
Comp 311: Sample Midterm Examination

October 29, 2007

Name:

Id #:

Instructions

1. The examination is closed book. If you forget the name for a Scheme
operation, make up a name for it and write a brief explanation in the
margin.

2. Fill in the information above and the pledge below.

3. There are 6 problems on the exam, totaling 100 points on the exam.

4. You have three hours to complete the exam.

Pledge:

1



Problem 1. (10 points) Al Gaulle, a programmer for Kludge, Inc., is de-
signing a simple extension language for a business software package. He
is proposing the grammar for imperative Jam (Project 4) except for the
following revision to the syntax for if-expressions:

<if-exp> ::= if <exp> then <exp> else <exp>
| if <exp> then <exp>

Do you see any problems with this specification (besides the questionable
use of Jam as the foundation for his language), particularly his revision to
Jam syntax? State your criticism precisely.

His extension is a flawed design because the syntax is ambiguous. There
are two distinct parse trees for the following expression:

if flag1 then if flag2 then foo() else bar()

The else clause can be associated with either of the two if expressions.

if flag1 then (if flag2 then foo() else bar())

or

if flag1 then (if flag2 then foo()) else bar()

2



Problem 2. (10 points)
Al Gaulle is responsible for maintaining a Scheme program written by

another programmer. In the middle of the program, Al notices the applica-
tion

((lambda (f) (lambda (x) (map f x)))
(lambda (z) (+ x z)))

Al decides to optimize the program by reducing the application (using sub-
stitution) to

(lambda (x) (map (lambda (z) (+ x z)) x)

Did he optimize the program correctly? Why or why not?

No. He did not optimize the program correctly. The reduction step

((lambda (f) (lambda (x) (map f x)))
(lambda (z) (+ x z)))

=>
(lambda (x) (map (lambda (z) (+ x z)) x)

is incorrect because the free occurrence of x in

(lambda (z) (+ x z)))

is captured by the binding occurrence of x when is substitued for f in the
body

(lambda (x) (map f x)))

To reduce the program fragment correctly, Al must rename x (to say l in

(lambda (x) (map f x)))

before performing the substitution yielding

(lambda (l) (map (lambda (z) (+ x z)) l)

3



Problem 3. (20 points) Recall that Scheme let construct (which is not
recursive) expands into lambda expressions as follows:

(let [(x1 E1)
(x2 E2)
...
(xn En)]

E)}

abbreviates

((lambda (x1 x2 ... xn) E) E1 E2 ... En)

Similarly, the let* construct expands into let expressions as
follows:

(let* [(x1 E1)
(x2 E2)
...
(xn En)]

E)

abbreviates

(let [(x1 E1)]
(let [(x2 E2)]

...
(let [(xn En)]

E)...))

The other binding form in the Scheme let family is letrec; it has the same
scoping rules as the Jam recursive let.

For each of the two expressions on the next page, circle each binding
occurrence of a variable and draw arrows from each bound occurrence back
to the corresponding binding occurence. For example, given the expression

(lambda (x) (+ x 1))

the correct answer is:

(lambda (x) (+ x 1))

4



1. (let*
[(fib (lambda (n)

(letrec
[(fibhelp (lambda (m fn-1 fn-2)

(let [(fn (+ fn-1 fn-2))]
(if (zero? m)

fn
(fibhelp (sub1 m) fn fn-1)))))]

(if (< n 2)
1
(fibhelp (sub1 n) 1 1)))))

(fib100 (fib 100))]
(* fib100 fib100))

2. (let* [(pair (lambda (x y)
(let [(x x)

(y y)]
(lambda (msg)
(cond

[(eq? msg ’first) x]
[(eq? msg ’second) y]
[else (error ’pair "illegal method name ~a" msg)])))))

(pair (pair 1 2))]
(pair ’first))

5



Problem 4. (20 points) The following Eval function interprets a subset
of Jam with call-by-value semantics; it is a pruned version of the solution
to Assignment 2. For the sake of pedagogic simplicity, functions have been
restricted to a single argument, some Jam constructs and primitives have
been eliminated, and almost all error checking has been removed.

Modify Eval (which appears on the next page) to support a recursive
let construct that binds only one identifier

let fact := map n to ...;
in fact(100)

The abstract syntax for the construct is

(define-struct let-exp (id rhs body))

where id is the new identifier, rhs is an expression specifying what id
is bound to, and body is the expression to be evaluated in the extended
environment. A space gap has been left in the body of Eval so that you can
easily insert your modification.

(define-struct num-exp (arg))
(define-struct id-exp (arg))
(define-struct biop-exp (rator rand1 rand2))
(define-struct map-exp (var body)) ; unary functions only
(define-struct app-exp (rator rand)) ; unary functions only
(define-struct binding (var val))
(define-struct closure (parm body env)) ; unary functions only

6



(define-struct let-exp (id rhs body))

(define Eval
(lambda (exp env)
(cond ; bool, prim, unop, and if eliminated for pedagogic simplicity
[(num-exp? exp) (num-exp-arg exp)]
[(id-exp? exp) (binding-val (id-lookup (id-exp-arg exp) env))]
[(biop-exp? exp)
(local [(define rator (biop-exp-rator exp))

(define rand1 (Eval (biop-exp-rand1 exp) env))
(define rand2 (Eval (biop-exp-rand2 exp) env))]

(cond [(eq? rator ’+) (+ rand1 rand2)]
[(eq? rator ’-) (- rand1 rand2)]
[else
(error ’Eval "unrecognized binary operator ~a" rator)]))]

[(map-exp? exp)
(make-closure (map-exp-var exp) (map-exp-body exp) env)]
[(app-exp? exp)
(Apply (Eval (app-exp-rator exp) env) (Eval (app-exp-rand exp) env))]

[(let-exp? exp)
(local [(define var (let-exp-id exp))

(define rhs (let-exp-rhs exp))
(define body (let-exp-body exp))
(define let-env (cons (make-binding var (void)) env))]

(begin (set-binding-val! let-env (Eval rhs let-env))
(Eval body new-env)))]

[else (error ’Eval "illegal expression: ~a" exp)])))

(define extend
(lambda (env var val)
(cons (make-binding var val) env)))

(define id-lookup ; returns binding pair not binding-val
(lambda (id env)
(cond
[(eq? id (binding-var (car env))) (car env)]
[else (id-lookup id (cdr env))])))

(define Apply
(lambda (head arg-val) ; head must be a closure
(local

7



[(define parm (closure-parm head))
(define body (closure-body head))
(define env (closure-env head))]

(Eval body (extend env parm arg-val)))))

The additional code required to support recursive let is enclosed above
between pairs of horizontal lines.

8



Problem 5. (20 points) Let Jam have the semantics specified in assignment
3, i.e., map parameters are passed by name and let is recursive. Assume
that Jam supports the primitive cons? as the recognizer for non-empty
lists. Consider the Jam expression:

let and := map x,y to if x then y else false;
or := map x,y to if x then true else y;

member := map x,l to
and(cons?(l), or(x = first(l), member(x, cdr(l))));

in member(1, cons(1, null))

(i) Using explicit substitution, show the major steps in the evaluation of this
expression. Please use abbreviations to shorten your trace.

9



(ii) Assume that Jam passes parameters by value rather than by name.
Show the major steps in the evaluation of the preceding expression. Please
use abbreviations to shorten your trace.

10



Problem 6. (20 points)
Al Gaulle has designed the ultimate Algol dialect supporting passing

parameters by value, by name, by reference, by result, and by value-result.
For value-result parameter passing, assume that the argument evaluated
once on entry to the procedure and that the resulting location is used on
exit.

Consider the following Algol-like program (written in Java-like notation):

int i,j,a[5]; // a is an 5 element array with indices 0-4
void swap(int x, int y) {
int temp = x;
x = y;
y = temp;

}
for (j = 0; j < 5; j++) a[j] := j;

i := 1;
swap(i,a[i+1]);
write(i,a[2]);

What numbers does the program print if both parameters in swap are passed
by:

1. value?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. The
call on swap has no effect on the actual parameters since they are
passed by value. Hence, the program outputs:

1 2

2. reference?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. The
call on swap swaps the contents of i and a[2], yielding a = {0,1,1,3,4}
and i = 2. Hence, the program outputs:

2 1

3. name?

Just prior to the swap statement, a = {0,1,2,3,4} and i = 1. Let
us trace the call on swap in detail. Within the body of swap, x is

11



synonymous with the variable i; y is synonymous with the variable
a[i+1]. temp is set to the contents of x (i) which is 1. x (i) is set to
the contents of y (a[2]) which is 2. y (a[3] since i is now 2) is set
to temp which is 1. On exit from swap, a = {0,1,2,1,4} and i = 2.
Hence, the program outputs:

2 2

4. value-result?

Just prior to swap statement, a = {0,1,2,3,4} and i = 1. After
entering swap, x is bound to 1 and y is bound 2 just as in call-by-value.
The left-hand value associated with x is the cell i and the left-hand value
associated with y is the cell a[2]. Just before exiting swap, the values
of x and y have been swapped: x = 2 and y = 1. Call-by-result stores
2 in i and 1 in a[2]. Hence, the program outputs:

2 1

Algol evaluates procedure arguments in left-to-right order. You can get
partial credit if you show your hand evaluation of the code. Some answers
may be indeterminate.

Addendum Some additional potential topics for questions include:

• the basic properties of static and dynamic chains;

• simple questions the semantics of dynamic dispatch;

• questions about static distance coordinates

• (extra credit) questions about “domain theory” (continuity, mono-
tonicity, etc.)

12


