

Comp 311
Principles of Programming Languages

Lecture 9
Meta-interpreters III

Corky Cartwright

September 13, 2010

Major Challenge

LC does not include a recursive binding operation
(like Scheme letrec or local). How would we
define eval for such a construct?

•Key problem: the closure structure for a recursive
lambda must include an environment that refers to
itself!

•In imperative Java, how would we construct such an
environment. Hint: how did we build “circular” data
structures in Comp 211/212? Imperativity is brute
force.

Minor Challenge

How could we define an environment that refers to
itself in functional Scheme?

Key problem: observe that in let and lambda the
expression defining the value of a variable cannot refer
to itself.

•Solution: does functional Scheme contain a recursive
binding construct?

•How can we use this construct to define a recursive
environment?

•What environment representation must we use?

A Bigger Challenge

Assume that we want to write LC in a purely
functional language without a recursive binding
construct (say functional Scheme without define
and letrec)?

•Key problem: must expand letrec into lambda

•No simple solution to this problem. We need to
invoke syntactic magic or (equivalently) develop
some sophisticated mathematical machinery.

	Slide 1
	Slide 2
	Slide 3
	Slide 4

