

Comp 311
Principles of Programming Languages

Lecture 8
Meta-interpreters II

Corky Cartwright

January 31, 2014

Representation Tricks

• We described closures (the meaning of
lambda-expressions) as <code, env> pairs.
 Are other representations possible/defensible? Yes,

particularly in a functional language.
 Closures can be represented as (Scheme) functions.

Idea: wrap (lambda (v) …) around code applying the
pair closure in our meta-interpreter to v.

• What about environment representations?
 A functional representation mapping symbols to values

is elegant if not good software engineering.

Revised Meta-interpreter
;; V = Const | V V→
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = (listOf Binding)
;; Closure = V V→
;; eval: R Env V→
(define eval … <unchanged> …)

;; apply: Closure V V→
(define apply (lambda (cl v) (cl v)))

;; make-closure: Proc Env Closure→
(define (make-closure M env)
 (lambda (v)
 (eval (proc-body M)

 (cons (make-binding (proc-param M) v) env))))

This code does not encapsulate the representation of closures.
How would the code change if we encapsulated it? Think OO.

Closures as Functions

• Mathematically elegant

• Questionable from software engineering perspective. Why?
Functions are opaque. Their internal form cannot be
examined. (Why?) Closures as structures, in contrast, are
open to inspection.

• Not literally possible in languages like Java 5-7 that support
inner classes rather than closures. But there is a Java 5-7
equivalent: return a class implementing an interface
Lambda<V,V>, the strategy/command design pattern. Java
formulation has essentially the same advantages and
disadvantages as he Scheme formulation. Note: Comp 310
relies on libraries with interfaces ILambda<In,Out>.

Meta-interpreter with Environments as Functions
;; V = Const | V V→
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = Sym V→
;; Closure = V V→
;; eval: R Env V→
(define eval … <unchanged> …)

;; apply: Closure V V→
(define apply (lambda (cl v) (cl v)))

;; make-closure: Proc Env Closure→
(define (make-closure M env)
 (lambda (v)
 (eval (proc-body M)

 (extend (proc-param M) v env))))

(define lookup (lambda (s env) (env s)))
(define extend (lambda (s1 v env)
 (lambda (s2) (if (equal? s1 s2) v (env s2))))

Environments as Functions

• Mathematically elegant

• Questionable from software engineering perspective. Why?
Functions are generally not finite and cannot be treated as tables.
Environments, in contrast, are finite functions. One consequence of th
fact that functions are infinite objects:,functions are opaque in output
while structure closures are not.

• Not literally possible in languages like Java that support inner classes
rather than closures. But there is a Java equivalent: return a class
implementing an interface Lambda<Sym,V>, the strategy/command
design pattern. Java formulation has essentially the same advantages
and disadvantages as he Scheme formulation.

• Exercise: revise our previous correct meta-interpreters to use extend
instead of cons. Explicitly define lookup and extend.

 Important Variations on Our Meta-interpreter

• Call-by-name (CBN) beta-reduction. Recall that in our
syntactic intepreter for LC that we chose to restrict beta-
reduction to values. In practice, this restriction is very
important in languages with mutable data. But LC does not
(yet) support mutation. CBN beta-reduction is unrestricted.

• Call-by-need evaluation of arguments. There is no syntactic
equivalent since this evaluation policy is a meta-interpreter
based optimization of Call-by-name. In the presence of
mutation (or equality comparison on functions
[comparing addresses]), call-by-need is not equivalent to
call-by-name.

 Call-by-name Discussion

• In Call-by-name syntactic interpretation, no argument is
evaluated until its value is demanded by a primitive
operation (only + in LC). If a parameter is never
evaluated, the corresponding argument is never evaluated.

• Disadvantage: if a parameter is evaluated multiple times,
so is the corresponding argument!

• Thought exercise: how can we defer the evaluation of an
argument expression (Hint: think about closures)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

