUs signaling topology
change events. This is because a topology change event occurs
when a port goes forwarding and since both protocols converge
at the same topology, switching the same ports to forwarding
and thus generating the same topology change events. In
case of a count-to-infinity in RSTP, some ports may go to
forwarding temporarily generating some extra topology change
events as in Figure 2.

C. Interoperability with Legacy Bridges

In this section, we provide some suggestions on how to
allow RSTP with Epochs bridges to interoperate with legacy
RSTP and STP bridges. The basic mechanism is similar to that
used by RSTP to interoperate with STP. First, the RSTP with
Epochs protocol should be assigned a new protocol version
number. A BPDU sent by a bridge carries the version number
of the corresponding protocol used. A BPDU with an unknown
version number will be discarded by the receiving bridge. At
start up, a RSTP with Epochs bridge will try sending RSTP
with Epochs BPDUs. If the network peer is a legacy bridge,
these BPDUs will be ignored. Eventually, the RSTP with
Epochs bridge will receive legacy BPDUs from the legacy
peer bridge, at such time it can recognize the protocol used
by the peer and fall back to the appropriate legacy protocol.To
translate a RSTP with Epochs BPDU into a legacy BPDU, the
epoch sequence number is simply stripped from the BPDU.
These mechanisms allow a mixture of RSTP with Epochs,
RSTP, and STP bridges to co-exist in a network.

A careful design of the network can also help to extract
the most benefits from RSTP with Epochs bridges even when
they are mixed with legacy bridges. First, redundancy is most
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critical in the core of the network. Thus, RSTP with Epochs
bridges should be used in the network core, where many
redundant links can be safely introduced. Legacy bridges can
be used as traffic aggregation trees at the edge of the network.
These aggregation trees contain no cycles and thus are safe.
To ensure an RSTP with Epochs bridge will be elected as the
new root upon a failure, RSTP with Epochs bridges should be
assigned the lowest IDs among all bridges in the network.

V. EVALUATION

In this section we evaluate different aspects of the the
RSTP and the RSTP with Epochs protocols. Section V-A
presents our evaluation methodology. Then, in Section V-B the
convergence times of both protocols are evaluated. The packet
overhead of both protocols is studied in Section V-C. Finally
in Section V-D we study how counting to infinity can saturate
a bridge’s maximum BPDU transmission rate limit (i.e. the
TxHoldCount), thus preventing the timely announcements of
other BPDUs.

A. Evaluation Methodology

To evaluate RSTP and RSTP with Epochs protocols we used
the simulator used by [11]. We extended it to include the
RSTP with Epochs implementation, to have desynchronized
bridge clocks, and also added some instrumentations to allow
us to collect information required in our experiments. The
simulator uses a MaxAge value of 20, HelloTime of 2 seconds
and a TxHoldCount of 3 unless otherwise stated. Not all
bridges start together at time zero. Instead each bridge starts
with a random offset from time zero that is a fraction of the
HelloTime. Bridges are connected to each other by links with
100 microsecond of total delay (propagation and transmission
delay). Only protocol BPDU packets are simulated. No user
data packet traffic is simulated.

B. Comparing Convergence Times of Both Protocols in Event
of Failure

In this subsection we compare the convergence times of
RSTP and RSTP with Epochs in the event of failure in three
families of topologies. What we mean by convergence time
is the time it takes the network until all its bridges have
converged to the correct active topology. For each family of

topologies we vary the number of bridges in the network and
measure the corresponding convergence time. For each data
point we repeat the experiment 100 times and report the range
of values measured.

In the first experiment we simulate a set of complete graphs,
varying the number of bridges in the network. In each run
we kill the root bridge and measure the time it takes for the
network to converge under both protocols. Figure 10 shows
the convergence times measured. It presents bars representing
the range of values measured for each network size. The x-axis
is shifted downward to show that the convergence times for
RSTP with Epochs is negligible compared to those of RSTP. In
fact the highest convergence time observed for the RSTP with
Epochs protocol is only 100 microseconds. This is because
RSTP with Epochs does not suffer from the count to infinity
problem and its convergence is only limited by the inherent
network delay. On the other hand, RSTP takes much longer
to converge. The variance in the convergence times for RSTP
is due to the variability in the race conditions when count to
infinity occurs.

In the second set of experiments we use simpler “loop”
topologies, similar to the topology in Figure 2(a) where we
vary the total number of bridges in the loop. For example, a
network with 10 bridges means the loop has 9 bridges and
the loop is connected to the root bridge that does not lie on
the loop. Like in the previous experiment we kill the root
bridge and measure the convergence time for both protocols.
Figure 11 shows the convergence times measured. Again,
RSTP with Epochs can converge in at most 400 microseconds
in these experiments, but RSTP takes seconds to converge even
under this simple network setting.

In the third set of experiments we use simple “ring” topolo-
gies where the bridges form a simple cycle. We take down
the link connecting the root bridge bridge (R) to a neighbor
bridge (N). In RSTP, since N does not have any alternate ports,
it will declare itself as root and start broadcasting its BPDU,
the BPDU will flow through its descendants, invalidating the
information at their root ports, until it reaches a bridge with
an alternate port to the root. Since the alternate port caches
superior information, the bridge will pick the alternate port
as its root port and will send this new information back to N
so it will eventually know that R is alive and accept it as its
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root. This means that N’s BPDU will travel half way around
the ring to reach the bridge with the alternate port, then the
bridge with the alternate port will send a BPDU that will travel
back to N, until N knows that R is alive.

Conversely in RSTP with Epochs, N will detect disconnec-
tion from the root, so it will send a BPDU with a higher
sequence number than the last BPDU it has received from
the root R. This will signal a new epoch to all bridges in the
ring and they will accept N’s BPDU as it has higher sequence
number. Eventually N’s BPDU will reach R after traveling all
the way around the loop. R, knowing it is the legitimate root,
will in response increase its sequence number and send a new
BPDU to assert itself as the root. R’s BPDU with the higher
sequence number will make its way to N after traveling all
the way back around the network which will make N accept
R as its root.

The effect of these different behaviors can be observed in
Figure 12 where RSTP with Epochs takes roughly twice the
amount of time to converge compared to RSTP. Note that the
convergence times for both protocols are very small in these
experiments. In this experiment there is no variance in the
results as there are no race conditions and thus the results are
deterministic.

C. Comparing BPDU Overhead of Both Protocols

In this section we present experiments that illustrate the
BPDU overheads of both RSTP and RSTP with Epochs proto-
cols using the three families of topologies as used in Section V-
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B. In this set of experiments we present histograms plotting
the total number of packets transmitted in the network within
every tenth of a second. We exclude the packets transmitted to
or from the root bridge as the root bridge dies at time 20 and
we want to factor out the effects of having different number
of bridges in the network before and after the death of the
root bridge. Each histogram presents the packet transmissions
in the network in a single experiment run.

In the first experiment we simulate a complete graph of 10
nodes. We kill the root bridge at time 20. Figure 13(a) and
Figure 13(b) show the histograms of BPDUs transmitted for
the RSTP and the RSTP with Epochs protocols respectively
during a 100 second time span. For both protocols we observe
a spike in the BPDUs transmitted at startup time. This is
because at startup each bridge sends out its BPDU and keeps
sending out any new superior information it receives until the
bridges in the network agree on the same root and converge to
the final spanning tree. After that the network goes into steady
state where bridges only send the periodic hello message every
hello time. At time 20, the root bridge dies. RSTP suffers from
the count to infinity problem and sends out a lot of packets
during a time span that exceeds 25 seconds until the network
converges. RSTP with Epochs reacts differently to the failure
of the root. There is an initial spike in the packets transmitted
as the new information - of the death of the root and a new
bridge asserting itself as the new root - flows throughout the
network. Then the network converges almost instantaneously
and BPDU transmission returns to steady state.

In the second experiment we simulate a topology similar
to that in Figure 2(a) with 10 bridges, 9 of them are in the
loop. We kill the root bridge at time 20. Figure 14(a) and
Figure 14(b) show the histograms of BPDUs transmitted for
the RSTP and the RSTP with Epochs protocols respectively
during a 100 second time span. Again, for both protocols
we observe a spike in the BPDUs transmitted at startup
time. After that the network goes into steady state where
bridges only send the periodic hello message every hello
time. At time 20, the root bridge dies. Similar to the first
experiment RSTP suffers from the count to infinity problem
and sends out a lot of packets until the network converges.
RSTP with Epochs converges almost instantaneously requiring
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Fig. 13. Histogram of BPDU packet transmissions in a 10 bridge fully connected graph topology, each bin is 0.1 second. Theroot bridge dies at time 20.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100

P
ac

ke
ts

(s
)

Time (s)

Packet Transmission Timeline

RSTP Histogram

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100

P
ac

ke
ts

(s
)

Time (s)

Packet Transmission Timeline

RSTP with epochs Histogram

(a) RSTP protocol. (b) RSTP with Epochs.

Fig. 14. Histogram of BPDU packet transmissions in a 10 bridge ”loop” topology, each bin is 0.1 second. The root bridge dies at time 20.

much fewer BPDUs to converge.
In the third experiment we simulate a 10 bridge ring topol-

ogy. Similarly, we kill the link connecting the root bridge to a
neighbor at time 20. Figure 15(a) and Figure 15(b) show the
histograms of BPDUs transmitted for the RSTP and the RSTP
with Epochs protocols respectively during a 100 second time
span. In this experiment we observe that RSTP with Epochs
uses more BPDUs than RSTP to recover from the failure. This
because as explained in Section V-B, in RSTP with Epochs
the disconnected bridge sends BPDU that traverses more hops
than that in the case of the RSTP protocol.

In the three sets of experiments we note a short period of
time after convergence where there is higher rate of packets
being transmitted. This is because of the topology change
events that result in an extra BPDU getting transmitted through
each bridge’s root port every HelloTime and this lasts during
the duration of the topology change timer.

D. Effect of Counting to Infinity on Port Saturation

In this subsection we study port saturation of both protocols
in the event of failure using the three families of topologies
as used in the previous experiments. A port is said to be
saturated if it has reached its TxHoldCount limit but still has
more BPDUs to transmit. We present a time sequence of the
number of saturated ports in the whole network in the three
experiment scenarios presented in Section V-C.

In the first experiment simulating a complete graph of

10 nodes we observe in Figure 16 a spike in the number
of saturated ports at startup due to the spike in transmitted
BPDUs at startup by both protocols. However starting from
time 20 when the root port dies, we find a long period of time
that is close to 20 seconds in the RSTP protocol where the
network has many saturated ports. This is due to the count to
infinity problem where BPDUs spin around the loop causing
the ports to quickly reach their TxHoldCount limit. RSTP with
Epochs does not suffer from the count to infinity problem, thus
the ports do not get saturated after the failure.

Similarly, in the second experiment - simulating a topology
like that in Figure 2(a) with 10 bridges - we observe in Figure
17 a spike in the number of saturated ports at startup. We also
observe in the RSTP protocol a period after the failure of the
root bridge where there are several saturated ports. Again this
is because of the count to infinity problem.

In the third experiment simulating a ring topology, failure
of the root cuts the loop so there is no count to infinity. Thus
for both protocols no ports get saturated after the failure as
can be seen in Figure 18.

VI. RELATED WORK

The count-to-infinity behavior of RSTP was mentioned
in [11]. However no thorough analysis was provided on the
problem and its causes and no solution was provided. To the
best of our knowledge no careful examination of this problem
exists in the literature. Perlman proposed Rbridges [14], which
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at time 20.
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Fig. 16. Time sequence of number of ports that have reached their TxHoldCount limit while they still have more BPDUs waiting for transmission. This
experiment is for a 10 bridge fully connected graph topologywhere the root bridge dies at time 20.
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Fig. 17. Time sequence of number of ports that have reached their TxHoldCount limit while they still have more BPDUs waiting for transmission. This
experiment is for a 10 bridge ”loop” topology. The root bridge dies at time 20.

employ link state routing among Rbridges rather than relying
on spanning trees. The way Rbridges deals with routing loops
is by including a time to live field in all packets. It achieves
that by encapsulating all packets adding its own header. Garcia
et al. proposed replacing the spanning tree with link state
routing as well [6], however they do not provide a mechanism
to deal with temporary routing loops. SmartBridge [15] uses
complex internodal coordination mechanism, namely diffusing
computations [4], to achieve effective global consistencyand
consequently loop-freeness. SmartBridges require freezing the
network and discarding all the data during convergence time

after a topology change.
Pellegriniet al.propose a different technique to break cycles

other than the spanning tree protocol. Their technique is based
on turn-prohibition [12]. Sharma et al. [16] introduce a multi-
spanning tree architecture that improves the throughput and
reliability over when using a single spanning tree.

STP and RSTP implement a variant of Distance Vector (DV)
routing. RSTP with Epochs extends RSTP to eliminate the
count-to-infinity problem. Other variants of DV routing have
been proposed in the literature that are loop-free. For exam-
ple [7], [10], [8] employ diffusing computations as well when
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Fig. 18. Time sequence of number of ports that have reached their TxHoldCount limit while they still have more BPDUs waiting for transmission. This
experiment is for a 10 bridge ring topology where a link connecting the root bridge to a neighbor dies at time 20.

they make modifications to their routing tables to guarantee
that their modifications are correct. This requires complex
internodal coordination mechanisms. Perkinset al. proposed
Destination-Sequenced Distance-Vector (DSDV) [13], where
every node in the network periodically advertises a monotoni-
cally increasing sequence number. The latest sequence number
received from a destination is included in its route information
in the routing table. A route with a higher sequence number
is always preferred over another route to the same destination
with a lower sequence number. This is similar to RSTP with
Epochs except that in RSTP with Epochs there is only one
sequence number that is modified by the root bridge. If the
root bridge retires the sequence number is inherited by the new
root bridge. Also RSTP with Epochs only considers sequence
numbers across the boundary of two epochs. Within the same
epoch sequence numbers are not considered.

The use of epochs is not new, it has been used before in
the literature, for example in [1], [5]. Birman et al. [1] include
epoch number in messages to control the order of delivery of
messages. Elnozahyet al. [5] call an epoch as an incarnation
number though, where it is used to identify stale messages.

VII. C ONCLUSIONS

In studying RSTP under network failures, we find that it
can exhibit a count-to-infinity problem which may lead to a
temporary forwarding loop. Although RSTP intends to use
the MaxAge parameter to limit the lifetime of stale protocol
information in the network, the outcome turns out to be
very unpredictable. This is caused by a variety of reasons:
variability in the outcomes of the different race conditions in
the network, the effect of network complexity on the number
of alternate paths and on the volume of BPDU transmissions,
and the effect of the TxHoldCount parameter in slowing down
the propagation ofboth fresh and stale BPDUs. Increasing the
TxHoldCount also does not lead to proportional improvement
in convergence time. Ultimately, parameter tuning does not
eliminate the fundamental problem with count-to-infinity in
RSTP. By adding a simple sequence number to BPDU mes-
sages and slightly modifying the procedure of BPDU process-
ing, we show that RSTP with Epochs is able to eliminate

the count-to-infinity problem and achieve convergence time
on the order of one round-trip-time across the network. This
solution can therefore significantly enhance the dependability
of Ethernet networks.
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