

Comp 311
Principles of Programming Languages

Lecture 4
The Scope of Variables

Corky Cartwright

August 30, 2010

Variables

• What is a variable?
A legal symbol without a pre-defined (reserved) meaning that can be bound to a
value (and perhaps rebound to a different value) during program execution.

– Examples in Scheme/Java

 x y z
– Non-examples in Java
+ null true false 7f

– Complication in Java: variables vs. fields

• What happens when the same name is used for more than one
variable?
– Example in Scheme:

 (lambda (x) (x (lambda (x) x)))

We use scoping rules to distinguish them.

Some scoping examples

• Java:

class Foo {
 static void doNothing() {
 int[] a = ...;
 for int i = 0; i < a.length; i++) { ... }
 ...
// <is a in scope here? is i in scope here?>
 ...
 }
}

What is the scope (part of the program where it can be
accessed/referenced) of a?

What is the scope of i?

Formalizing Scope
• Focus on language the pedagogic functional language LC. LC (based

on the Lambda Calculus) is the language generated by the root symbol
Exp in the following grammar

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp)

where Var is the set of alphanumeric identifiers excluding lambda
and is the set of integers written in conventional decimal radix
notation. (LC is very restrictive; there are no operators on integers.
Later in the course, we will slightly expand it.)

• If we interpret LC as a sub-language of Scheme, it contains only one
binding construct: lambda-expressions. In

(lambda (a-variable) an-expression)

a-variable is introduced as a new, unique variable whose scope is
the body an-expression of the lambda-expression (with the
exception of possible "holes", which we describe in a moment).

Free and Bound Occurrences
• An important building block in characterizing the scope of variables is

defining when a variable x occurs free in an expresssion. For LC, this notion
is easy to define inductively.

• Definition (Free occurrence of a variable in LC):
Let x, y range over the elements of Var. Let M, N range over the elements of
Exp. Then x occurs free in:

– y if x = y;

– (lambda (y) M) if x != y and x occurs free in

– (M N) if it occurs free either in M or in N.

The relation x occurs free in y is the least relation on LC expressions
satisfying the preceding constraints.

• It is straightforward but tedious to define when a particular occurrence of a
variable x (identified by a path of tree selectors) is free or bound; the
definition proceeds along similar lines to the definition of occurs free given
above.

• Definition: an occurrence of x is bound in M iff it is not free in M.

Static Distance Representation
• The choice of bound variable names in an expression is arbitrary (modulo ensuring

distinct, potentially conflicting variables have distinct names).

• We can eliminate explicit variable names by using the notion of “relative
addressing” (widely used in machine language and assembly language): a variable
reference simply has to identify which lambda abstraction introduces the variables to
which it refers. We can number the lambda abstractions enclosing a variable
occurrence 1, 2, ... and simply use these indices instead of variable names. Since LC
includes integer constants, we will embolden the indices referring to variables to
distinguish them from integer constants.

• Examples:
– (lambda (x) x) ---> (lambda 1)
– (lambda (x) (lambda (y) (lambda (z) ((x z)(y z)))))

 --->

(lambda (lambda (lambda ((3 1)(2 1)))))

Generalized Static Distance
• In LC, lambda abstractions are unary; only

one variable appears in the parameter list.
• In practical programming languages,

parameter lists can contain any finite number
(within reason) of parameters.

• How can we generalize deBruijn notation to
accommodate lambda abstractions of arbitrary
arity?

• Does a variable reference have to be a scalar
(physics terminology)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

