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ABSTRACT
Unexplained performance degradation is one of the most severe prob-
lems in data center networks. The increasing scale of the network
makes it even harder to maintain good performance for all users with
a low-cost solution. Our system SpiderMon monitors network per-
formance and debugs performance failures inside the network with
little overhead. SpiderMon provides a two-phase solution that runs
in the data plane. In the monitoring phase, it keeps track of the per-
formance of every flow in the network; upon detecting performance
problems, it triggers a debugging phase using a causality analyzer to
find out the root cause of performance degradation. To implement
these two phases, SpiderMon exploits the capabilities of high-speed
programmable switches (e.g., per-packet monitoring, stateful mem-
ory). We prototype SpiderMon on using the BMv2 model of P4, and
our preliminary evaluation shows that SpiderMon is able to quickly
find the root cause of performance degradation problems with mini-
mal overhead. SpiderMon achieves nearly-zero overhead during the
monitoring phase and efficiently collects relevant data from switches
during the debugging phase.

CCS CONCEPTS
• Networks Network monitoring; Programmable net-
works; Data center networks.

KEYWORDS
Performance diagnosis, in-network telemetry, P4, network prove-
nance

1 INTRODUCTION
A low-cost network diagnostic system is essential to meeting per-
formance requirements of modern applications. Many performance
degradation problems are caused by traffic contention [5], and such
contention can lead to high end-to-end delays for both related and
unrelated traffic [31]. Therefore, it is critical to monitor performance
by collecting fine-grained information and process the information
to pinpoint the root causes of performance degradation. By doing
so, network operators can understand their networks better and use
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appropriate configurations to meet the performance requirements.
However, as the network size grows, collecting and processing the
information for diagnosis become extremely expensive and challeng-
ing.

Broadly, the task of performance diagnosis can be divided into
monitoring and debugging phases. In the monitoring phase, a system
needs to detect high end-to-end delay that traffic may experience.
In the debugging phase, the system should identify the root cause
for the abnormally high delay. To do this, each phase requires dif-
ferent types of information at different locations in the network.
For instance, consider a problem where packets experienced high
end-to-end delay due to traffic contention (therefore queuing delay)
across multiple hops. Detecting the delay would require tracking
the time that packets spent at each hop; further identifying the root
cause would require tracking flows that shared the same queues with
these packets. Moreover, such information needs to be collected in a
network-wide manner.

There has been much recent work on network diagnosis. On the
one hand, we have systems that run either at hosts or switches [6, 9,
11, 18, 20, 21] which leverage programmable switches to monitor
traffic and collect fine-grained information (e.g., flow-level, packet-
level) on small time scales (e.g., milliseconds to seconds). This
design choice enables high network-wide visibility, but incurs a
large resource overheads (e.g., network bandwidth, processing, and
storage). Alternatively, query-based systems [10, 13, 25, 26, 32, 34,
35] reduce the overhead by executing a set of diagnostic queries on
packet streams and filter the relevant data. However, these systems
do not keep track of the flows that share the queues across switches,
thus cannot do network-wide diagnosis accurately. On the other hand,
systems relying on both switches and hosts [7, 12, 14, 16, 19, 23, 24,
29–31, 36] for network-wide diagnosis leverage the resources at the
hosts to collect historical data and maintain flow-level statistics. But,
they tend to be too slow to react to “gray failures” (e.g., performance
degradation) as the problem might disappear by the time the hosts
detect it, inform a controller, and the controller retrieves data; thus,
they are inaccurate.

Therefore, having a diagnosis system that achieves either high
accuracy or low overhead is not hard, but achieving both simultane-
ously is challenging.

We present SpiderMon, a network-wide diagnosis system that
aims to bridge the gap between accuracy and overhead by monitoring
and collecting relevant telemetry data in a distributed manner. The
key idea is that every switch maintains fine-grained telemetry data
(e.g., per-flow records) in the data plane for a short period of time
depending on the available memory resources, and the information
is offloaded to a central entity only when a performance degradation
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(e.g., high latency) is detected. In this way, the central entity would
receive only a tiny fraction of network-wide telemetry data while
still be able to accurately find the root cause of the performance
problem by correlating the telemetry data received from a small
subset of relevant switches.

To realize this idea in practice, SpiderMon resolves two technical
challenges. The first challenge is to detect the performance degrada-
tion without interfering with the actual packet processing. For this
we leverage a capability of programmable switches that provides
the amount of time a packet is spent in a queue. SpiderMon piggy-
backs the accumulated delay information in every packet header,
and checks whether the delay exceeds a certain threshold at every
hop. If so, a problem is detected (more details in §3.1).

The second challenge is to debug and find the root cause of the
performance degradation. For this, SpiderMon notifies and offloads
telemetry data (e.g., per-flow records) relevant to the degradation
from the involved switches in the network. SpiderMon views this
as a provenance graph of the network events that are related to the
performance degradation. The abstraction of the provenance graph
captures all the events which cause the degradation as nodes in the
graph, and the causalities among events (e.g., flow contentions) are
represented using edges in the graph (more details in §2.2).

To notify relevant switches in the graph, SpiderMon provides an
audit request system using stateful memory in the programmable
switches. The system maintains two compact data structures: (1)
a per-switch timeout bloom filter that keeps track of flows-to-port
mappings; (2) a per-port per-epoch data structure that keeps track of
the incoming ports on which traffic is received (more details in §3.3).
When SpiderMon detects a performance degradation, the system
issues a notification (i.e., audit request) and uses these two data
structures to propagate the audit request to relevant switches in the
network. Every switch that receives the audit request would offload
its local telemetry data (e.g., flow records) to a central monitoring
server for analysis. For instance, to find the root cause, we can
construct a flow-level provenance graph and find the root cause by
correlating the flow-level information in both temporal and spatial
dimensions.
Contributions. We present SpiderMon, a lightweight system to
diagnose latency problems accurately. We have implemented an
initial prototype of SpiderMon, and our preliminary results show
that SpiderMon can diagnose latency problems with high accuracy
while consuming minimal switch memory (tens of KBs) and control
plane bandwidth (tens of Mbps).

2 OVERVIEW
2.1 Network Performance Degradation
As a concrete example, consider the case presented in Figs.1(a)
and 1(b). The green flow shows a victim TCP connection which
is forwarded from switch 5 to switch 8 through switches 1, 0 and
4. In the middle of the transfer, two UDP flows start transferring
from switch 6 to 7 and from 7 to 8 separately. From this time,
the green TCP flow will get delayed at switch 0, then switch 4,
and the accumulated delay would exceed an acceptable threshold
at switch 4. Here, the high end-to-end delay is the accumulated
result of multiple smaller delays along the victim flow’s path, so
it requires information from all the switches along that path for

(a) No conflict (b) Accumulated conflict

Figure 1: Multiple contentions have caused a transient perfor-
mance problem

a successful diagnosis. Besides, such performance problems can
be sporadic, because they do not deterministically depend on the
network configuration. Because multiple contention happening at
the same time is not a high-probability event, and a contention only
lasts for a short amount of time, these problems are also transient in
their appearance.

As we can see, network performance degradation problems are a
kind of “gray failures”, which are subtle to detect and diagnose but
can cause significant problems to the applications, such as contention
between multiple flows, priority contention, and load imbalance.
There are three common key features that make these problems
challenging to diagnose.
Sporadic. Performance degradation are usually sporadic—i.e., they
happen occasionally at different places and at unpredictable times [3].
In order to detect these problems, an effective solution needs to
monitor every flow all the time.
Network-wide. The root causes for complex performance problems’
may be network-wide, e.g., due to the contention of multiple flows
at different hops. The interfering flows may even have normal perfor-
mance [31], despite the fact that they cause performance degradation
to other flows. Thus root cause diagnosis requires network-wide
monitoring.
Transient. Traffic contentions sometimes are transient and disappear
quickly [17], because degradation happens when there are multiple
flows contending for resources. This feature requires the debugging
system to keep fine-grained information about recent events.

2.2 The Provenance Model
To diagnose network performance problems in a sufficient and ef-
ficient way, we need flow-level information from all switches that
are causally related. Determining which types of information are
relevant can be guided by the following provenance model.

We define the provenance graph model G :=
(
V,E

)
for all events

in the network. G is a directed acyclic graph, where each node v
represents an event, and each directed edge e =

(
v1→ v2

)
between

two nodes represents the provenance relation that v1 leads to the
event v2. One node can have multiple incoming edges and multiple
outgoing edges to represent multiple causes and multiple outcomes,
respectively. G can provide all the information needed by the diagno-
sis system. If one packet experiences higher accumulative delay than
a threshold, the diagnosis system will be triggered to start construct-
ing the provenance graph of this high latency problem. A typical
provenance graph query would require tracing back all the events
which receive and send packet p in the graph G and also those send
events to the same port P as the packet p at each hop.
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In order to capture the provenance of events, a diagnosis system
needs to perform two tasks. First, the monitoring component detects
the anomalies—i.e., high latency. Second, the debugging component
needs to be invoked to find the root cause of anomalies based on
the telemetry information provided by all the related nodes in the
problems’ provenance graphs. Besides, minimizing the volume of
the retrieved telemetry data is also important for scalability.
Precision. The precision requirement refers to the need to capture all
relevant events and their timing. Performance degradation problems
happen sporadically in the network, so the accumulated delay D
at each hop of every flow needs to be monitored to capture all
problems in the network. Ideally, we only collect information from
all the relevant nodes in the problem’s provenance graph [8].
Scalability. To make the monitoring and debugging system scalable,
we need to keep the overhead of the whole system low. A related
consideration, for instance, is how much involvement of a controller
is required for problem diagnosis. The debugging information sent
to the analyzer should also be tailored to reduce data volume.

2.3 Existing Solutions Fall Short
Existing solutions all fall short in simultaneously meeting both pre-
cision and scalability requirements.
Monitoring solutions. Network monitoring systems install moni-
toring agents in switches or hosts. For the monitoring system im-
plemented in the switches, normally the agents will report the data
extracted from the flows to a central controller for analysis, like
LOCO [1], Netflow [2], sflow [4] and flowradar [20]. These solu-
tions can detect the problem and perform some simple diagnosis
based on the telemetry data collected from the network. However,
the overhead of collecting and analyzing such data is very high,
because the telemetry data is collected by the monitoring system
constantly. Other solutions like NetSight [14] collect information
network-wide, even on network nodes that are not relevant to the
problem, making it hard to scale. There are also some solutions com-
bining in-network and end-host monitoring, e.g., SwitchPointer [31]
and PathDump [30]. However, since they need to retrieve data from
multiple switches and hosts, a central controller must be invoked
to retrieve the data from all relevant nodes. Due to the slowness of
this process, the relevant information that needs to be sent to the
analyzer might have been purged from memory by the switch.
Query-driven solutions. These solutions compile queries into
telemetry programs and collect data from all the query-related net-
work nodes. Example systems in this class include Sonata [13] and
Marple [25]. They require that the operators know the nature and lo-
cation of the problems. Performance problems are different because
they could arise from random congestion—the problem may happen
at random switches sporadically. Query-driven solutions need to
monitor all the switches and collect information continuously, which
is resource-intensive and unscalable.

2.4 The SpiderMon System
SpiderMon uses packets to carry latency information and detects ac-
cumulated latency inside the network, and uses the switch hardware
to provide flow-level information and flow contention information
to identify the root cause of the problem. As shown in Fig. 2, Spi-
derMon uses an always-on performance monitor to capture the high

Figure 2: System architecture

accumulated latency problems and other performance degradation
events inside the network. The causality data structure keeps track of
the most recent contention information. The telemetry data structure
preserves the most recent packet-level information in a logically
circular buffer.

3 DESIGN
3.1 Problem Detection
The accumulated queuing latency is used to identify the flow’s con-
gestion level. SpiderMon monitors every flow at every hop by piggy-
backing the accumulated delay information with an additional header
field L. Whenever a packet enters the egress pipeline, L will be up-
dated by adding the queuing delay L = L queue_time_delta. Then
it will be compared with the threshold MAX_L to check whether
there is an accumulated performance problem. In contrast to lever-
aging switch data structures to remember latency information, this
method does not require the switches to be synchronized. Also, in
contrast to storing per-hop latency information in multiple headers,
the accumulated latency field guarantees that one header is enough
regardless of the hop count. Once the problem has been detected, the
latency monitor will notify the audit request agent in the switch data
plane with the 5-tuple of the congested flow, along with its egress
and ingress port information. SpiderMon limits the number of events
that can be triggered in a period on the same switch. If the queuing
delay exceeds a threshold, a global audit request will be broadcasted
so information needed for diagnosis is collected once globally, and
subsequently all switches are prevented from generating new audit
requests for a fixed amount of time.

Other than the high accumulated latency trigger, SpiderMon can
also support other user-defined triggers such as packet drops, packet
timeout events, and pause frames. Take the pause frame as an exam-
ple: receiving the PAUSE request packet would be a proper trigger
for this problem, and once the problem is detected in the switch,
SpiderMon can use the same mechanism to trigger the diagnosis
procedure for further analysis.

3.2 Provenance Graph Approximation
The audit request agent sends the audit requests from the problematic
switch to all relevant switches with a unique event ID. It aims to
cover an approximate graph which contains the switches in the
provenance graph at low overhead.
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Figure 3: Audit requests propagation
We define two kinds of switches: switches along the historical

path of the victim flow are “trunk” switches, and switches which send
a large amount of traffic to the “trunk” switches during congestion
are “branch” switches. The coverage for a specific problem is a tree
whose root is the problematic switch, trunk is the historical path,
and the branches are the traversed paths of the interfering traffic. To
guarantee the full coverage of relevant switches, the audit requests
will also be sent several hops away from “trunk” switches. With a
higher hop count, more telemetry information will be collected, and
this will also result in higher overhead. Take Fig. 3 as an example:
the high latency was detected at switch 7. Then the audit request will
be sent to the reverse path of the victim flow—trunk switches 6, 5,
and 4, as well as branch switches 0 and 10. SpiderMon uses this as
an approximation of the provenance graph. Thus, audit requests are
generated at the problematic switch, then propagated back via the
victim’s historical path and multicasted along the branches at every
hop along the reverse path.

SpiderMon chooses to maintain monitoring data that provides
provenance in the switch rather than piggybacking it in the packet
headers. This is because the packet header cannot carry historical
contention information in the network; and 2) the overhead of addi-
tional headers increases with the hop count. In contrast, the overhead
of maintaining data inside the switch remains the same regardless of
the average hop count.

3.3 Supporting Data Structures
SpiderMon introduces causality data structures to help the audit
request agent to find all relevant switches in the provenance graph.
Historical Path Information. SpiderMon uses timeout bloomfilter
to track the victim flow’s historical path. Regular bloomfilters allow
the insertion of flow IDs and the testing of the presence of a flow ID.
However, bloomfilter is an accumulative data structure which can
only support insertions; its false positive rate will increase with the
number of flow IDs inserted. So we need a timeout feature to remove
the outdated data from the bloomfilter, which requires more memory
but provides a “sliding window” of the historical flow information.

For a switch with N ports, each egress pipeline maintains a bloom
filter with M rows and N cells per row, and each column represents
a bloom filter for the corresponding port. The timeout bloom filter
replaces the bit record with a short timestamp, which can be used
to remove outdated record when querying the bloom filter. The
details about maintaining and querying the bloom filter are shown in

Algorithm 1: Timeout bloomfilter data structure
Input: B: Timeout Bloomfilter, inPort: Incoming port index,

5− tuple: 5-tuple, T S: Timestamp, isAR: Is audit
request?

1 if isAR == False then
2 hashValues = HASH

(
5− tuple

)
3 for hashValue ∈ hashValues do
4 B

[
hashValue

][
inPort

]
← T S

5 end
6 else
7 hashValues← HASH

(
5− tuple

)
8 i f Hit← 1
9 for hashValue in hashValues do

10 i f Hit← isValid
(
T S

)
∧ i f Hit

11 end
12 in Return i f Hit
13 end

Algorithm 13, Fig. 4(a) and Fig. 4(b). The memory footprint of this
data structure can be reduced by shrinking the timeout threshold for
the bloom filter, namely, storing the path information for a shorter
time. Therefore, there is a trade-off between the length of path history
and memory usage.
Flow Contention Information. A per-port per-epoch data structure
is used to collect the flow contention information, tracking all rele-
vant ingress ports that are sending traffic to the victim’s egress queue.
For each egress port, the switch maintains a bit array whose size
is the same as the number of switch ports. And each bit in the bit
array represents whether a port has sent data to this egress port in
the last epoch. All ports with bit 1 will be considered as suspect of
contending flows, and the audit request will be sent to them if the
audit request of the victim flow is received.
Multicast Group Vector. The per-port per-epoch bitarray serves as
the multicast group vector for the audit request multicast. Because
switches have limited number of pre-defined multicast groups, the
multicast group indexes cannot be mapped to multicast groups arbi-
trarily. Thus, SpiderMon performs a broadcast and uses the multicast
group vector to drop the packets that are not required to be sent from
some egress ports. For instance, the vector 0101 will drop packets
for port 0 and 2.

3.4 Telemetry Information
SpiderMon requires switches to maintain per-flow records for further
analysis. Our main focus here is not to develop a new data structure
for monitoring; rather, we explore how SpiderMon can be inte-
grated with existing in-network telemetry systems (e.g., Marple [25],
*Flow [28]) and end-host based telemetry systems (e.g., Switch-
Pointer [31], Confluo [19]). Below, we analyze SpiderMon’s re-
quirement on the time duration for which a switch must maintain
telemetry data. Consider the maximum allowed end-to-end delay to
be T . The time it takes to propagate audit requests from the initiator
to relevant switches—assuming there is no congestion in the reverse
path—is half RT T in the worst case. Since the congestion is detected
after accumulated queuing delay exceeds the maximum allowed la-
tency, i.e., T , the lower bound on the time duration is T RT T . For
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(a) Update timeout bloom filter (b) Test timeout bloom filter (c) Per-port per-epoch data structure

Figure 4: Causality data structures

the current implementation, SpiderMon collects per-flow informa-
tion, including the flow 5-tuple f low_tuples, the start timestamp
ts_start, the last received packet’s timestamp ts_last, total packets
length total_volume from the flow start time, and the priority of the
flow prior. The per-flow telemetry data is stored in a probabilistic
data structure, which will update the out-of-date flow information
upon hash collisions. We can always reduce the memory usage for
telemetry data by limiting the number of recorded flows. For ex-
ample, consider a 10Gbps link bandwidth with 10000 concurrent
flows and 5000 new flows per second [27], 1MB switch memory can

support around
1MB
22B −10000

5000 = 7s of per-flow historical data (22 bytes
per flow: 13 byte for the five tuples, 4 bytes each for the start/end
timestamps; 1 byte for priority).

3.5 The Provenance Analyzer
Different from SwitchPointer [31] and Confluo [19], which require
a central monitoring agent for coordination between network nodes,
SpiderMon’s provenance analyzer does not guide the monitoring
task, avoiding the high control loop delay. With a central agent in the
debugging phase, the system is too slow to react to network problems
and potentially fails to retrieve essential information from switches
in the given time budget. SpiderMon addresses this with in-network
congestion detection followed by audit request dissemination. The
provenance analyzer of SpiderMon only receives the telemetry in-
formation passively, and analyzes the possible root causes with
information stored on the analyzer server. The analyzer does not
stand in the critical path for processing, thus not affecting the detec-
tion efficiency; the useful telemetry data are stored by the analyzer
for processing.

After the provenance analyzer receives the reported telemetry
data from the switches, it will group the data based on the event
ID. For each performance degradation event that triggered the diag-
nosis procedure, an identical ID is assigned to it and all the audit
requests and telemetry data will carry this event ID when they are
collected. Thus, based on this information, the provenance analyzer
can construct a complete provenance graph and find out the root
causes of the performance problems. Then the analyzer would limit
the sending rate or change the flow priority from the root cause hosts
to relief the latency problem.

Take the microburst problem as an example. First, all the switches
related to the victim flow in the provenance graph will be informed,
including the ones sending microburst UDP flows. After receiving
the telemetry data from all the switches, the analyzer will find out
the flows which contended with the victim flow during its lifetime.
Among these flows, the microburst flows will be recognized by
their short active time tsactive = ts_last− ts_start and large flow

volume total_volume, then the provenance analyzer will take these
microburst flows as one of the possible root causes and report to the
network operator.

4 INITIAL VALIDATION
We first explore the tradeoff between the precision and overhead of
SpiderMon at the switch level, then simulate a datacenter network
in Fig.1 with a NS3+P4(BMv2) prototype of SpiderMon for a case
study.

4.1 Overhead
Bloomfilter Precision. The timeout bloomfilter is an approximate
data structure that trades off overhead for accuracy. Consider a
timeout period of t s, a flow arrival rate of n flows/s, k hash func-
tions, and m bloomfilter slots, then the false positive (FP) rate is

p f alse_positive =
(

1− e−
kn
m

)k
. When k = m

n ln2, the FP rate is mini-

mum: p f alse_positive = 0.5
m
n ln2. If we want to keep the FP rate fixed,

the bloomfilter size is linear to the flow arrival rate. Fixing k = 4, we
change the size of the bloomfilter under different flow arrival rates.
The FP rate with different sizes are shown in Fig. 5(a). The FP rate
of a smaller bloomfilter grows faster with the increase of the flow
arrival rate and the maximum flow arrival rate would determine the
choice of the size.
Memory. The memory overhead of bloomfilter, per-epoch per-port
data and telemetry data increases with the port count and flow arrival
rate. A typical datacenter server sends 200 flows per seconds on
average [27] and up to 10000 flows/s. Fig. 5(b) shows the optimal
memory requirement with different port count given a flow arrival
rate of 1000/s, showing that all the per-epoch per-port data increases
dramatically. Fig.5(c) shows the memory usage under different flow
arrival rates in a 32-port switch. As expected, the bloomfilter and
telemetry data increase linearly with the flow arrival rate.
Hardware Implementation. As for implementation on hardware,
the memory size of modern switches is increasing [22], and more
ports usually also leads to more on-chip memory. To implement
SpiderMon on hardware switches, the queuing information in the
egress pipeline needs to be provided. For some other switch archi-
tectures, like SimpleSumeSwitch [15](NetFPGA), P4FPGA [33],
SpiderMon can also be implemented by taking the next switch’s
pipeline as the "egress pipeline" of the previous switches, in order to
detect congestion and collect telemetry information.
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(a) Bloom filter performance (b) Different port counts

(c) Different flow handling rates (d) Link utilization

Figure 5: Evaluation of SpiderMon. The timeout bloom filter can achieve high accuracy with size larger than 8k entries; memory us-
age of bloom filter and telemetry data increases linearly with the port count; memory usage of per-epoch per-port data is independent
of flow arrival rate; SpiderMon requires significantly lower bandwidth than the always-on baseline, achieving near-zero overhead in
terms of the control plane bandwidth.

4.2 Effectiveness
We introduce two baseline systems: 1) an always-on baseline which
collects telemetry data from all the switches periodically; and 2) a
reactive baseline that monitors high-latency problems in the data
plane and notifies the provenance analyzer to collect the telemetry
data from the problematic switch as well as its neighbors. The first
baseline can achieve high coverage with the cost of more telemetry
data, whereas the second uses heuristics to collect less telemetry
data with the risk of achieving a low coverage.

Each egress port of the switch has a buffer size of 64 packets runs
at 1Gbps. As Fig.1 shows, a TCP flow is sent from switch 5 to 8, at
the same time, the burst UDP flows start from switches 6->7 and
switch 7->8 at 90% line rate. Flow contention is observed at switch
0 and 4 with the green victim flow. The two micro-burst flows cause
an interference that exceeds the threshold for the accumulated delay.
Coverage. For the always-on baseline, the telemetry data from all
the switches will be collected by the provenance analyzer. Since the
provenance data at all nodes can be covered, the root causes of the
problem are identified as contention at switches 6 and 7; but this
comes with high memory overhead and link bandwidth overhead.
For the reactive baseline, switch 4 detects the high accumulated
delay and reports data to the provenance analyzer, so data from
switch 4, as well as from its relevant neighbor switches 0 and 7 are
collected, which only cover part of the provenance graph. In contrast,
SpiderMon detects the high accumulated delay at switch 4, but the
audit requests are sent to all the relevant switches, namely, switches

0, 1, 2, 4, 5, 6, and 7. The root causes are identified as switch 6 and
7; it identified all relevant switches, achieving full coverage with low
overhead.
Link Utilization. Assuming that the provenance analyzer is con-
nected to a 128-switch network through a 10Gbps link. Fig.5(d)
shows the provenance analyzer’s link bandwidth utilization for Spi-
derMon and the two baselines. For SpiderMon and the reactive
baseline, telemetry data is only sent when there is a problem, so
the average link utilization increases with the number of congestion
events per minutes, but they use less than 0.1% of the control plane
bandwidth. For the always-on baseline, it collects much more data
and leads to a link utilization that is much higher (10.84%).

5 CONCLUSION
SpiderMon is a system that achieves high coverage and low over-
head in diagnosing high-latency problems. It monitors every flow in
the data plane, and triggers diagnostic queries upon detecting high
latency. By tracing back the path of the interfering flows, SpiderMon
can precisely collect diagnostic information in as as-needed fashion.
Our preliminary validation shows that SpiderMon can accurately
pinpoint root causes while collecting much less telemetry data. As
ongoing work, we are developing a full SpiderMon prototype on
hardware switches and plan to apply it for more case studies.
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