

Comp 311
Principles of Programming Languages

Lecture 3

Parsing

Corky Cartwright

August 27, 2010

Top Down Parsing
• Review: What is a context-free grammar (CFG)?

A recursive definition of a set of strings; it is identical in format to the data
definitions used in Comp 211 except for the fact that it defines sets of strings
(using concatenation) rather than sets of trees (objects/structs) using tree
construction. The root symbol of a grammar generates the language of he
grammar. In other words, it designates the syntax of complete programs.

• Example. The language of expressions generated by <expr>
<expr> ::= <term> | <term> + <expr>
<term> ::= <number> | <variable> | (<expr>)

• Some sample strings generated by this CFG
 5 5+10 5+10+7 (5+10)+7

• What is the fundamental difference between generating strings
and generating trees?

– The derivation of a generated tree is manifest in the structure of the tree.
– The derivation of a generated string is not manifest in the structure of the string; it

must be reconstructed by the parsing process. The reconstruction may be
amibiguous.

Top Down Parsing cont.

• Data definition corresponding to sample grammar:

Expr = Expr + Expr | Number | Variable

• Why is the data definition simpler? (Why did we
introduce the syntactic category <term> in the CFG?)

• Consider the following example:

5+10+7

• Are strings a good data representation for programs?

• Why do we use string representations for programs?

Parsing algorithms
• Top-down (predictive) parsing: use k token lookahead to

determine next syntactic category.
• Good methodology: use syntax diagrams for grammars

expr:

term:

+ expr

number

variable

(expr)

term

Best Example of Syntax Diagrams

Syntax of Pascal as described by its creator Niklaus (Klaus) Wirth.
See:

 http://pascal.comsci.us/syntax/module/diagrams.html
 http://www.cfbsoftware.com/files/CPSyntax.pdf

Key Ideas in Top Down Parsing
• Each syntax diagram is effectively pseudocode for a corresponding procedure that

parses strings of that form.

• Use k token look-ahead to determine which direction to go at a branch point in the
code for a syntax diagram.

• Use peeking provided by a lexer where necessary to avoid consuming the next
token in the input stream. Reading can be used instead of peeking if the token
beyond can be conveniently passed as a separate argument to subsequence
subsequent parse procedures.

• token separately from the parse stream and to pass it explicitly as an argument to
some parse procedures. (The contracts should make it clear whether

• Example: 5+10
– Start parsing by reading first token 5 and matching the syntax diagram for expr
– Must recognize a term; invoke rule (diagram) for term
– Select the number branch (path) based on current token 5
– Digest the current token to match number and read next token +; return from term back to

expr
– Select the + branch in expr diagram based on current token
– Digest the current token to match + and read the next token 10
– Must recognize an expr; invoke rule (diagram) for expr
– Must recognize a term; invoke rule (diagram) for term
– Select the number branch based on current token 10
– Digest the current token to match number and read next token EOF
– Return from term; return from expr

Designing Grammars for Top-Down Parsing

• Many different grammars generate the same language (set of
strings):

• Requirement for any efficient parsing technique: determinism
(non-ambiguity)

• For deterministic top-down parsing, we must design the grammar
so that we can always tell what rule to use next starting from the
root of the parse tree by looking ahead some small number (k)
of tokens (formalized as LL(k) parsing).

• For top down parsing
– Eliminate left recursion; use right recursion instead

– Factor out common prefixes (as in syntax diagrams)

– Use iteration (loops) in syntax diagrams instead of right recursion where
necessary

– In extreme cases, hack the lexer to split token categories based on local
context

Other Parsing Methods

When we parse a sentence using a CFG, we effectively build a (parse) tree showing how to construct the
sentence using the grammar. The root (start) symbol is the root of the tree and the tokens in the input
stream are the leaves.

Top-down (predictive) parsing is simple and intuitive, but is is not as powerful a deterministic parsing
strategy as bottom-up parsing which is much more tedious. Bottom up deterministic parsing is
formalized as LR(k) parsing.
Every LL(k) grammar is also LR(1) but many LR(1) grammars are not LL(k) for any k.

No sane person manually writes a bottom-up parser. In other words, there is no credible bottom-up
alternative to recursive descent parsing. Bottom-up parsers are generated using parser-generator tools
which until recently were almost universally based on LR(k) parsing (or some bottom-up restriction of
LR(k) such as SLR(k) or LALR(k)). But some newer parser generators like javacc are based on
LL(k) parsing. In DrJava, we have several different parsers including both recursive descent parsers
and automatically generated parsers produced by javacc.

Why is top-down parsing making inroads among parser generators? Top-down parsing is much easier to
understand and more amenable to generating intelligible syntax diagnostics. Why is recursive descent
still used in production compilers? Because it is much easier to generate sensible error diagnostics.

If you want to learn about the mechanics of bottom-up parsing, take Comp 412.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

