

Comp 411
Principles of Programming Languages

Lecture 14
Eliminating Lambda Using Combinators

Corky Cartwright
February 17, 2014

OO Code Samples
• Show selections from solution to Assignment 2

– Class hierarchy for Binding union
– Sample visitor method code

• Discuss some OO design tradeoffs
– Use of instanceof
– With composite, visitor implementation of methods is

not always mandated. Good idea to “build in” some
core operations of a composite using the interpreter
pattern. Why? Leaner (in terms of lines of code).
Easier to read.

Good Commenting Conventions

• Javadoc description for every class, field, non-
trivial method.

• Method descriptions are informal contracts.
Contracts should be as precise as possible. In
some cases (e.g., GUI libraries), complete
precision may not be feasible.

• Sample solutions could be better commented.

How to Eliminate lambda

Goal: devise a few combinators (functions expressed in
lambda-notation with no free variables) that enable us to
express all λ-expressions without explicitly using λ.
Notation: let λ* x.M denote λx.M converted to a
form that eliminates the starred λ. Then
● λ* x.x → I (where I = λx.x)

 λ* x.y → K y (where K = λy.λx.y)
● λ* x. M N → S (λ* x.M) (λ * x.N)
 (where S = λx.λy.λz. (y x)(z x))

Strategy: eliminate λ-abstractions from inside out, one-at
a time. Any order works. Transformation can cause
exponential blow-up.
Note: I is technically unnecessary since SKK = I

	Slide 1
	Slide 2
	Slide 3
	Slide 4

