

Comp 411
Principles of Programming Languages

Lecture 11
The Semantics of Recursion II

Corky Cartwright

February 7, 2014

Recursive Definitions

• Given a Scott-domain D, we can write equations of
the form:
 f ≞ E

f

where Ef is an expression constructed from constants

in D, operations (continuous functions) on D, and f.

• Example: let D be the domain of Jam values. Then
 fact ≞
 map n to if n = 0 then 1 else n * fact(n - 1)

is such an equation.

• Such equations are called recursive definitions.

Solutions to Recursion Equations
Given a recursion equation:
 f ≞ E

f

what is a solution? All of the constants and operations in E
f
are

known except f.

A solution is any function f such that f = E
f
.

But there may be more than one solution. We want to select the
“best” solution f*. Note that f* is an element of whatever domain
D* corresponds to the type of E

f
. In the most common case, it is

D→D, but it can be D, D→D, . . . , Dk→D, The best solution f* (which
always exists and is unique and computable) is the least solution
under the approximation ordering in D*.

Constructing the Least Solution
How do we know that any solution exists to the equation f = E

f
?

We will construct the least solution and prove it is a solution!
Since the domain D * for f is a Scott-Domain, this domain has a least element
⊥
D*

that approximates every solution to the equation.

Now form the function F: D * → D * defined by
 F(f) = E

f

or equivalently,
 F = f.λ E

f

Consider the sequence S: ⊥
D
, F(⊥

D
),

F(F(⊥

D
)), . . . , Fk(⊥

D
), . . .

Claim S is an ascending chain (chain for short) in D * → D *.

,

Proof. botD * <= F(botD *) by the definition of BotD * . If M <= N, then F(M) <=

F(N) by monotonicity. Hence, Fk(bot
D
) <= F k+ 1(bot

D
) for all k. Q.E.D.

Claim: S has a least upper bound f*

Proof. Trivial. S is a chain in D* and hence must have a least upper bound because D* is a
Scott-Domain.

Proving f* is a fixed point of F

Must show: F(f*) = f*

where F = λ f . E f.

Claim: By definition f*

= ⋃ Fk(⊥

D *
) . Since F is continuous

 F(f*) = F( Fk(⊥
D*
))

 = Fk+ 1(⊥
D*
) (by continuity)

 = Fk(⊥
D*
) (since ⊥ D * ≤ F(⊥

D*
))

 = f*

Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step
justified by continuity.

Examples

Look at factorial in detail using DrRacket stepper.

How Can We Compute f* Given F?
Need to construct F∞(⊥) from F. Let
Y(F) = f* = F ∞(⊥).

Can we write code for Y?

Idea: use syntactic trick in  to build a potentially infinite
stack of Fs.

• Preliminary attempt:

 (x. F(x x)) ( x. F(x x))
• Reduces to (in one step):
F ((x. F(x x)) (x. F(x x)))

• Reduces to (in k steps):
Fk ((x. F(x x)) (x. F(x x)))

What Is the Code for Y?

 F. (x. F(x x))(x. F(x x))
• Does this work for Scheme (or Java with an

appropriate encoding of functions as anonymous
inner classes)? No!

• Why not? What about divergence? Assume G
is a -expression defining a functional like FACT

F. ( ( x. F(x x))( x. F(x x)))G
= G((x. G(x x))(x. G(x x)))
= … (diverging)

What If We Use Call-by-name?
By assumption G must have the form f.  n . M

 F. ( (x. F(x x))(x. F(x x))) G
 = G ((x. G(x x))(x. G(x x)))
= f. ( n . M) ((x. G(x x))(x. G(x x)))
 = n .M[x:=(x.G(x x))(x.G(x x))]

If the evaluation M of does not require evaluating an occurrence of f , then
x is not evaluated. Otherwise, the binding of x is unwound only as
many times as required to get to the base case in the definition f =

n . M.

Exercise: how can we workaround this problem to create a version of the
Y operator that works for call-by-value Scheme and Jam? Hint: if M is a
divergent term denoting a unary function x.Mx is an “equivalent”
term that is not divergent! (As a concrete example, assume that M is the
term .)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

