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Overview I
• In OO languages, OO data values (except for designated non-OO types) are 

special records [structures] (finite mappings from names to values, which 
are not necessarily objects).  In OO parlance, the components of record are 
called members.

• Some members of an object may be functions called methods.  Methods 
take this (the object in question) as an implicit parameter.  Some OO 
languages like Java also support static methods that do not depend on this; 
these methods have no implicit parameters.

• Methods (instance methods in Java) can only be invoked on objects (the 
implicit parameter).  Additional parameters are optional, depending on 
whether the method expects them.

• A language with objects is OO if it supports inheritance, an explicit 
taxonomy for classifying objects based on their members and class names.
In single inheritance, this taxonomy forms a tree; in multiple inheritance, 
it forms a rooted DAG (directed acyclic graph).  Inheritance also provides 
a simple mechanism for defining some objects as extensions of others.

• Most OO languages are class-based (my preference because it supports a 
simple static type system).  In class-based OO languages, every object is 
an instance of a class (an object template).



Overview II
• In single inheritance class-based languages, every class must declare its immediate 

superclass.  In multiple inheritance class-based languages, every class must declare 
one or more immediate superclasses.  Each superclass is either another declared 
class or a built-in universal (least common denominator) class [Object in Java]).  
Every class inherits all members of its immediate superclass(es); it has the option of 
overriding (replacing) the definitions of inherited methods.

• Java does not allow true multiple inheritance but it supports a cleaner alternative 
(multiple interface inheritance) using special classes called interfaces.

• The superclass relation is the transitive closure of the immediate superclass 
relation.

• A class cannot shadow a method defined in the parent class(es); it can only override 
it (replace its definition in the current class).  The overriding method appears in 
class instances (objects) in place of the overridden one.

• A class can only shadow a field defined in the parent class; it cannot override it.  
Shadowing is simply the hiding of the parent field by the new fields exactly as in 
lexical scoping.  The shadowed field still exists, but it can only be accessed by a 
super or by upcasting the type of the receiver (in a typed OO language).

• The method lookup process in OO languages is called dynamic dispatch.  The 
meaning of a method call depends on the method code in this.  In contrast, the 
meaning of a field reference is fixed for all subclasses of the class where the field is 
introduced.  The field can only be shadowed but that does not affect the meaning of 
code that cannot see a shadowing definition.



Overview III
• Implications of overriding vs. shadowing: a method invocation always 

refers to the specified method in the receiver object even when the method 
has a definition in the class where the invocation appears.  This 
mechanism is called dynamic dispatch; it is sometimes (misleadingly!) 
called dynamic binding.  

• In contrast, field references refer to the field determined by lexical scoping 
rules (the corresponding binding occurrence of the field).

• A static type system can be used to restrict (discipline) class definitions 
and guarantee for all method lookups that a match will be found. 

• OO languages that are not class-based are prototype-based.  Any object 
can be a prototype (factory) for creating descendant objects.

• In prototype-based OO languages, objects literally contain methods.  A 
lookup failure within a given object triggers a search in the ancestor object 
instead of the superclass.

• A prototype-based OO program can be written in a disciplined fashion 
(where a few factory objects function as class surrogates) so they have the 
same structure as a class-based program but type-checking is problematic.  
Complex static analysis is possible but it is not transparent and not very 
helpful (IMO) in locating and identifying program bugs.  



Overview IV
Thumbnail history:

Simula (1967)
 Allows Algol blocks to be  autonomous data values with independent lifetimes → objects
 Classes are special procedures that return blocks
 Allows autonomous  blocks to be defined as  extensions of  other blocks; inheritance  = lexical scoping + copying!
 Inheritance is single because it is block extension.
 No conventional overriding (?) but inner mechanism looks like inverse of overriding
 Good software engineering insights but no clear design methodology

Smalltalk (1972)
 Dynamically typed
 Class based
 Supports reflective access to the runtime (much like Java reflection).
 Single inheritance
 Dynamic extension of objects
 If dynamic features are exploited, software engineering is compromised

Self  (1987)
• Dynamically typed
• Prototype based
• Activation records are objects (Simula in reverse!)
• Dynamic scoping except for explicit closures (Ugh!)

Aside; devise a statically typed dynamically scoped  language.  Impossible?  AFAIK,

Pedagogic OO Extensions of ML culminating in OCaml; not truly OO because type system interferes.

Pragmatic OO extensions of C: Objective C, C++; truly OO except storage management is manual 

Eiffel/Dylan (Scheme with classes and inheritance)/Java/C#/Scala

Important distinction: structural subtyping (ML and other pedagogic extensions) vs. nominal (C++, Java, etc.)



Java as a Real OO language

• Java is most important real OO design.  
• Two views: 

– C++ augmented by GC
– Dylan (Scheme + objects) with a C-like syntax

• I strongly support the latter view.  Why?  The 
semantic definitions of C++ and Java are 
completely different while the semantics of Dylan 
and Java are very similar.  It is easy to transliterate 
Scheme (sans call/cc) into Java.  It is essentially 
impossible to transliterate C++ into Java.



Java Implementation I
Why talk about implementation?  In real world languages, implementation 
dictates semantic choices.   Tradeoffs!

Part I: Data representation
• Java objects include a header specifying the object class and hash code.  

The remaining record components [slots, fields in C parlance] are simply 
the members of the object.  The class “identifier” is a pointer to an object 
(belonging to class Class ) describing the class.  How can super  be 
supported?  (For fields, it is trivial.  For methods, use Class  object.)

• Method lookup: simply extract the method from the receiver object.  
Trivial!  In the absence of the method table optimization, inherited 
methods are simply components [slots] of the object record.  But space 
optimization important.

 Space optimization: move (pointers to) member methods to a separate 
method table for each class which can be shared by all instances of the 
class. This table is part of the Class  object for the class where the method 
definition appears.  Note that lookup is now much more complex because 
only “local” methods (those explicitly defined in the object's class) are 
defined in the local method table.  “Non-local” method references must 
look at superclasses.



Java Implementation II

• Interfaces can be supported in a variety of ways.  Perhaps the simplest is to 
create a separate interface method table for each class implementing the 
interface.  These tables are linked from the class method table.  How can you 
find the link?  Internally support getInterfaceXXX methods (dynamic 
dispatch)

• Observation: interface method dispatch is slower than class method dispatch.
• Fast instanceof:  naïve implementation requires search (which can be 

messy if subject type is an interface).  Constant time implementations are 
possible.  One simple approach: assign consecutive indices starting at 0 to 
types (classes/interfaces).  Maintain a bit string for each class specifying 
which types it belongs to.  Then instanceof simply indexes this bitstring.

• Multiple inheritance in C++ is supported by partitioning an object into sub-
objects corresponding to each superclass and referring to objects using 
“internal” pointers so that a subclass object literally looks like the relevant 
superclass object.  The bookkeeping (pointer adjustment) can get messy.  
Object pointers do not necessarily point to the base of the object!  How can 
executing code find the base of an object (required by a cast to a different 
type!)?  By embedding a head pointer in each sub-object representation. 



Java Implementation III

Part II: Runtime
• The central (control) stack holds activation records for 

methods starting with main.  There is no static link because 
Java only supports local variables.

• All objects are stored in the heap.  All fields are slots in 
objects.  

• Object values are represented by pointers (to the record 
representing the objects).

• Object in the heap must be reached (transitively) through 
local variables on the stack.   In compiled code, computed 
values are often cached in registers.

• Instances of (dynamic) inner classes include a pointer to 
an enclosing parent object (static link!) so that inner class 
code can access fields in the enclosing object.



Java Implementation IV
• Classes are loaded dynamically by the class loader; it maps a byte 

stream in a file to a class object including code for all of the 
methods.  The class loader performs byte code verification to ensure 
the loaded classes are well-formed and type-correct.  In Java 
systems using “exact” GC, the class loader must build stack maps 
(indicating which words in the current activation record are 
pointers) for a sufficient set of program “safe points” also called 
“consistent regions”.  There is not a single stack map for each 
method because local variable usage can vary during method 
execution!  (Allowing this variance was a bad design decision in my 
opinion!)  Newer JVMs embed stack maps in class files.

• The Java libraries are simply an archive (typically in zip file format) 
containing a file tree of class files (byte streams).

• Java allows programs to use custom class loaders.  Our NextGen 
compiler supporting first-class generics critically depends on this 
fact.  So does DrJava (for different reasons).

• Header optimization: use the pointer to the method table as the class 
“identifier”; method table must contain pointer to the Class object.  
Method table also includes a pointer to the superclass method table.



Java Implementation V
• In the presence of the method table optimization (which is 

essentially universal), objects only contain header information 
and  fields (in OO parlance).

• Interfaces can be supported in a variety of ways.  Perhaps the 
simplest is tor create a separate interface method table for each 
class implementing the interface.  These tables are linked from 
the class method table using dynamic dispatch (essentially a 
hidden getInterfaceXXXTable() mehod).  

• Fast instanceof:  naïve implementation requires search (which 
can be messy if subject type is an interface).  Constant time 
implementations are possible.  One simple approach: assign 
consecutive indices starting at 0 to types (classes/interfaces).  
Maintain a bit string for each class specifying which types it 
belongs to.  Then instanceof simply indexes this bitstring.  
Must be updated when a new class is loaded (if class indices 
monotonicaly increase, can use demand-driven updates based 
on index out-of-bounds exceptions).



Java Criticisms
• Not truly OO:

– Values of primitive types are not objects (should be hidden)
– Static fields and methods (useful in practice just like mutation in functional languages)

• Interfaces are not fully satisfactory as replacement for multiple inheritance.
Interfaces should be generalized to “traits” which are classes with no fields. The complexity of 
multiple inheritance is due to the fact that the same field can be inherited in multiple ways (the 
“diamond” relationship).  This pathology cannot occur in multiple trait inheritance.

• Type system is too baroque and too restrictive.
Generic (parameterized) nominal type systems are still not fully understood.  When Java was invented, 
nominal typing was still a radical idea (in Eiffel, C++, and Objective C which were not type safe!  
Eiffel subsequently added an ugly runtime check to salvage type safety).

• Excessive generalization of some constructs and mechanisms leads to baroque language specification.
● <receiver>.new <type>(...)
● new <InnerClassType>(...) outside of enclosing class
● excessively general local type inference for polymorphic methods
● unrestricted wildcard types (wildcards as bounds!)
●

, 
 

• Erasure based implementation of generic types.
A huge (!) mistake IMO but note that I am clearly biased.

• The run-time check in array element updating is awkward. 
The designers wanted co-variant subtyping for arrays (u <= v implies u[] <= v[]) which is important
in absence of generic types.  Co-variant subtyping is difficult to support in an OO language (because 
method input types behave contra-variantly in subtyping relationships!).  Java 5/6 uses wildcard types 
to support co-variance but did not get the details right.  C# does not support any covariance.
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