

Comp 311
Principles of Programming Languages

Lecture 2

Syntax

Corky Cartwright

August 25, 2010

Syntax: The Boring Part of
Programming Languages

• Programs are represented by sequences of symbols.
• These symbols are represented as sequences of characters

that can be typed on a keyboard (ASCII).
• What about Unicode?

• To analyse or execute the programs written in a language,
we must translate the ASCII representation for a program
to a higher-level tree representation. This process, called
parsing, conveniently breaks into two parts:
– lexical analysis, and

– context-free parsing (often simply called parsing).

Lexical Analysis
• Consider this sequence of characters: begin middle end

• What are the smallest meaningful pieces of syntax in this phrase?

• The process of converting a character stream into a
corresponding sequence of meaningful symbols (called
tokens or lexemes) is called tokenizing, lexing or lexical
analysis. A program that performs this process is called a
tokenizer, lexer, or scanner.

• In Scheme, we tokenize (set! x (+ x 1)) as
(set! x (+ x 1))

• Similarly, in Java, we tokenize

System.out.println("Hello World!"); as

System . out . println ("Hello World!") ;

Lexical Analysis, cont.

• Tokenizing is straightforward for most languages
because it can be performed by a finite automaton
[regular grammar] (Fortran 66/77 is an exception
because all blanks outside of literals are ignored!).

– The rules governing this process are (a very
boring) part of the language definition.

• Parsing a stream of tokens into structural
description of a program (typically a tree) is
harder.

Parsing

• Consider the Java statement: x = x + 1;
where x is an int variable.

• The grammar for Java stipulates (among other things):

– The assignment operator = may be preceded by an identifier and must be
followed by an expression.

– An expression may be two expressions separated by a binary operator,
such as +.

– An assignment expression can serve as a statement if it is followed by the
terminator symbol ;.

Given all of the rules of this grammar, we can deduce that the sequence of
characters (tokens)

x = x + 1;

is a legal program statement.

Parsing Token Streams into Trees
• Consider the following ways to express an assignment

operation:

 x = x + 1
 x := x + 1
 (set! x (+ x 1))

• Which of these do you prefer?
• It should not matter very much.

• To eliminate the irrelevant syntactic details, we can create a
data representation that formulates program syntax as trees.
For instance, the abstract syntax for the assignment code
given above could be

 (make-assignment <Rep of x> <Rep of x + 1>)

• or
 new Assignment(<Rep of x> , <Rep of x + 1>)

A Simple Example

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp)

Num is the set of numeric constants (given in the lexer specification)
Var is the set of variable names (given in the lexer specification)

• To represent this syntax as trees (abstract syntax) in Scheme

 ; exp := (make-num number) + (make-var symbol) + (make-app exp exp) +
 ; (make-proc symbol exp)
 (define-struct (num n))
 (define-struct (var s))
 (define-struct (app rator rand))
 (define-struct (proc param body)) ;; param is a symbol not a var

– app represents a function application
– proc represents a function definition

• In Java, we represent the same data definition using the composite pattern

Top Down (Predictive) Parsing

Idea: design the grammar so that we can always tell what rule to use
next starting from the root of the parse tree by looking ahead some small
number [k] of tokens (formalized as LL(k) parsing).

Can easily be implemented by hand by writing one recursive procedure
for each syntactic category (non-terminal symbol). The code in each
procedure matches the token pattern of the right hand side of the rule for
that procedure against the token stream. This approach to writing a
parser is called recursive descent.

Conceptual aid: syntax diagrams to express context free grammars.

 Recursive descent and syntax diagrams are discussed in next lecture.

Formalizing Grammatical Rules
The grammatical rules for a given programming language are codified
in a special form of inductive definition (of a set of strings of tokens)
called a context-free grammar (CFG).
What is a CFG?

A recursive definition of a set of strings; it is identical in format to the data
definitions used in Comp 210/211 except for (i) the fact that types are
called syntactic categories or non-terminal symbols and (ii) it defines sets
of strings (using concatenation) rather than sets of trees (objects/structs)
using tree construction. The syntactic category of the entire language is
called the root symbol of the grammar; it generates the language. In other
words, it designates the syntax of complete programs.

Example. The language of expressions generated by <expr>
 <expr> ::= <term> | <term> + <expr>

 <term> ::= <number> | <variable> | (<expr>)

Some sample strings generated by this CFG
 5 5+10 5+10+7 (5+10)+7

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

