
Towards a Framework for Network Control Composition

T. S. Eugene Ng Hong Yan
Department of Computer Science Department of Computer Science

Rice University Carnegie Mellon University

ABSTRACT
IP networks nowadays perform many functions in addition to best-
effort datagram forwarding. These functions are typically achieved
via anad hoccombination of distributed protocols, database- and
tool-driven router configurations, and manual configurations. In
such anad hocsystem, it is difficult to anticipate any potential
harmful interactions among the control functions or to provide any
behavioral assurances.

What kind of a framework will enable the composition of net-
work control functions for sophisticated yet robust network con-
trol? Is it possible to have a framework in which each network
control function is implemented as an independentapplicationthat
runs on top of anoperating platform, where the operating platform
serves as an interface between the applications and the underlying
network routers, provides services to facilitate the composition of
applications, and ensures that network-wide operational invariants
are not violated by the actions of the applications?

Using an application example to illustrate, we discuss some chal-
lenges that underlie the design of such a potential operating plat-
form. We hope this article will stimulate discussions on more prin-
cipled approaches for network control composition.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet Switching Net-
works; C.2.2 [Network Protocols]: Routing Protocols; C.2.3 [Network
Operations]: Network Management

Keywords
Network management, robustness, control

1. INTRODUCTION
When the Internet was still in its infancy as the ARPANET, net-

work control was simple. The chief requirement was to provide
best-effort datagram forwarding, thus only one routing protocol
was needed. Over the years, however, network control has be-
come considerably more complicated as additional requirements
have emerged. For instance, the growth of the Internet has led to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 WorkshopsSeptember 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

use of separate intra-domain (e.g. OSPF, IS-IS) and inter-domain
(i.e. BGP) routing protocols for route computation. Another ex-
ample is that packet filtering and tunneling controls have been in-
troduced to support access control policies and virtual private net-
working capabilities. Other sophisticated controls such as traf-
fic engineering and network maintenance are also commonplace.
Today, these sophisticated controls are achieved by using anad
hoccombination of distributed protocols (e.g. OSPF, IS-IS, BGP),
database-driven configurations (e.g. filtering, tunneling), tool-driven
configurations (e.g. traffic engineering), as well as manual config-
urations (e.g. maintenance).

Unfortunately, by composing these sophisticated network con-
trols in such anad hocmanner, it is also difficult to control the
interactions among them or to provide concrete behavioral assur-
ances. Ultimately, the entire system might exhibit harmful emer-
gent behaviors that are difficult to anticipate, test for, debug, or
correct. One example is the complex behavior resulting from the
composition of intra-domain routing and inter-domain routing as
discussed in [1]. The observation is that a local link failure within
an autonomous system can destabilize inter-domain routing. When
a link failure occurs, the routing costs of inter-domain traffic egress
points can change and cause inter-domain traffic to be re-routed
unnecessarily. These routing changes can trigger BGP update mes-
sages, turning a local link failure into an event that can have far
reaching impact. What is far more desirable is to design and com-
pose network controls in a way that takes away such hard-to-control
interactions.

A fundamental open question then is, what kind of a framework
will enable the composition of network control functions for so-
phisticated yet robust network control? In this article, we specifi-
cally ask, is it possible to have a framework in which each network
control function is implemented as an independentapplicationthat
runs on top of anoperating platform, where the operating platform
serves as an interface between the applications and the underlying
network routers, provides abstractions and services to facilitate the
composition of applications, and ensures that network-wide oper-
ational invariants are protected against the actions of the applica-
tions?

Using a specific network control application scenario as a con-
crete example, we sketch how such a scenario can potentially be
realized by composing simple network control building blocks. We
also identify a set of challenges involved in realizing an operating
platform that can facilitate such network control composition. In-
deed there are many interesting challenges. For example, what are
the fundamental abstractions and interfaces of such an operating
platform? How can the actions of the network control applications
be composed systematically? How can the network control appli-
cations coordinate their actions? How can network-wide operating

B3

B2B1

C3

C2C1

A2A1

A4

A3

B4

A: Access Router
B: Border Router
C: Core Router

QoS Provided

ISP Y ISP Z

ISP X

Figure 1: An example ISP network.

invariants be specified? How can such invariants be enforced? How
should conflicts with the invariants be handled?

Although we do not propose any specific designs in this article,
we believe that exposing the challenges will stimulate discussions
on the feasibility and potentials of such an operating platform-
based approach, as well as encourage the exploration of other prin-
cipled approaches for network control composition.

2. OPERATING PLATFORM FOR NETWORK
CONTROL COMPOSITION

To make the ideas for an operating platform for network con-
trol composition more concrete, we use a specific network control
application example to motivate the discussions.

2.1 An ISP Network Scenario
Consider the network of a hypothetical ISP X depicted in Fig-

ure 1. The network consists of 2 border routers (B1 and B2, con-
nected to the neighboring ISPs Y and Z respectively), 3 core routers
(C1, C2, C3), and 4 access routers (A1, A2, A3, A4). The network
control requirements of ISP X are:

1. By the service agreements with the neighboring ISPs, any
external address can normally be reached via either ISP Y
or ISP Z. However, ISP X defines an inter-domain routing
policy such that ISP Y is the preferred egress unless the des-
tination is not reachable via ISP Y.

2. For ingress inter-domain traffic, traffic can be received from
ISP Y or ISP Z without care.

3. For traffic destined for addresses within ISP X, routing is
based on the shortest path routing policy by default.

4. ISP X provides a QoS routing service among the customers
connected to access routers A1, A2, and A3.

5. ISP X occasionally needs to take down a router for mainte-
nance.

Although these requirements are somewhat artificial, they serve
to illustrate several points. Let us consider how each requirement
can be realized today. To implement requirement 1, a well known

method [1] is to artificially inflate the OSPF link weight of link
B2-B4 to make ISP Y the more attractive egress for routing cal-
culations. Thisad hocmethod however creates a delicate depen-
dency between the inter-domain routing policy and the internals of
the intra-domain routing protocol. For example, if the B2-B4 link
weight is not set high enough, ISP Z can still become the more at-
tractive egress when the network topology or the other link weights
change.

Requirement 2 and 3 are straight-forward and can be achieved by
sending BGP route announcements to both ISP Y and ISP Z, and
by using OSPF for intra-domain routing calculations, respectively.
Requirement 4 can be achieved by tool-driven MPLS path config-
urations in the routers. Of course, when the topology or traffic load
changes, the MPLS paths may need to be recalculated.

Requirement 5 is challenging. For example, in order to take
down router C1, care must be taken such that ISP Y will remain
the preferred egress even when C1 is down. This would require
careful inspection and/or setting of the OSPF link weights. Also,
the QoS routed traffic must be re-routed before C1 is taken down.
Finally, the performance impact of taking down C1 due to traffic
re-routing is difficult to know in advance since several independent
routing mechanisms are at work.

In summary, achieving the requirements by combining all the
aforementioned mechanisms results in a fairly complex system whose
behavior is quite hard to predict and control.

2.2 Starting from a Clean Slate
What if we start from a clean slate? What kind of a framework

would be suitable to support the composition of network controls
in a principled manner? We believe such a framework should be
based on at least two core principles: clear abstraction and explicit
protection.

• Clear Abstraction - The ad hoc composition of network
controls in practice today is partially due to the lack of good
abstractions and interfaces. For instance, if there are clear
abstraction and interface for the interactions between inter-
domain and intra-domain routing, then one would not have
to overload the link weight parameters in OSPF as an indi-
rect and fragile means for choosing preferred egress points.
There is no fundamental reason why the preferred egress
points cannot be explicitly communicated to the intra-domain
routing control. Making abstractions and interfaces explicit
helps to prevent unintended side effects and remove implicit
dependencies between network controls. The resulting sys-
tem is more predictable and easier to manage.

Having clear abstractions and interfaces also creates a bet-
ter environment for innovation and evolution. Different con-
trols that implement the same interface can be substituted for
each other without affecting the operations of other controls
in the network and they can be platform independent. This
can stimulate a wider variety of control software to be de-
veloped. With well-defined interfaces, there is also less of
a danger for gettinglocked inby a particular combination
of network controls. In contrast, without clear interfaces,
custom middleware may be needed to glue pieces together,
creating a system that is much harder to evolve.

• Explicit Protection - Since there may always be faults in
control software and composing the actions of multiple net-
work controls may produce an unexpected outcome, a good
framework for network control composition should provide
explicit protection for the network and enforce certain network-
wide invariants. An example of such protection is that the

Operating Platform

Network View Virtualization

QoS Routing
Inter-Domain

Routing Policy

Shortest Path Routing
Network

Maintenance

QoS Network
Controls

Default Network
Controls

Dissemination Interface

Configuration
Database

Figure 2: A potential operating platform organization.

combined actions of the network controls should not be al-
lowed to route more traffic on a link than its capacity. An-
other example is that the network controls should not pro-
duce more routing table entries for a network router than it
can handle. Providing such explicit protections for invariants
that the network operator specifies would go a long way to
improve the robustness of the network.

These core principles about abstractions and protections are cer-
tainly not new. In fact, they are inspired by the abstractions and
protections found in today’s computer operating systems. We be-
lieve the environment for network controls should move away from
thead hocpractice of today to become much more structured like
a modern operating system.

2.3 The Operating Platform Approach
In this section, we discuss the particular ideas for an operating

platform for network control composition. The salient features of
such an operating platform is that each network control function
is implemented as an independentapplication. These applications
can exchange information among each other, but they interact with
the underlying network routers only via the abstractions and inter-
faces provided by the operating platform. The operating platform
provides information on the underlying network to the applications,
coordinates and composes the actions of the applications, enforces
network-wide invariants, and communicates with the underlying
network routers to retrieve and install control state.

This approach is inspired by the 4D architecture [2], and the op-
erating platform takes the role of the decision element in 4D. The
communication interface with the underlying network routers can
leverage the dissemination plane in 4D. The dissemination plane in
the 4D architecture provides a robust mechanism for remote com-
munications with network routers that is independent of the under-
lying network protocol. Using the dissemination plane, the operat-
ing platform can retrieve network state and send commands to the
network routers to directly set their control state (e.g. forwarding
tables).

Let us consider the example presented in Section 2.1 again in
the context of the operating platform approach for network con-
trol composition. Figure 2 illustrates how the requirements might
be achieved in this environment. In this figure, each box above
the operating platform is an independent network control applica-
tion. When the operating platform starts, it consults a configuration
database to retrieve the network control requirements and then in-
stantiates the required network control applications.

Via the dissemination interface, it collects the latest information
about the underlying network view such as the intra- and inter-

domain connectivity topology and the latest traffic demand matrix.
Once the network view data is collected, it feeds this information
to the applications through a Network View Virtualization layer.

The job of the Network View Virtualization layer is to appropri-
ately augment the network view for each application. For instance,
the network view for the QoS Routing application would exclude
routers B3, B4, and A4 as they are irrelevant. The applications that
deal with default network control, however, would be provided the
complete network view.

The Inter-Domain Routing Policy application augments the com-
plete network view to explicitly use preferred egress points for
inter-domain traffic based on the required policy (requirement 1).
Assuming BGP is the inter-domain routing protocol, the applica-
tion also outputs commands to routers B1 and B2 to announce the
appropriate inter-domain routes to the neighboring ISPs (require-
ment 2).

The augmented network view is then passed to the Shortest Path
Routing application. This application would not even know that
B2 can be an inter-domain traffic egress since such information has
already been removed by the Inter-Domain Routing Policy appli-
cation. Thus, it simply computes shortest paths based on the pro-
vided network view and generates the corresponding forwarding
tables for each router. These forwarding tables are passed to the
operating platform (requirement 3).

The QoS Routing application computes the special routes among
A1, A2, and A3, generates the corresponding router configurations,
and passes them to the operating platform (requirement 4).

The operating platform combines the outputs from the two stacks
of routing controls, realizing that the QoS routing decisions take
priority over the default routing decisions, to produce the combined
control state for the network routers.

Before the operating platform injects the control state into the
network routers via the dissemination interface, it verifies that the
control state does not violate any network-wide invariants. For ex-
ample, based on the traffic demand matrix and the proposed for-
warding tables, it can determine whether any link will be over-
loaded. If such invariants are violated, a failure notification will
be delivered. Potentially the network operator may decide how to
handle the problem.

The Network Maintenance application can instruct the operating
platform to augment the network view for other control applica-
tions. For example, if router C1 needs to be taken down for main-
tenance, the Network Maintenance application instructs the operat-
ing platform to mark the router C1 to be in maintenance state. This
change in network view is passed to the other network control ap-
plications so that they can re-compute their network control state.
Once the updated network control state has been injected into the
network, the Network Maintenance application is notified that its
request has been successful and the router C1 can now be taken
down (requirement 5).

The five network control requirements in the example are thus
satisfied in a systematic manner with all the interactions explicitly
coordinated. The control state is not injected into the network un-
less it satisfies the network-wide invariants. Note that applications
that perform the same function can easily substitute for each other.
For instance, different QoS routing algorithms can be plugged in
easily. Likewise, the inter-domain routing policy can be changed
easily without having to change the other applications. Mainte-
nance is handled in a step-by-step orderly fashion automatically.
If the re-routing actions due to maintenance will overload certain
network links, the operator will be notified to handle the problem.

2.4 Challenges
Although the approach seems promising, it is not surprising that,

in reality, there are many challenges in building such an operating
platform. The first set of challenges are related to facilitating the
design and implementation of network control applications:

• Abstraction and Interface Design- Good abstractions and
interfaces are critical to enabling application composition.
We need powerful abstraction and interface for the network
view, which must encapsulate properties like network con-
nectivity (both intra-domain and inter-domain), link charac-
teristics (e.g. delay, bandwidth, loss rate), router capabili-
ties (e.g. switching capacity, processing delay, buffer space,
queuing capability, packet classification capability, packet
filtering capability, etc), traffic demand matrix, etc. We need
abstraction and interface for interacting with the inter-domain
routing protocol that communicates with neighboring net-
works. We also need abstraction and interface for the net-
work control state, which encapsulates the desired actions
of a network control application and allows different sets of
network control state to be composed.

• Composition Language Design- As network control appli-
cations are treated as components running on the operating
platform, we need a language to define how the components
are connected via their data and control interfaces and how
their network control state outputs should be composed. The
composition language needs to be flexible enough to allow
reasonably sophisticated network control compositions. The
language should be capable of specifying composition order-
ing, prioritization of actions, and conflict resolution rules.

• Inter-Application Coordination - The operating platform
needs to provide interfaces and services to allow applica-
tions to coordinate and synchronize their actions. An event
broadcast and notification mechanism might be an appropri-
ate component for this purpose. For example, in the net-
work maintenance scenario, the Network Maintenance ap-
plication triggers a router maintenance event, which needs to
be processed by all the other network routing controls. Sub-
sequently, if the network routing controls cause an invariant
violation, then the Network Maintenance application needs
to be notified that its action has caused an exception.

The second set of challenges concerns the operating platform
itself:

• Handling Application Diversity - Different applications might
have very different time complexity thus require different
scales of running times. For example, finding the shortest
paths in a network with hundreds of routers takes less than
one second, while optimizing paths to balance load can take
hours. Applications might also differ in priorities: when a
link fails it is critical to change routes to bypass the failed
link; when traffic patten changes, it is not as urgent to update
routes as long as the traffic pattern change does not cause
network congestion. The operating platform needs to pro-
vide interfaces for applications to express their desired run-
time support and schedule the executions of the applications
accordingly.

• Providing Protection - Providing the kind of network-wide
protection that we envision is a complex problem. First, we
need an abstraction and a language to describe the protec-
tions desired by the network operator. We can imagine many

such protections such as simple link overload protection, or
more sophisticated ones such as pricing-based inter-domain
traffic routing protection. Enforcing these protections at run-
time needs to be efficient, and when a violation occurs, the
system needs to have a systematic way of either automati-
cally resolving it, or notifying the human operator.

• Performance, Robustness, and Security- Last but not least,
achieving high performance, robustness and security is a huge
challenge. The first question we must face is, to what extent
should the operating platform be replicated or distributed.
Replication and distribution help to improve system robust-
ness, but whether there is a trade-off with performance is not
yet clear. A naive implementation of a distributed operating
platform may have such a high communication overhead that
diminishes the robustness benefits.

The system must be designed to resist denial-of-service at-
tacks. A promising approach is to achieve this in the underly-
ing dissemination plane that connects the operating platform
to the routers. Since the underlying dissemination plane can
be protocol independent, the operating platform need not be
IP capable. That is, even though the system is physically con-
nected to the underlying IP network where malicious attack-
ers reside, it is logically disconnected from the underlying IP
network and no IP data traffic can reach it. The only way
to reach it is via the dissemination plane, which can have a
much more restricted and secure access model than IP. This
should go a long way to enhance system security.

3. RELATED WORK
Programmable networksdeveloped by the Opensig and Active

Network communities (see [3] for a good survey) have exploited
concepts like network virtualization and service composition. How-
ever, the focus of programmable network research is on enabling
the dynamic deployment and composition of high level services
(e.g. QoS-aware video conferencing services) and making the net-
work extensible via dynamic deployment of new protocols (e.g.
mobile IP). In contrast, this article is focused on refactoring the ex-
isting nuts and bolts functionalities in IP networks (e.g. packet for-
warding and router maintenance) into simple applications to make
low level network control more principled and less error-prone.
Supporting the composition of these low level network control ap-
plications will require synchronization, conflict resolution, and pro-
tection mechanisms to be developed.

Teixeira and Rexford [1] studied the problems of routing dis-
ruptions in ISP networks and described the challenges faced by
network operators. They suggest the research community to “in-
vestigate alternative approaches instead of proposing incremental
enhancements to the protocol that fix one aspect of the problem at
a time.” We believe that the root cause of the difficulties is the lack
of a unified framework, and we take one step further to describe a
potential operating platform that can systematically solve network
control problems by composing control applications.

Feldmann et. al. [4] built a network traffic engineering tool
called NetScope, which collects network configuration files, gen-
erates network models, and runs simulation on the models to find
configuration errors and answer “what if” questions (e.g. to esti-
mate the impact of configuration changes). NetScope is a powerful
offline traffic engineering tool, but it is not designed to serve as a
control platform that runs all types of applications to directly con-
trol the network.

Our work is inspired by a clean slate 4D architecture [2] which
re-factors today’s routers into four planes: data, dissemination, dis-

covery, and decision. Network information is collected by the dis-
covery plane and disseminated to the decision plane where net-
work configuration is computed and pushed to the data planes of
the routers. The focus of this work, however, is to zoom into one
critical aspect of any 4D-like network architecture, namely com-
posing network control applications. We believe that in order to
build a versatile network control system, the composition problem
must be addressed.

The idea of composing network modules has been explored in
many previous works. For example, thex-Kernel protocol frame-
work [5] defines interfaces for network protocols to operate on one
another. Network protocols that implement thex-Kernel interfaces
can be composed in the framework to serve an end host or a router.
As another example, Lakshminarayanan et. al. [6] have studied
the problem of composing network services such as filtering, intru-
sion detection, anonymization, transcoding, and caching. The idea
is to deploy intermediate processing points (middleboxes) so that
packets traversing the boxes receive a sequence of services. Al-
though protocol composition and service composition are different
problems from network control composition, some underlying is-
sues such as composition language design are similar. The insights
gained in these previous works should shed light on the network
control composition problem.

4. SUMMARY
The current practice ofad hocnetwork control composition cre-

ates much unwanted complexity that the practice is unsustainable.
A systematic framework is needed to achieve robust network con-
trol and to create an environment that favors innovation and evolu-
tion. Such a framework must define clear abstractions and provide
explicit network-wide protections.

We explore the idea of creating an operating platform for net-
work control composition. The operating platform serves as an
interface between the network control applications and the under-
lying network routers, facilitates the composition of applications,
and enforces network-wide invariants to protect the network. Ex-
ploring these ideas highlights the promising potentials of such an
operating platform, and leads to a better understanding of the chal-
lenges involved in realizing it. We believe these challenges are not
unique to the operating platform approach. Other approaches will
likely share many of the same issues.

We hope that by formulating the problem, discussing a partic-
ular approach, its potentials, and highlighting the challenges, we
can stimulate discussions and research on future architectures and
mechanisms for network control composition.

5. REFERENCES
[1] Renata Teixeira and Jennifer Rexford. Managing routing

disruptions in internet service provider networks.IEEE
Communication Magazine, Mar 2006.

[2] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy
Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin
Zhan, and Hui Zhang. A clean slate 4D approach to network
control and management.ACM Computer Communication
Review, October 2005.

[3] Andrew T. Campbell, Herman G. De Meer, Michael E.
Kounavis, Kazuho Miki, John B. Vicente, , and Daniel Villela.
A survey of programmable networks.ACM SIGCOMM
Computer Communications Review, 29(2):7–23, April 1999.

[4] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick
Reingold, and Jennifer Rexford. NetScope: Traffic

engineering for IP networks.IEEE Network Magazine, pages
11–19, March 2000.

[5] Norman C. Hutchinson and Larry L. Peterson. Thex-Kernel:
An architecture for implementing network protocols.
17(1):64–76, January 1991.

[6] Karthik Lakshminarayanan, Ion Stoica, and Klaus Wehrle.
Support for service composition in i3. InMULTIMEDIA ’04:
Proceedings of the 12th annual ACM international conference
on Multimedia, pages 108–111, New York, NY, USA, 2004.
ACM Press.

