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Abstract

Ethernet is pervasive. This is due in part to its ease of ugaipE
ment can be added to an Ethernet network with little or no rahnu
configuration. Furthermore, Ethernet is self-healing mekent of
equipment failure or removal. However, there are scenavlere

a local event can lead to network-wide packet loss and coinges
due to slow or faulty reconfiguration of the spanning tree.ré4o
over, in some cases the packet loss and congestion maytpersis
definitely.

Ethernet is the dominant networking technology in a widegyean
of environments, including home and office networks, datdere
networks, and campus networks. Moreover, Ethernet is &sere
ingly used in mission-critical applications. Consequgrithie net-

works supporting these applications are designed withneaiot

connectivity to handle failures.

Although modern Ethernet is based on a point-to-point $weiic
network technology, Ethernet still relies on packet flogdia de-
liver a packet to a new destination address whose topololgica

To address these problems, we introduce the EtherFuse, a newfation in the network is unknown. Moreover, Ethernet rebes

device that can be inserted into an existing Ethernet todspee
reconfiguration of the spanning tree and prevent congedtierto

packet duplication. EtherFuse is backward compatible aqdires
no change to the existing hardware, software, or protodtiesde-

scribe a prototype EtherFuse implementation and expetatign
demonstrate its effectiveness. Specifically, we charaetdrow

quickly it responds to network failures, its ability to redupacket
loss and duplication, and its benefits on the end-to-endpeence
of common applications.
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works; C.2.3 Network Operations]: Network Monitoring; C.2.5
[Local and Wide-Area Networks]: Ethernet
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1. INTRODUCTION

This paper introduces the EtherFuse, a new device that can be

inserted into an existing Ethernet in order to increase éteaork’s
robustness. The EtherFuse is backward compatible and-esquo
change to the existing hardware, software, or protocols.
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switches observing the flooding of a packet to learn the tagiel
cal location of an address. Specifically, a switch observegbrt
at which a packet from a particular source addigssrives. This
port then becomes the outgoing port for packets destinefl ford
so flooding is not required to deliver future packetsto

To support the flooding of packets for new destinations and ad
dress learning, an Ethernet network dynamically buildscéeciree
active forwarding topology using a spanning tree protocbhis
active forwarding topology is a logical overlay on the uryieg
physical topology. This logical overlay is implemented lonfig-
uring the switch ports to either forward or block the flow otala
packets.

Redundant connectivity in the physical topology provides- p
tection in the event of a link or switch failure. However, & i
essential that the active forwarding topology be cycle.frEast
of all, broadcast packets will persist indefinitely in a netkcy-
cle because Ethernet packets do not include a time-to-lald. fi
Moreover, unicast packets may be mis-forwarded if a cycistex
Specifically, address learning may not function correcdgduse a
switch may receive packets from a source on multiple switutsp
making it impossible to build the forwarding table corrgctl

The dependability of Ethernet therefore heavily reliesanebil-
ity of the spanning tree protocol to quickly recompute a eyftee
active forwarding topology upon a network failure. While tac-
tive forwarding topology is being recomputed, localizedhs loss
is to be expected. Unfortunately, under each of the stansjzad-
ning tree protocold [16,-15], there are scenarios in whiadtallzed
network failure can lead to network-wide packet loss andyesn
tion due to slow or faulty reconfiguration of the spanningetoe
the formation of a forwarding loop.

Detecting and debugging the causes of these problems is labo
intensive. For example, Cisco’s prescribed way for trosibet-
ing forwarding loops is to maintain a current diagram of tle¢-n
work topology showing the ports that block data packets.nTtee
administrator must check the state of each of these portanyf
of these ports is forwarding, then a failure at that port &sltkely
cause for the forwarding loopl[8]. However, when there isvoek-
wide packet loss and congestion, remote management togls ma



also be affected, making it difficult to obtain an up-to-deitaw of
the network state. Consequently, the network administnatay
have to walk to every switch to check its state, which can ime ti
consuming.

The network disruption at the Beth Israel Deaconess Medical
Center in Boston illustrates the difficulty of troubleshiagt Eth-
ernet failures[I2[13]. In this incident, the network sufiérieom
disruptions for more than three days due to problems witls plas-
ning tree protocol.

A variety of approaches have been proposed to address the rel
ability problems with Ethernet. Some researchers haveearthat
Ethernet should be redesigned from the ground[up [[IB[ 18, 20]
In contrast, others have proposed keeping the basic sppineia
model but changing the protocol responsible for its maateer
to improve performance and reliability [11]. Proprietapigions
to a few specific spanning tree problems have been implemhente
in some existing switches, including Cisco’s Loop Guard46H
Unidirectional Link Detection (UDLD) protoco[]9]. Howevgeto-
gether these proprietary solutions still do not addressfefither-
net’s reliability problems.

Instead of changing the spanning tree protocol, we intredbe
EtherFuse, a new device that can be inserted into redunidiast |
in an existing Ethernet to speed the reconfiguration of ttesp
ning tree and prevent congestion due to packet duplicatidme
EtherFuse is compatible with any of Ethernet's standardspg
tree protocols and requires no change to the existing haejwaft-
ware, or protocols. In effect, the EtherFuse allows for #tundant
connectivity that is required by mission critical applicat while
mitigating the potential problems that might arise.

We describe a prototype EtherFuse implementation and iexper
mentally demonstrate its effectiveness. Specifically, haracter-
ize how quickly it responds to network failures, its abilibyreduce
packet loss and duplication, and its benefits on the endhdoper-
formance of common applications.

The rest of this paper is organized as follows. The next @ecti
describes the problems that are addressed by the EtherBase.
tion[3 describes the EtherFuse’s design and operation.icB&t
describes a prototype implementation of the EtherFuseticbdd
describes our experimental setup. Sedfibn 6 presents hratua
of the EtherFuse’s effectiveness. Secfibn 7 discusse®deleork.
Finally, SectiorB states our conclusions.

2. ETHERNET FAILURES

The three IEEE standard Ethernet spanning tree protocels ar
the Spanning Tree Protocol (STP), the Rapid Spanning Tree Pr
tocol (RSTP), and the Multiple Spanning Tree Protocol (MBETP
RSTP was introduced in the IEEE 802.1w standard and revised i
the IEEE 802.1D (2004) standard. It is the successor to STP. |
was created to overcome STP’s long convergence time théd cou
reach up to 50 secondsl [7]. In STP, each bridge maintains-a sin
gle spanning tree path. There are no backup paths. In cgritras
RSTP, bridges compute alternate spanning tree paths Lesiog+
dant links that are not included in the active forwardingoiogy.
These alternate paths are used for fast failover when tineapyi
spanning tree path fails. Moreover, to eliminate the lontaye
used in STP for ensuring the convergence of bridges’ spgrtree
topology state, RSTP bridges use a hop-by-hop hand-shatleame
nism calledsyncto explicitly synchronize the state among bridges.
A tutorial by Cisco [10] provides a more detailed descriptiaf

the assignment of one or more VLANSs to each of these spanning
trees. Many of its basic mechanisms are derived from RSTP.

The remainder of this section describes the problems that ca
occur under each of these spanning tree protocols that dressdd
by the EtherFuse.

2.1 Count to Infinity

The RSTP and MSTP protocols are known to exhibit count-to-
infinity behavior under some failure conditioris [18] 11]. eSifi-
cally, count to infinity can occur when the network is paotid
and the root bridge of a spanning tree is separated from one or
more physical cycles. During count to infinity, the spannireg
topology is continuously being reconfigured and ports inrtee
work can oscillate between forwarding and blocking datekpesc
Consequently, many data packets may get dropped.

To construct a spanning tree, every bridge in the networkahas
port that connects it to its parent in the tree. This port Ikedahe
root port and it is used for connectivity to the root bridge RSTP
and MSTP, some bridges have ports with a different roleedall
alternate ports. An alternate port exists if there is a laophie
physical topology, and it is blocked to cut this loop. An altgte
port also caches topology information about an alternatetoghe
root bridge which gets used if the bridge loses connectidtthe
root bridge through its root port.

When the root bridge is separated from a physical cycle, the
topology information cached at an alternate port in the eyal-
mediately becomes stale. Unfortunately, RSTP and MSTPhise t
stale topology information and spread it through protocessages
called Bridge Protocol Data Units (BPDUS), triggering a rmoto
infinity. The count to infinity ends when the message age oBfte
DUs carrying stale information reaches a limit. A smallduesof
this limit would decrease the duration of a count to infinitow-
ever, because a BPDU’s message age increases as it passes fro
one bridge to the next, this limit also imposes an upper baamd
the height of the spanning tree. Thus, having a small valuthfe
limit restricts the size of the overall network. Anothertfaccthat
increases the duration of the count to infinity is that RST&csp
ifies that a bridge can only transmit a limited number of BPDUs
per port per second. This number is given by TixdHol dCount
parameter. RSTP uses this parameter to limit processim kla
together, these factors can make a count to infinity lastefos bf
seconds[[111].

2.2 Forwarding Loops

Having forwarding loops in Ethernet can be disastrous. A for
warding loop can cause packets to keep circulating insidenét-
work. Also, if broadcast packets get trapped in a loop, thdly w
generate broadcast storms. Moreover, multiple forwardhogs
can cause the trapped packets to multiply exponentially.

At a high level, a forwarding loop is formed when a bridge’s
port erroneously switches from a blocked state to a forwaydtate
where it starts forwarding data packets. Forwarding loaps fe
short lived allowing the network to quickly resume normakpp
ation after the loop is broken, or they can be long lived omeve
permanent rendering the network unusable. In the folloying
explain various cases where forwarding loops can form uedeh
of the spanning tree protocols. Finally, we explain how famling
loops can break Ethernet’s address learning mechanism.

RSTP. MSTP is defined by the IEEE 802.1Q-2003 standard. Itwas 2-2.1 BPDU Loss Induced Forwarding Loops

created to support load balancing within networks havindtipia
VLANSs. Specifically, in contrast to RSTP and STP, MSTP allows
for the creation of multiple spanning trees within the netwand

In all of the spanning tree protocols a port is blocked if inat
the root port and it receives BPDUs from a peer bridge thagadv
tise a lower-cost path to the root bridge than the BPDUs itlsen



Blocked port

(a) Before link failure.

(b) After failure.

(c) Multiple lqus.

Figure 1: Examples of permanent forwarding loops forming under STP wten the spanning tree height exceeds théaxAge limit due to a link failure. In the figure,
only blocked ports are not forwarding data packets. The netwrk has the MaxAge value set to 6.

However, if the port fails to receive BPDUs from its peer bed
for an extended period of time, it may start forwarding defar
example, in RSTP, this period is three times the intervalvbeh
regular BPDU transmissions. BPDU loss can be due to an @arlo
of some resource, like the control CPU or a link's bandwidith.
can also be because of hardware failures and bugs in the frenwa
running on Ethernet bridges.

Unfortunately, such a forwarding loop can form as a result of
a single, localized failure. For example, a single linkedl can
cause a perfectly functional Ethernet network to violate rirexi-
mum spanning tree height limit, leading to a sudden, corapiet-
work breakdown. Figurld 1 gives an example of such a problein. B
is the root bridge of the network. Assume that the valugbofAge
is set to 6. Figur€ll(a) shows the network before the failangl

One scenario in which the control CPU can become overloaded Figure[1(b) shows what happens after the link connectindgeri

is when a bridge’s CPU is involved in the processing of datkpa
ets. Normally, Ethernet frames circulating around a fodirey
loop are handled by the bridge’s line cards in hardware andldvo
not be processed by the control CPU. However, sometimegésid
do Internet Group Management Protocol (IGMP) snooping té op
mize IP multicast[[b]. Since IGMP packets are indistingalsle
from multicast data packets at layer 2, a switch running IGMP
snooping must examine every multicast data packet to sethahe

it contains any pertinent IGMP control information. If IGNSRoop-
ing is implemented in software, the switch’'s CPU can get -over
whelmed by multicast packets. When the control CPU is over-
loaded, it may no longer process and transmit BPDUs in a yimel
fashion.

A subtle case of a BPDU loss induced forwarding loop can tesul
from a uni-directional link. Although Ethernet links arernwlly
bi-directional, the failure of a transceiver on an optichEfi link
can cause the link to become uni-directional. In this cd&RDUs
are transmitted in the failed direction, they will be losticE BPDU
loss can cause a port that was previously blocked to suddésty
forwarding data packets in the direction that is still fuoctl and
create a forwarding loop. Thus, a single transceiver faitan lead
to a permanent forwarding loop.

2.2.2 MaxAge Induced Forwarding Loops

In all the Ethernet spanning tree protocols, the maximurghtei
of the spanning tree is limited. In STP and RSTP, the limiiveigy
by theMaxAge. Whereas, in MSTP, the limit is given by tAgL
in the BPDUs from the root bridge. If a network is too larges th
BPDUs from the root bridge will not reach all bridges in the-ne
work. Suppose bridgd sends a BPDU to bridgB but the BPDU
arrives with a message age equalMaxAge or aTTL equal to
zero. Under RSTP and MSTR would block its port toA, par-
titioning the network. However, under STP the BPDU with the
maximum message age is completely ignoredbyl'he end result
is as if B is not connected tal at all, and the port connecting
to A will become forwarding by default. Moreover, those distant
bridges that do not receive BPDUs from the true root bridgé wi
try to construct a spanning tree among themselves. The taw-sp
ning trees in the network can be conjoined at the leaves anttte
a forwarding loop.

B1 to bridge B8 fails.

Before the failure, all bridges are within 4 hops of the raddie
B1. The blocked ports at BS and B11 cut the physical cyclesdo ¢
ate a spanning tree. However, after the failure, B8 becontep3
away from B1. As a result, the message age of BPDUs from B1
will have reachedvax Age when they arrive at bridge B8 and so
they are dropped by B8. Without receiving any valid BPDUsrfro
its neighbors, bridge B8 believes that it is the root of thanspng
tree and makes the ports that connect it to bridges B7 and 89 de
ignated ports. On the other hand, both B7 and B9 believe that B
is the root of the spanning tree as the BPDUs they receiveegenv
ing this information have message age beldaxAge. B7 and
B9 both believe that B8 is their child in the spanning tree
they make their ports connecting them to B8 designated .patts
the ports in the network are thus forwarding data packetd,aan
permanent forwarding loop is formed.

In networks with more complex topologies, this problem cas ¢
ate multiple forwarding loops. FiguEg 1(c) generalizesgtevious
example to illustrate the formation of multiple forwarditmpps
after the failure of the link between bridges B1 and B8. Irsthi
network, broadcast packets will be replicated at the jonstiat B1
and B8. This creates an exponentially increasing numbemuef d
plicate packets in the network that may render the entire/omit
inoperative.

2.2.3 Countto Infinity Induced Forwarding Loops

All of the spanning tree protocols are specified as a set afugen
rent state machines. It has been discovered that in RSThthe ¢
bination of the count-to-infinity behavior, a race conditizetween
RSTP state machines, and the non-determinism within a 1state
chine can cause an Ethernet network to have a temporaryridrwa
ing loop during the count to infinity. This problem is expleghin
detail in [12]. Here, we provide a sketch of the explanation.

Normally, during a count to infinity, a hand-shake operatien
tween adjacent bridges, calleyng prevents a forwarding loop
from forming. However, a race condition between two RSTResta
machines and a non-deterministic transition within a stzehine
that together allow a sync operation to be mistakenly bygxhss
Once the sync operation is bypassed, a forwarding loop meddr
which lasts until the end of the count to infinity.



(a) Before failure.  (b) After failure of the root bridge.

Figure 2: Forwarding table pollution caused by a temporary forwarding loop.

2.2.4 Pollution of Forwarding Tables

Forwarding tables in Ethernet are learned automaticalliieklv
a bridge receives a packet with a source addresa a portp, p
automatically becomes the output port for packets destioed.
This technique works fine in a loop-free topology. Howeverew
a forwarding loop occurs, a packet may arrive at a bridgeipialt
times via different ports in the loop. This can cause a britige
use the wrong output port for a destination address. Moretve
effects of such forwarding table pollution can be long lagti

Figure2 shows an example of how forwarding tables can get pol
luted. Figurd®(a) shows the forwarding path, B5-B3-B2H#8}-
between end hosts H1 and H2 in the absence of failure. Tha deat
of the root bridge, B1, can lead to a temporary forwardingploo
among B2, B3 and B4 as explained in Secfion 2.2.3. Fiffure 2(b)
shows how the forwarding table of bridge B5 can get pollutethé
presence of a forwarding loop among B2, B3 and B4. Initialsy B
believes H1 is connected to port P2. However after the fatingr
loop is formed, a packet from H1 can reach B3 then spin around
the loop to reach B3 again, which can send a copy back fb B5
Thus, bridge B5 receives a packet with source address Hlovia p
P1 and believes that port P1 should be the output port for kiteO
this mistake is made by B5, there is no way for H2’s data packet
to reach H1 even after the temporary forwarding loop has @&nde
because those packets will be dropped by B5 as they arriveron p
P1. This problem will only get fixed when the incorrect fordiag
table entry at B5 times out, or when H1 transmits a data packet

3. THE DESIGN OF THE ETHERFUSE

The EtherFuse is a device that can be inserted into the gliysic
cycles in the network to improve Ethernet’s reliability.hias two
ports and is analogous to an electric circuit fuse. If it detehe
formation of a forwarding loop, it breaks the loop by loglgalis-
connecting alink on this loop. The EtherFuse can also hetigaté
the effects of the count to infinity in RSTP and MSTP.

3.1 Detecting Count to Infinity

Count to infinity occurs around physical loops in Etherndte T
way that the EtherFuse detects a count to infinity is by irtgtiog
all BPDUs flowing through it and checking if there are 3 BPDUs
announcing an increasing cost to the same ot he EtherFuse
maintains a counter that is incremented every time the Etiser
receives a BPDU with increasing cost to the same root. Theteou

Receive BPDU
on port p

BCache[p].BPDU= BPDU;
BCache[p].count++;
BCachel[p].cost = BPDU.cost;

< BPDU.cost

BCache[p].BPDU= BPDU;
BCachelp].count = 1;
BCachel[p].cost = BPDU.cost;

BCache[p].count = 1;
BCache[p].cost = BPDU.cost;|

Transmit BPDU on
the other port;

Figure 3: Flow chart of how the EtherFuse detects and mitigates a courto
infinity.

is reset to one if the EtherFuse receives two consecutiveiade
BPDUs. If this counter reaches the value of 3, it signalsahaiunt

to infinity is taking place. This means that there is stalerimfation
aboutR that is circling around the loop and will keep doing so until
it is aged out. The reason for checking for 3 consecutive B®DU
announcing increasing costs is that BPDUs are sent outlifritige
has new information to announce, or periodically everyctfhe,
which is typically 2 seconds. Thus, it is unlikely that a petist to
the root will increase twice during two consecutive heliods, due

to any reason other than a count to infinity. In the unlikelgrenthat
the there was no count to infinity but the network was reconéidu
twice during two consecutive hello times, the BPDU follogithe
two BPDUs with increasing costs will announce the same cost a
the preceding one. Thus, the EtherFuse will realize thatoumtc
to infinity is taking place and it will not take any further &mwt,
leaving the network to resume its normal operation.

The EtherFuse does the BPDU monitoring independently for
each of its 2 ports. It uses a BPDU cache (BCache) that masmtai
the state of BPDUs it has received at each port. Fifjure 3 shows
flow chart explaining how the EtherFuse detects a count ta-infi
ity. Since fresh information can chase stale informaticuad the
loop announcing two different roots during a count to infinihe
cache has two entries per port to record both the fresh argtdle
information. Only two entries are used in the cache becausagl
the count to infinity there can be BPDUs announcing at most two
different roots[[1Il]. Both the fresh and the stale informatare
cached because the EtherFuse can not distinguish between th
Thus, it monitors both copies in the cache checking if eitbfer
them exhibit two consecutive increases in cost. The dethitait
maintaining two cache entries per port in the BCache aretedit
from FigurelB for simplicity.

3.2 Detecting Forwarding Loops

The key idea for detecting forwarding loops in Ethernet is by
detecting packets that are circling around the loop. ThefEise
takes a hybrid approach of passively monitoring traffic ia tiet-
work to infer the existence of a forwarding loop, and actiyaiob-
ing the network to verify the loop’s existence. Passive nuoitig
is preferred as it does not introduce extra network trafficoréA

! The reason B3 may send a copy to B5 is either because this is aover, because passive forwarding loop detection takeshatya of

packet with a broadcast destination, or B3 does not have tap en
for the destination of the packet in its forwarding table #mas it
falls back to flooding the packet on all its ports. B3 may noteha
an entry for the packet’s destination in its forwarding &ablther
because this is the first time it hears of this destinatiomemause
its forwarding table entry has timed out or has been flushedtalu
the reception of a BPDU instructing it to do so.

the data packets flowing through the network, it is likely éddster
than any practical method based on periodic active probing.

To monitor the network for forwarding loops, EtherFuse &sec
for duplicate packets. This is because if there is a forwartthop,
a packet may spin around the loop and arrive again at thefHiker
The EtherFuse checks for duplicates by keeping a historyef t



Receive There are two design alternatives to construct a duplicetiecel

Ethernet Frame

tor with less entries than the hash function’s range. Thedlter-

Loop detete native is to only store the timestamp in the hash table efirthis
gpsleaLine Topology Change case, two packets having different hash values may be reistak
Cutlink; duplicates. This is because their two distinct hashes mayinta

the same location in the table. For this design alternafilee pos-
itives occur when detecting duplicate packets if two ddferpack-
Drop_fo—] Bula a s e ets with identical or different hashes map into the sameticaf
the table. Assuming a uniform hash function, an upper boond f
the probability of false positives occurring for a parteupacket
e Framo is given by Equatioldl, wher&' is the number of entries in the
duplicate detector duplicate detectoff” is the time the packet'’s entry is kept in the du-
plicate detector before it expireB, is the network bandwidth, and
F is the Ethernet’s minimum frame size. Equafidn 1 computes th
Figure 4: Flow chart of how the EtherFuse detects and stops forwardingpops. complement of the probability that the packet’s entry in liash
table does not experience any collisions during its vafetilne.

in duplicate detector
& entry
is fresh?

Transmit Frame on
the other port

Insert in Fuse list

hashes of the packets it received recently. Every new incgmi
packet's hash is checked against this history. If a fresty aip B
the packet’s hash is found, then the packet is a duplicateaigy _ N-—-1 (15520)
a potential forwarding loop. A hash in the history is frestitsf Pr=1- N @)
timestamp is less than the current time by no more than attbies Th d desi It tive t tructing the hask fabl
This threshold should be no less than the maximum networnkdou @ SEConc cesign alernative 1o constricting the nass &

trio ti Otherwi ket's hash ire before Huk to include the packet's hash value in every entry along whith t
fip ime. EIWISE, a packets hash may expire betore & timestamp. In this case, two packets can be mistaken acetgsi
completes a cycle around the loop. If no fresh copy of theivede

packet's hash is found in the history, the hash is recordetien only if they share the same hash value. An upper bound for the

; A o probability of false positives detecting duplicates foratjzular
history along with its timestamp. As an optimization, thé&rhet packet is given by Equatidd 2, whefé is the number of bits in

frame’s Cyclic Redundancy Check (CRC) can be used as the hashthe packet's hash. Similar to Equatign 1, Equafibn 2 conmmite

of tBhe.E’aClI]feiE. C(;ntentsc.i. | detection techni o complement of the probability that the packet’s entry in tizsh
y Itsell, this forwarding loop detection techniqueé may &av — iopje goes not experience any collisions during its vafatitne.
false positives due to collisions between hashes of diftepack-

ets or a malicious end host intentionally injecting dupkcpackets

TxB
into the network to trick the EtherFuse into thinking thatrhis a Pr=1- (1 — Q*K) (L52)) )
forwarding loop. To avoid false positives in such cases Btier- ) ) ) )
Fuse uses explicit probing once it suspects the existenacfaf However using this approach, EtherFuse can miss some dupli-

warding loop. These probes are sent as Ethernet broadeasedr ~ cates. For example, if there exists a forwarding loop andcagia
to guarantee that if there is a loop they will go around it aotle Py arrives at the EtherFuse, its hash will be recorded. Then by
affected by forwarding tables at the Ethernet switches. Sthece the time P1 spins around the loop and before it arrives again at

address of the probe is the EtherFuse’s MAC address. If therEt  the EtherFuse, another packét, arrives first at the EtherFuse.
Fuse receives a probe it has sent then this implies that thare If P; and P, have different hashes that hash into the same loca-

forwarding loop. However, the probe may get dropped evehént  tionin the hash table, the duplicate detector entry stoFirig hash

presence of a forwarding loop. In this case, the fuse wilnez is replaced byP's hash. Since the duplicate detector records the
more duplicate packets forcing it to send more probes untlaf ~ Packets hash it will detect tha, is different thanP; and not a

those probes will make its way around the loop and back to the duplicate. Later, whei, arrives again at the EtherFuse, its hash
EtherFuse again. Duplicate packets in the network can teadrt- will replace P»’s hash in the duplicate detector without detecting

gestion, increasing the chance of probes getting droppemcej & duplicate. Consequently, the EtherFuse will not deteattittere
EtherFuse drops all duplicate packets it detects. Figunedepts is a loop. However, the probability of such a false negativeery

a flow chart of how loops are detected. low. An upper bound to this probability is given by Equat[dn 3
where L is the latency around the loop. Equat[dn 3 computes the
3.2.1 Building the Duplicate Detector probability that (1) packeP;'s hash gets replaced by one or more

other packets’ hashes befafe arrives again at the EtherFuse after

The EtherFuse’s duplicate detector maintains the histbrg-o
P ¥ cycling around the loop, and (2) the last packet of those wtee

ceived packets in a hash table. However, it is desirablenfodu- y ! . :
plicate detector’s hash table not to use chaining in ordsinbplify placedP;’s hash entry in the duplicate detector has a different hash
the implementation of the EtherFuse in hardware. In thefell  than that ofPr.

ing discussion, we assume that the range of the hash furtttén N_1 (LE£E)) X

is applied to received packets is much larger than the sizbeof Pr = <1 — <T) > X (1 -2 ) (©)]
hash table. For example, the Ethernet packet’'s 32-bit CR§himi

be used as the hash code representing the packet. Howeesh a h Figure[® plots the probabilities in Equatioid [0, 2 apd 3 with
table with23? entries would be impractical due to its cost. In such conservative values of the equations’ parameters. Theneiess
cases, a simple mapping function, such as mod the tableisize, were set as follows: T = 100ms, F = 64B, B = 10Gb/s, K = 32 and
applied to the hash code to produce an index in the table.eSinc L = 10ms, where T is set to an order of magnitude more than L
packets are represented by a hash code, the duplicatectetant as a safety margin to minimize the chance of missing dugicat
report false positives. However, it is acceptable to halksmms In summary, the trade-offs between the two design alteremtire
with low probability since the EtherFuse will send a probgedfy the following: Not including the packets’ hashes in the htsh
that a forwarding loop exists. ble prevents false negatives when detecting duplicatesus,Téa
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forwarding loop is more likely to be detected as soon as tlsg¢ fir
duplicate is received. The down side of this alternativehas it
suffers from a higher false positive rate when detectindidafes.
This leads to more non-duplicate packets getting droppad i
the second design alternative. However, for a duplicateatiet
with a sufficiently large number of entries, the false pwsesirate
can be very low. For the second design alternative thatdedthe
hash in every duplicate detector entry, it achieves a loats of
false positives when detecting duplicates. However, thises at a
cost. First, false negatives occur when detecting dugglgcathus,
forwarding loop detection may get slightly delayed if a dcogle
arrives at the EtherFuse but is not detected. Second, mar®rge
is needed to store the hashes in the duplicate detectod, Thare
per-packet computation is performed by the EtherFuse|faply
to compare the packet’s hash to the corresponding hash hagte
table entry.

3.3 Mitigating Count to Infinity and Forward-
ing Loops

After detecting a count to infinity or a forwarding loop, thecs
ond phase is mitigating the problem and its effects.

For the count to infinity, if the EtherFuse detects BPDUs an-
nouncing increasing costs to a raBf it expedites the termination
of the count to infinity by altering the message age field of BRy
DUs announcingR to be the root. Specifically, it sets their message
age field toMaxAge However, this may not instantaneously termi-
nate the count to infinity as Ethernet bridges may be cachimgro
copies of the stale information. If there are other cachqueso
of the stale information, they will eventually reach the é&ffuse
again, which in turn will increase their message age unghaw-
ally the count to infinity is terminated. Figufé 3 shows how th
EtherFuse handles a count to infinity. For handling the coont
infinity, having more than one EtherFuse in a loop in the ptajsi
topology is not a problem as every EtherFuse can handle tivg co
to infinity independently without side effects.

On the other hand, having more than one EtherFuse in the sam

loop in the event of a forwarding loop is problematic. Onlyeon
of those EtherFuses should cut the loop otherwise a netwantk p
tion will occur. To handle this, EtherFuses collaborateleztean
EtherFuse that is responsible for breaking the loop. To & th
probe carries the identities of the EtherFuses it encosirtbering
its trip around the loop, that is, whenever an EtherFusewvesa
probe originated by another EtherFuse, it adds its identdia list
of EtherFuse identifiers in the probe.The EtherFuse’s MAGresb
is used as its identifier. Also, the EtherFuse checks fodisiti-
fier in the list of identifiers in the probe. If it finds its owrhen

its own probe, it checks the list of EtherFuse identifieracited
to the probe. It drops the probe if its identifier is not the Besa
in the probe’s list of EtherFuse identifiers. On the otherdhdfrits
identifier is the smallest in the list, the EtherFuse is elé¢bd break
the loop. It cuts the loop by blocking one of its ports thatroects
the loop. This way the network can continue operating ndgmal
even in the presence of a forwarding loop. However since -phys
ical loops exist in the network for redundancy and fault tatee
reasons, cutting them leaves the network vulnerable tétipaitg
due to future failures. So the EtherFuse tries to restoraehgork
to its original topological state by unblocking its blockeatt after
a timeout period has passed. It does this hoping that thelasma
temporary loop formed due to ephemeral conditions. If theeEt
Fuse detects a loop again right after it tries to restore dteark,
then it knows that the loop still persists so it cuts the logaia. It
retries this until it eventually gives up assuming this isanpanent
loop. It then notifies the network administrator to take apipir
ate measures to fix the problem. Figlke 4 shows how an EtherFus
handles a forwarding loop.

Since a forwarding loop may persist for a small durationlunti
is detected and corrected, forwarding table pollution ntalyce-
cur. To speed recovery from forwarding table pollution, Hiker-
Fuse sends BPDUs on both its ports with the topology change fla
set. This will make bridges receiving this topology changerma-
tion flush their forwarding tables and forward this topolaipange
message to their neighbor bridges until it has spread thautghe
network. This technique has its limitations though. Thisésause
the IEEE 802.1D (2004) specification suggests an optimiaeld-t
nique for flushing entries from the bridge’s forwarding ®&brhis
technique flushes entries for all the ports other than thetuatee-
ceives the topology change message on the bridge. Thisiteghn
is not mandatory but if it is implemented, there will be sorases
in which the EtherFuse will not be able to eliminate the faxva
ing table pollution if the loop was not shutdown before ptitin
occurs. For example, the pollution shown in Figidre 2(b) at pa
cannot be fixed by an EtherFuse sitting along the loop B2-B3-B
This is because B5 will receive the topology change messaiges
P1, the port with polluted forwarding table entries. Conszdly,
it will flush forwarding entries for port P2 and not P1. Howeve
even if B5 does not flush the entries at P1, the polluted entrie
will be invalidated as soon as the end host H1 sends any macket
or when those polluted forwarding table entries expire laching
their timeout value.

4. ETHERFUSE IMPLEMENTATION

This section describes our prototype implementation oEtther-
Fuse. Then, it discusses the EtherFuse’s memory and piogess
requirements, arguing that the EtherFuse can scale to, |laigje-
speed Ethernets.

&4.1  The EtherFuse Prototype

We implemented EtherFuse using the Click modular rolf€}: [14
Figurel® shows how the different modules are put togetheoto-c
pose the EtherFuse in the Click modular router. FhenDevi ce
module is responsible for receiving packets from a NIC ifte t
EtherFuse. Th&l assi fi er module is responsible for classi-
fying Ethernet packets based on their contents. In this gordi
tion, it classifies them into either RSTP control packetsclvtare
sent to theCTl Checker module, or regular Ethernet data frames
which are sent to theoopChecker module. TheCTI Checker
module is responsible for handling count to infinity in théwark,

this probe has been through a loop. The EtherFuse drops such awvhile theLoopChecker module is responsible for handling Eth-

probe as it is not the probe’s originator. If the EtherFuseines

ernet forwarding loops. Ethernet frames are then pusheddy t



CTI Checker and theLoopChecker modules to the other NIC [ Frombevice(etno) | [ Frombevice(etn1) |
of the EtherFuse using theoDevi ce module. The suppressors,

S1 and S2, allow the EtherFuse to block input and output ports

respectively. They are used by the EtherFuse to block bquhtin

and output traffic going through one NIC when a forwardingploo | Classifier(...) | | Classifier(...) |

is detected. S =
In our implementation we used a packet's CRC as the hash of \ 1

the packet’s contents. We store the CRC in the duplicatectigte [ clighecker 7| [LoogheckerSy;se.. )

hash table to reduce the number of dropped packets becafadesof
positives. Timestamps in the duplicate detector have seitibnd
granularity. Thus, a timestamp is stored in 4 bytes.

v’ v
S2::Suppressor

4.2 Memory Requirements

The primary memory requirement for the EtherFuse is thdief t [ ropeviceteo) | | Topevicetetnr) |
duplicate detector which records the timestamps of fratfessire-
ceived recently. The duplicate detector may also storedkbés of
the packets. Every entry in the duplicate detector contaihash
with sizeC bytes, where”' is equal to zero if the hash is not stored
in the table, and a timestamp with sigebytes. The duplicate de-
tector should have at least as many entries as the numbemoé$
that make up the product of the maximum network bandwidth
and the latency.. Thus the minimum memory requiremeit can
be given by Equatiofl4, wherE is the minimum Ethernet frame

size.
= (|52]) <+ s) @

The minimum frame sizé" is 64 bytes. Assuming the CRC is
used as the packet's hash and a timestamp is 4 bytes(tremd
S will be 4 bytes each. Using generous values of 100 millisdson
for L, and 10 Gbps fo3 would lead toM equal to 16MB. Thus 9.1 Hardware Platform

Figure 6: Block diagram of the EtherFuse implemented with the Click malu-
lar router

(a) Topolog

I. (b) Topology II.

<

Figure 7: Network topologies used used in the experiments.

the EtherFuse can easily scale to a large 10 Gbps Ethermetniet For our experiments we used the Emulab testoEd |1, 22]. Speci
. ically, we used machines with 3.0 GHz Xeon processors having
4.3 Processmg Overhead 2GB of physical memory. Each machine had 6 Network Interface

The processing overhead of the EtherFuse is low. This is true Cards (NICs). However, one of these NICs is used for the Emula
even if the packet's hash is maintained in the duplicatectiete ~ control network. In our experiments the machines were cttede
along with the packet’s timestamp, which would require nme by 100 Mbps links to Cisco 6500 series switches.

Cessing due to Storing, |Oading and Comparing hashes. Aﬁgum The network tOpOlOgies shown in Flglm 7 are used for all of ou
the packet's hash is precomputed like if the CRC is used, ihen ~ €xperiments. In the figure, B's are Ethernet switches, FE€her-
the common case to handle a data packet one memory access ifuses and H's are end hosts. For analysis, the EtherFusetsoll
required to check whether the packet's hash exists in thicgip statistics about the number of duplicate packets in the orétwin
detector, another memory access is required to write thie inés the experiments where an EtherFuse is not used, a simpléigded
the duplicate detector, and another one to write the timgstd his is substituted for the EtherFuse to collect the same statist
is assuming that at least 4 bytes can be read in a single mexnory
cess. In the unlikely event that the hash is matched, anatker- 5.2 Software Components
ory access is needed to fetch the timestamp to check whétiser t All nodes in our experiments were running Fedora Core 4 with
hash is fresh or not. However, in conventional processatts aéta Linux kernel 2.6.12. Ethernet switches were implementesbiit-
caches, fetching the hash from memory would lead to preffegch ~ ware using Click. We used a configuration similar to the ore pr
the timestamp as well if both are within the same cache lime. | scribed inl[14] for an Ethernet switch. However, when usii&R
such cases, the access to the timestamp would have triglfor switches, our configuration has two differences from thd4j.
BPDUSs, they arrive at a much lower frequency than data packet First, we replaced th&t her SpanTr ee module which imple-
roughly on the order of 10 BPDUSs per second even during a count ments the legacy STP protocol with our o&hher RSTP module
to infinity. To handle a BPDU, the EtherFuse compares it again that implements the RSTP protocol. The RSTP module is respon
the 2 cached entries in the BCache. If a count to infinity is sus sible for maintaining the spanning tree of bridges, enghbtindis-
pected, the BPDU is written into the BCache. Since a BPDU is 36 abling switch ports based on their roles in the spanning tfée
bytes, this requires at most 9 memory accesses for the csopar second difference is that we updated Eteher Swi t ch module
and 9 memory accesses for the write. Since BPDUs arrive at a lo to support the functionality required for maintaining theitsh’s
rate, these operations can be easily handled in practice. forwarding tables, including flushing and updating the éahin
response to topology change events reported byetheer RSTP
module. We implemented the basic technique that flushesmall f
5. EXPERIMENTAL SETUP warding tables in response to topology change events, aayti-

This section describes the experimental settings usetidaval- mized technique which does not flush the forwarding tableffer

uation of the EtherFuse. port where the topology change event is received.
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6. EVALUATION

In this section we evaluate the effects of different Ethefa
ures on software applications and show the effectivenesheof
EtherFuse at mitigating these effects. For every classihfrés,
we study the fundamental effects using packet level measmts.
Then, we use HTTP and FTP workloads to study the overall tsffec
of the failures. The HTTP workload does not use persistemiec-
tions so the effects of the failures on TCP connection eistatlent
can be studied. The FTP workload is used to study the effécts o
failures on TCP streams. We conduct multiple runs of eaclerexp
iment because there is non-negligible variance between iTinis
variance is due to non-deterministic interactions betwibenap-
plications, the transport protocols, and the spanninggretcols.
However, in the cases where we characterize the networkawe
ior by a detailed timeline, it is only practical to present tiesults
from one representative run. Results of the other runs aabtau
tively similar.

The evaluation is organized as follows. Secfiod 6.1 stutfies
effects of the count to infinity problem. Sectibnl6.2 studtes ef-
fects of a single forwarding loop. Sectibnl.3 studies tHeots
of multiple, simultaneous forwarding loops. In both Sewsi&.1,
and[6.2 we use the topology shown in Figlite 7(a) for our exper-
iments, while in Sectiof63 we use the topology shown in Fig-
ure[I(b). SectiofBl4 concludes with a discussion.

6.1 Effects of Count to Infinity

For the experiments in this section we modified the RSTP state
machines such that its races do not lead to a forwarding lotipei
event of a count to infinity. This is because we want to study th
effects of the count to infinity in isolation without the foawding
loop.

6.1.1 Fundamental Effects

In this experiment, we characterize the packet loss in theark
during the count to infinity. We use iperf to generate a 90 Mb/s
UDP stream between the end hosts, which maintains high tink u
lization. Then, we measure packet loss at the receivingdfitiee
UDP stream. iperf includes a datagram ID in every packetitse
and we instrumented it to maintain a history of the IDs it reeé
to detect packet loss. Figud 8 presents a timeline of pdokst
The periodic heavy packet loss is caused by the oscillatibtise
network ports between blocking and forwarding during thento
to infinity. It shows that during the count to infinity the netrk
suffers from extended periods with near 100% loss rate. TherE
Fuse substantially reduces these periods by terminategdhnt
to infinity quickly.

6.1.2 Detection and Correction Time

In this section, we study the time it takes the EtherFuse tecte
and terminate a count to infinity using different network dlap
gies. These experiments are based on simulations. Thigsallo

us to have global knowledge about the network and thus we can
determine when the count to infinity has actually ended amd th
network has converged. We define convergence time as thattime
takes all bridges in the network to agree on the same corctigea
topology. We use the BridgeSim simulatbr][17] but we have mod
ified it to implement the latest RSTP state machines as sedcifi
in IEEE 802.1D (2004). In the simulator, bridges have debymc
nized clocks so not all bridges start together at time zenstebd
each bridge starts with a random offset from time zero that is
fraction of the HelloTime. We have also added an EtherFuse im
plementation to the simulator. In our simulations, for eaetting,

we repeat the experiment 100 times and report the maximuen, av
age, and minimum time values measured. We use a MaxAge of 20,
a TxHoldCount of 3, and a HelloTime of 2 seconds.

In the experiment shown in Figuf® 9(a), we measure the cenver
gence time in complete graph topologies after the deatheofat
bridge. For experiments with the EtherFuse, we used an [Etiser
for every redundant link. Notice that using EtherFuses éonplete
graph topologies cuts the average convergence time afterd to
infinity by more than half.

Figure[ID(a) shows the time it takes for the count to infirotpé
detected by any EtherFuse in the network. We see that the-Ethe
Fuses detect the count to infinity very quickly. This is besgafor a
count to infinity to be detected a bridge needs to transmin2eo-
utive BPDUs with increasing path cost that is higher thancibet
it was announcing before the count to infinity. In this togploall
the bridges are directly connected to the root bridge and &tlu
bridges can detect the root’s failure instantaneously. cdethey
immediately start using stale cached BPDU information, stadt
announcing different paths to the root which have highet. ctiss
constitutes the firstincrease in the path cost to the roats@&lstale
BPDUs will trigger bridges to update their information and/fard
it to their neighbors. This constitutes the second increae path
cost to the root, which is immediately detected by an EthseFu
Thus, it takes two BPDU transmissions for some EtherFustsein
network to detect the beginning of the count to infinity. Hoee
it takes a much longer period of time for the network to cogeer
This is because bridges in the network have many redunddes li
and thus many alternate ports caching many copies of theistal
formation. Thus it takes time to replace all those stale eppif
the information. Also ports in the Ethernet switches quialdach
their TxHoldCount limit due to multiple transmissions oétktale
information. This further slows down the process of elinimg
the stale information and makes the convergence time longer

In the experiment shown in Figu® 9(b), we measure the cenver
gence time in “loop” topologies after the death of the roadde. A
loop topology is a ring topology with the root bridge dangliout-
side the ring. For these topologies we use a single EtherHumee
EtherFuse connects the new root (the bridge that assumestaso
tus after the death of the original root) to one of its neigkbaVe
note that for small loops, the EtherFuse is able to detecsapthe
count to infinity quickly. However for larger loops, the EtRase
becomes ineffective in dealing with the count to infinity.i§is be-
cause the EtherFuse relies on observing two consecutiveases
in the announced cost to the root. For loop topologies, tidamm
the stale information must traverse around the loop twidehd
loop is large, the stale information will have reached itsxige
before it gets detected by the EtherFuse.

Figure[I®(b) also shows that the count to infinity is detected
fairly quickly in the “loop” topologies. However, the ternation
of the count to infinity takes longer. This is because by theeti
the count to infinity has been detected, most of the bridgessp
have reached their TxHoldCount limit. Thus they are allowed
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| | Transfer time]

No failure 35.9s
Failure with EtherFuse 36.1s
Failure without EtherFuse 42.1s

Table 1: Transfer times for the FTP transfer of a 400MB file.

is killed during the file transmission and the total file tnassion
time is recorded. Tabld 1 shows the measured transmissi@s ti

transmit only one BPDU per second and the convergence [goces under count to infinity with and without the EtherFuse. Weiaga

is slowed down substantially.

6.1.3 Impacton HTTP

In this experiment we study the effects of count to infinity on
web requests. We run the apache web server 2.2.0 on one afche e
hosts and a program simulating web clients at the other estl ho
The client program generates HTTP requests to the web saither
a constant rate of one request every 100 ms. The HTTP recarests
HTTP GETs that ask for the index file which is 44 bytes. We Kkill
the root bridge, B1, at time 10 to start the count to infinitye W
repeat this experiment twice, once with the EtherFuse anthan
time without it and measure the response times of the welestgu
FiguredTlL(a) and—11(b) show timelines of the measured nagpo
times of each web request before, during, and after the dount
infinity with and without the EtherFuse. Note that before arfid
ter the count to infinity the response time is on the order & on
millisecond. During the count to infinity, many requests énag-

note that transmission time in the presence of the Etherisuss-
ter as it ends the count to infinity early.

6.2 Effects of a Single Forwarding Loop

In this section, we study the effects of a single forwardiogpl
on applications and the performance of EtherFuse in mitigat
those effects. We only focus on temporary forwarding loogs b
cause of two reasons. First, since the loops are tempotay, t
lead to transient interactions with the applications, \uhace often
not obvious. Conversely, permanent loops render the nktwmr
usable leading to the unsurprising result of preventindiegions
from being able to make forward progress. Second, Etherfrarse
dles permanent loops the same way it handles temporary,leops
presenting the temporary loops case suffices.

We use count to infinity induced forwarding loops as an exampl
of temporary forwarding loops. We modified the RSTP state ma-
chines such that its races always lead to a forwarding lodpen

sponse times of 3 seconds and some even have response titnes ofevent of a count to infinity.

seconds. This is due to TCP back-offs triggered by the pdokst
during the count to infinity. TCP back-offs are especially loar-
ing connection establishment, as TCP does not have an é¢stiona
the round trip time (RTT) to set its retransmission timed®it Q).
Thus it uses a conservative default RTO value of three second
So if the initial SYN packet or the acknowledgment for thisNgY
gets dropped, TCP waits for three seconds until it retratssihis
explains the three second response times. If the retrasiemis
lost again TCP exponentially backs off its RTO to 6 secondssan
on. Thus we are able to observe requests having 9 secondhsespo
times that are caused by 2 consecutive packet losses dwing c
nection establishment. In FiguEel11(b), we note that theiEihse
substantially reduces the period with long response tirfiéss is
because the EtherFuse is able to quickly detect and stopth ¢
to infinity and thus reduce the period for which the network su
fers from extensive packet loss. No connection in this arpemt
suffers consecutive packet losses during connection lestatent.

6.1.4 ImpactonFTP

In this experiment we study the effects of count to infinityaon
FTP download of a 400MB file from a FTP server. The root bridge

6.2.1 Fundamental Effects

Figure[T2 shows a timeline of packet loss during the count+o i
finity induced forwarding loop. In this experiment a strearBP
traffic flows from one host into another. Since the count taninfi
ity reconfigures the network leading to the flushing of thelfpes’
forwarding tables and since the receiving end does not send a
packets, bridges do not re-learn the location of the recgiend
host. Thus, bridges fallback to flooding packets destinatieéae-
ceiving end host. Thus, those packets end up trapped in tie lo
leading to network congestion and packet loss. This can be se
in Table[2. This massive packet loss leads to BPDU loss, dxten
ing the lifetime of the count to infinity. Consequently, tieigends
the duration of the forwarding loop leading to a longer perid
network instability. When the EtherFuse is used the prohiem
corrected quickly.

To study the effects of having a temporary forwarding loop on
a simple request/response workload we used ping betwedwaohe
end hosts with a frequency of 10 pings per second. We rangsiis t
for 50 seconds and introduced the count to infinity at time/A/h-
out the EtherFuse, we observed a 81% packet loss rate rdfmrte
ping. Note that there is no congestion in this test as the rddga
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Figure 12: Timeline of packets loss using a 90 Mb/s UDP stream under a cati
to infinity induced temporary forwarding loop. Count to infin ity starts at t=10.

EtherFuse 2
No EtherFuse| 40815

Table 2: Number of duplicate frames detected in the network for the UDP
stream workload in event of having a forwarding loop.

is very low, and both end hosts are transmitting data so packe
not get trapped in the loop as in the experiment above. Tha mai
reason for the packet loss in this test is forwarding tableipon
explained in Sectioh.2d.4. Specifically, in Figlile 2 if agire-
sponse from H1 causes the pollution, packets from H2 willbeot
able to reach H1 anymore. The pollution is fixed when the &dfibc
end host, H1, transmits a packet fixing the polluted forwagda-

ble entry in B5. Thus, the pollution problem can last for a muc
longer period of time than that of the temporary forwardiagg.
When the EtherFuse was used for the same experiment absse, le
than a 1% packet loss rate was reported by ping. This is becaus
the EtherFuse quickly detects the forwarding loop, shgitidown

and fixing any potential pollution by sending the topologpiche
message that flushes the forwarding tables.

6.2.2 Impacton HTTP

In this section, we repeat the experiments in Sedfionl6ei3,
cept that a forwarding loop is formed. Figlird 13 shows a fimeel
of measured response times of web requests before, durthgfan
ter the count to infinity induced forwarding loop. In the cade
not having the EtherFuse, although the traffic in the netwsrk
minimal we note that having a forwarding loop hurts the resgo
times of web requests. This is because although the conitgcti
is still available between the server and the client, packem-
ing from the client and the server into the forwarding loofiyge
the bridges’ forwarding tables. This leads to packet draypes
packet misforwarding and blackholing. Packet drops comged
with the TCP backoffs, especially during TCP connectioralest
lishment, lead to very high response times. In the case adrEth
Fuse, it detects and shuts down the forwarding loop verykéic
so the disruption to the network operation is minimal. Nbig for
this workload pollution does not last for very long. This echuse
if a packet of an end hogt causes pollution, the acknowledgment
for this packet will not arrive, causingf to retransmit the packet
fixing the pollution. If an acknowledgment packet from thevse
to the HTTP request causes the pollution, the server willl sba
response which will fix the pollution. Also, if the acknowtgdent
packet from the client to the HTTP response causes the jooi|ut
either the next request or the connection tear down pachetixvi
the pollution.

Figure[T3 shows the effects of having background broadiafst t
fic. We introduce a low rate broadcast stream of 100 Kb/s. deoti
that in the no EtherFuse case, response times suffer stibfjan
due to packet loss because of network saturation. This susec
the broadcast packets get trapped in the loop leading toeseng
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Figure 13: Timeline of response times of HTTP requests generated evetgnth
of a second under a count to infinity induced temporary forwarding loop. Count
to infinity starts at t=10.
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Figure 14: Timeline of response times of HTTP requests generated evetgnth
of a second under a count to infinity induced temporary forwarding loop. Count
to infinity starts at t=10. A background broadcast traffic of 100 Kb/s is injected
into the network.

tion. Also note that some web requests suffer from a 21 second
response time. This is due to three consecutive packet dndpe
connection phase leading to 3 exponential backoffs. Whémgus
the EtherFuse, it quickly detects both the count to infinitg ¢he
forwarding loop and cuts the loop to recover from this faglur

To further understand the scenario, Tdle 3 shows the number
of duplicate packets detected in the network. Note that sivias
amount of duplicate packets are detected when there is bachd)
broadcast traffic and in the absence of the EtherFuse.

6.2.3 Impacton FTP

Tabld3 shows the transfer times for a 400MB file over FTP when
having a count to infinity induced forwarding loop. We notatth
when background broadcast traffic exists and in the abserae o
EtherFuse many duplicate packets persist in the networkastiq
fied in Tabldb.

The main reason for the very long transfer time when the Ether
Fuse is not used is forwarding table pollution. Forwardiablée
pollution causes the FTP client to be cut off from the netwirk
an extended period of time. In this case the pollution is Veng
lasting because it is caused by an acknowledgment by tha ttie
a data packet sent by the server. The client then waits foretste
of the data packets to arrive for the rest of the file, but thees&s
packets cannot get through because of the forwarding taiblie-p
tion. This causes TCP at the server to keep backing off. Tble-pr
lem only gets fixed later when the ARP cache entry for the FTP
client expires at the FTP server forcing the server to sendiRiA
request for the client. Since ARP request packets are basadc
packets, they get flooded through the network and are nattatfe
by forwarding tables. When the ARP request reaches thetgclten
makes the client send back an ARP reply which fixes the poliuti
and restores the connectivity to the client. When using theE
Fuse, this problem does not take place because after theFag®
detects and cuts the loop, it send the topology change nefsayg
ing bridges to flush their forwarding tables, including ttelyted
entries.



| | Broadcast] No Broadcast|

EtherFuse 9 1
No EtherFuse| 57481 2

Table 3: Number of duplicate frames detected in the network for the HTTP
workload in the event of having a forwarding loop.

[ | Broadcast] No Broadcast]

No failure 35.9s
Failure with EtherFuse 37.2s 36s
Failure without EtherFuse 141s 140s

Table 4: Transfer times or a 400MB file over FTP.

6.3 Effects of Multiple Forwarding Loops

Multiple forwarding loops can occur due to the MaxAge indiice
forwarding loops as presented Secfion2.2.2, or having twoare
simultaneous failures of the failure types discussed ini@eZ.3.

In this section we choose the MaxAge induced forwarding $oop
as an example of multiple forwarding loops. To demonstriage t
seriousness of having multiple forwarding loops, we cartitan
experiment using the network topology shown in Fidure 7kia) t

[ | Loop/Broadcast] Loop/No Broadcast]

EtherFuse 3 1
No EtherFuse| 65578 19

Table 5: Number of duplicate frames detected in the network for the FTP
workload in event of having a forwarding loop.

Packet Prolifertion Timeline

Without EtherFuse ——
With EtherFuse -

Duplicate Packets

0 10 20 30 50 60 70 80

40
Time (ms)

Figure 15: Timeline of number of duplicate packets observed by a netwde
monitor after the formation of two forwarding loops and inje cting an ARP re-
quest into the network.

7. RELATED WORK

The focus of this work is on mitigating the effects of Ethdrne

uses the STP protocol. We use a value of 2 for the MaxAge of the t5jyres without changing the existing Ethernet infrastaue, in-

bridges in the network. This value is outside the prescritaege
stated in the IEEE specification, but we use it so that we caerge

cluding software, hardware, and protocols. In contrasstrpcevi-
ous work has focused on changing Ethernet’s protocols todwep

ate the forwarding loops using only a few Emulab nodes. We con ji5 scalability and performance. However, some hardwaneloes
nect an end host t83 that sends a single broadcast packet. Then employ techniques that try to enhance Ethernet’s religbili

we measured the number of duplicate packets observed irethe n
work every millisecond. We repeated this experiment twizee
with the EtherFuse, and another without. In the later cassegen
Figure[Ih that the packets exponentially proliferate uhtly sat-

Cisco employs two techniques to guard against forwardiogdp
Loop Guard and the Unidirectional Link Detection (UDLD) pre
col. None of these techniques is a part of the standard spgnni
tree protocols. Thus, not all vendors have these technigugs-

urate the network. This is because the CPUs of the Emulabsnode mented in their switches. Even Cisco does not have them imple

running network elements are saturated due to the procestall
the duplicate packets. When the EtherFuse is used we nbtte t
the duplicates are eliminated from the network in 3 millssds.
Roughly, one millisecond is spent on detecting duplicatekets,
another millisecond for sending and receiving a probe, #mether
millisecond for the in transit duplicates to drain after thep has
been cut.

In summary, multiple forwarding loops can quickly rendee th
network unusable due to exponential proliferation of duadkes.
The EtherFuse is highly effective at detecting and comecthe
problems.

6.4 Discussion

The EtherFuse is very effective at reducing the effects afra f
warding loop. Between the onset of a forwarding loop andéts d
tection, the network may suffer from a very brief period o€let
duplication. However, the EtherFuse is able to quickly giapket
duplication before it escalates into network congesticsh gaxcket
loss. These benefits are achieved without changing the sgann
tree protocols.

In contrast, while the EtherFuse is able to mitigate thectdfe
of the count to infinity by reducing the spanning tree congacg
time, the effects of the EtherFuse on count to infinity areasam-
mediate as for forwarding loops. The EtherFuse’s abilityuckly
end the count to infinity is constrained by the rate limit orlCRP
transmission in the spanning tree protocols. Solutionsdhange
the spanning tree protocols can eliminate the count to tgfamd
achieve much faster convergence. For example, in all ofdbe s
narios discussed in Sectibn611.2, RSTP with EpdcHs [1Hlesta
converge in one round-trip time across the network.

mented in all of their switche$][6] 9]. Also, all those tecjués
require manual configuration which is error prone. For eXemp
both techniques are disabled by default on Cisco switcloethey
need to be enabled first. Hence, having a single switch inghe n
work that does not have or does not enable those featuresaam |
the whole network vulnerable. This is because a single leldck
port, erroneously transitioning to the forwarding state caake

a forwarding loop that can render the whole network unakbgla
Moreover, each of those techniques is limited in scope toea sp
cific problem, so having one technique does not eliminateésel
for the other. Finally, some kinds of forwarding loops car be
handled by any of those techniques, like the MaxAge induoed f
warding loops and count to infinity induced forwarding loops

The Loop Guard technique protects a network from BPDU loss
induced forwarding loops. It prevents a blocked port fromoer
neously transitioning to the forwarding state when the ptops
receiving BPDUs. Other than the shortcomings of this tegpimmi
listed above, Loop Guard only works on point-to-point link$ius,
networks with shared links can be vulnerable to having fodivey
loops even if the Loop Guard is used.

To guard against broadcast storms, broadcast filters ackinise
some Ethernet switches to suppress broadcast traffic totaircer
level [4]. However, broadcast suppression suppressesitmst
packets indiscriminately once it reaches its maximum adlole
level of broadcast traffic during a particular interval. ldendu-
plicate broadcast packets may be allowed to get throughdéic
cap is reached, saturating the filter, and then after thesosmached
legitimate broadcast traffic may get dropped.

UDLD is used to detect failures in which bidirectional links-
come unidirectional. The UDLD protocol disables the linkajp



pear as if it is disconnected as the spanning tree protoas dot
handle unidirectional links. UDLD relies on ports on bottismof
a link exchanging keep-alive messages periodically. Miskeep-
alive messages from one direction signal a failure in thatodion.
The inter-keep-alive message interval is manually conéidusy
the network administrator. Again, other than the generaitsbm-
ings listed above this technique has a set of its own shoitagsn
First, it needs ports on both ends of a link to support the UDLD
protocol. Second, the keep-alive messages can get droppade
of network congestion which can mislead the protocol tokhivat
the link has failed.

Myerset al.[18] argued that the scalability of Ethernet is severely
limited because of its broadcast service model. In orderctbes
Ethernet to a much larger size, they proposed the eliminaifo
the broadcast service from Ethernet and its replacemehtaniew
control plane that does not perform packet forwarding based
a spanning tree and provides a separate directory serviceefo
vice discovery. Perlmari[19] also argued that Ethernet loas p
scalability and performance and proposed Rbridges to ceyilze
current Ethernet protocols. Routing in Rbridges is based bk
state protocol to achieve efficient routing. Rbridges alstapsu-
late layer 2 traffic in an additional header that includes & Ti&ld
to guard against problems from forwarding loops.

Several other previous works have addressed the inefficiginc
spanning tree routing in Ethernet. SmartBrid@es [20] sftgtimal
routing using source specific spanning trees. LSOM [13] psep
using link state routing for Ethernet as well. Vikirig[21]liders
data over multiple spanning trees to improve network réltsitand
throughput.

RSTP with Epochs[11] modifies RSTP to eliminate the count
to infinity problem and consequently eliminates count toniiyi
induced forwarding loops. That work studies the cause ofhttmu
infinity and the convergence time of RSTP and RSTP with Epochs
in simulations. However, it does not consider the impacthef t
count to infinity problem on end-to-end application perfarme,
nor does it consider other protocol vulnerabilities présen this

paper.

8. CONCLUSIONS

Although Ethernet is a pervasive technology, we have shbam t
it can suffer from serious problems due to simple local faiu
These problems include extended periods of network-widanhe
packet loss, and in some cases complete network meltdowms. T
address these problems, we introduced the EtherFuse, aavise d
that is backward compatible and requires no change to tiséimxi
hardware, software, or protocols. We implemented a prpobf
the EtherFuse and used this prototype to demonstrate thetieé-
ness of the EtherFuse.

We have shown that the EtherFuse is very effective at reduc-
ing the effects of a forwarding loop. Between the onset ofra fo
warding loop and its detection, the network may suffer fronery
brief period of packet duplication. However, the EtherFigsable
to quickly stop packet duplication before it escalates mgtwork
congestion and packet loss. The EtherFuse is also able igateit
the effects of the count to infinity by reducing the spannireget
convergence time. However, the impact of the EtherFuse ontco
to infinity is limited by the design of the spanning tree poutis.
Nevertheless, EtherFuse is able to provide its benefits iayathat
is fully backward compatible.
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