

Comp 411
Principles of Programming Languages

Lecture 1

Course Overview and Culture

Corky Cartwright

January 13, 2014

Course Facts

● See web page www.cs.rice.edu/~javaplt/411 and Piazza
page piazza.com/rice/spring2014/comp411

● Participate in the discussions at Piazza site.
● Coding style matters; testing suites really matter.
● Grade is 50% assignments and 50% tests; there are two

segmented take home exams. See the tentative schedule
on the course web page.

What is Comp 411?

Anatomy (Syntax) and Physiology (Semantics) of
Programming Languages

● What is the anatomy of a programming language
● Parsing and abstract syntax
● Lexical nesting and the scope of variables

● What are the conceptual building blocks of
programming languages? (common anatomical
structures and their functions)

● Use high-level interpreters to define meaning of
languages (expression evaluators)

●

What is Comp 411, cont.
– Using anatomy to prevent bugs

• Type systems

• Type checking

• Type inference (reconstruction)

– Mechanisms for language extension
• Syntax extension (macros)

• Reflection

• Custom class loaders

– Sketch how the interpretation process can actually be
efficiently implemented by machine instructions

• CPS transformation

• Garbage Collection

Subtext of Comp 411
● Teach good software engineering practice in Java.
● You have to write lots of lines of conceptually challenging lines of

code in this course. With good software engineering practices, the
workload is reasonable.

● With poor software engineering practices, the workload is
unreasonable.

● The assignments in this course leverage abstractions that are not
explicit in Java but are easily encoded using the proper design
patterns (e.g., composite, interpreter, strategy, visitor).

● In putative successors to Java, notably Scala, these abstractions are
built-in to the language. Unfortunately, the semantics of Scala are
hideously complex. Martin Odersky has assured me that a new
edition of Scala with a semantically tractable core subset (called
“Dot”) is in the pipeline. I am hopeful, but in the meantime, we
will use Java, which is a nice language if it used properly.

Good Software Engineering
Practice

• Test-driven design
– Unit tests for each non-trivial method written before

any method code is written
– Unit tests are a permanent part of the code base

• Pair programming
• Continual integration
• Continual refactoring to avoid code duplication
• Conscientious documentation (contracts)
• Avoiding mutation unless there is a compelling

reason

Course Culture

• Approximately 8 programming assignments
– 7 required
– 1-2 extra credit

• Assignments must be done in either Generic Java (Java
6/7/8 including parameterized types). We encourage
you to use DrJava. Both JUnit and javadoc are built-in
to DrJava and they are fully compatible with command
line compilation, execution, and testing (using ant
scripts).

• Late assignments not accepted, but …
– Every student has 7 slip days to use as he/she sees fit.
– Advice: save as many slip days as possible until late in the

term. The last two assignments are the most
time-consuming.

Course Culture, cont.

• Assignments are cumulative.

• Class solutions are provided for the first three
assignments within three days after they are
due.

• After the third assignment, you are on your own
except for skeleton test suites which we will
provide. Extensive unit testing is important. In
most of the projects, you can reuse previous unit
tests on subsequent assignments with no change.

Why Study Programming
Languages?

• Programmers must master the programming languages of
importance within the domains in which they are working.

• New languages are continually being developed. Who
knows what languages may be involved in computing 25
years from now?

• Many software applications involve defining and
implementing a programming language.

• A deep knowledge of programming languages expands the
range of possible solutions available to a software
developer. A program design may involve extending the
designated implementation language either explicitly
(macros, new/revised translators & custom class loaders)
or implicitly (new libraries, hand-translation)

• Some implementation languages are extensible through
macros, reflection, or customizable class loaders.

Course Culture, cont.

• My teaching style
– Encourage you to develop a passion for the subject and

personally digest and master the material.
– Make the course accessible to students who don't aspire

to become language researchers (avoid repeating my
experience in complex analysis with Andy Gleason)

– Weaknesses:
• Tendency to digress
• Explain concepts at too abstract a level without sufficient

examples
• Redress: remind when I have strayed from the course outline;

ask questions about examples and tell me if my explanations are
too abstract

Putative Assignment

The web page:
 wiki.rice.edu/confluence/display/cswiki/Comp+411+Putative+Assignment

contains a putative assignment showing the OO
program design background that is expected for this
course. In the past, some students have quickly
learned this approach to program design in the first few
weeks of the course.
This assignment is not intended to add your workload
(a pocket assignment). Do not do the assignment
unless you need to do it as a learning experience.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

