

Comp 411
Principles of Programming Languages

Lecture 2
Syntax

Corky Cartwright
August 24, 2011

Syntax: The Boring Part of
Programming Languages

• Programs are represented by sequences of symbols.
• These symbols are represented as sequences of characters

that can be typed on a keyboard (ASCII).
• What about Unicode?
• To analyze or execute the programs written in a language,

we must translate the ASCII representation for a program
to a higher-level tree representation. This process, called
parsing, conveniently breaks into two parts:
– lexical analysis, and
– context-free parsing (often simply called parsing).

Lexical Analysis
• Consider this sequence of characters: begin middle end
• What are the smallest meaningful pieces of syntax in this phrase?

• The process of converting a character stream into a
corresponding sequence of meaningful symbols (called
tokens or lexemes) is called tokenizing, lexing or lexical
analysis. A program that performs this process is called a
tokenizer, lexer, or scanner.

• In Scheme, we tokenize (set! x (+ x 1)) as
(set! x (+ x 1))
• Similarly, in Java, we tokenize

System.out.println("Hello World!"); as

System . out . println ("Hello World!") ;

Lexical Analysis, cont.

• Tokenizing is straightforward for most languages
because it can be performed by a finite automaton
[regular grammar] (Fortran is an exception!).
– The rules governing this process are (a very

boring) part of the language definition.
• Parsing a stream of tokens into structural

description of a program (typically a tree) is
harder.

Parsing

• Consider the Java statement: x = x + 1;
where x is an int variable.

• The grammar for Java stipulates (among other things):
– The assignment operator = may be preceded by an

identifier and must be followed by an expression.
– An expression may be two expressions separated by a

binary operator, such as +.
– An assignment expression can serve as a statement if it is

followed by the terminator symbol ;.
Given all of the rules of this grammar, we can deduce that the

sequence of characters (tokens)
x = x + 1;
is a legal program statement.

Parsing Token Streams into Trees
• Consider the following ways to express an assignment

operation:

x = x + 1
x := x + 1
(set! x (+ x 1))

• Which of these do you prefer?
• It should not matter very much.

• To eliminate the irrelevant syntactic details, we can create
a data representation that formulates program syntax as
trees. For instance, the abstract syntax for the assignment
code given above could be

(make-assignment <Rep of x> <Rep of x + 1>)

• or
new Assignment(<Rep of x> , <Rep of x + 1>)

A Simple Example

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp)
Num is the set of numeric constants (given in the lexer specification)
Var is the set of variable names (given in the lexer specification)

• To represent this syntax as trees (abstract syntax) in Scheme
; exp := (make-num number) + (make-var symbol) + (make-app exp exp) +
; (make-proc symbol exp)
(define-struct (num n))
(define-struct (var s))
(define-struct (app rator rand))
(define-struct (proc param body)) ;; param is a symbol not a var

app represents a function application
proc represents a function definition

• In Java, we represent the same data definition using the composite pattern. In
Scala, there is a special form of class (called a variant) for representing functional
data.

Top Down (Predictive) Parsing

Idea: design the grammar so that we can always tell what rule to use
next starting from the root of the parse tree by looking ahead some small
number [k] of tokens (formalized as LL(k) parsing).

Can easily be implemented by hand by writing one recursive procedure
for each syntactic category (non-terminal symbol). The code in each
procedure matches the token pattern of the right hand side of the rule for
that procedure against the token stream. This approach to writing a
parser is called recursive descent.

Conceptual aid: syntax diagrams to express context free grammars.

 Recursive descent and syntax diagrams are discussed in next lecture.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

