
Comp 411
Principles of Programming Languages

Lecture 19
Semantics of OO Languages

Corky Cartwright

February 28, 2014

Overview I
• In OO languages, OO data values (except for designated non-OO types) are

special records [structures] (finite mappings from names to values, which
are not necessarily objects). In OO parlance, the components of record are
called members.

• Some members of an object may be functions called methods. Methods
take this (the object in question) as an implicit parameter. Some OO
languages like Java also support static methods that do not depend on this;
these methods have no implicit parameters.

• Methods (instance methods in Java) can only be invoked on objects (the
implicit parameter). Additional parameters are optional, depending on
whether the method expects them.

• A language with objects is OO if it supports inheritance, an explicit
taxonomy for classifying objects based on their members and class names.
In single inheritance, this taxonomy forms a tree; in multiple inheritance,
it forms a rooted DAG (directed acyclic graph). Inheritance also provides
a simple mechanism for defining some objects as extensions of others.

• Most OO languages are class-based (my preference because it supports a
simple static type system). In class-based OO languages, every object is
an instance of a class (an object template).

Overview II
• In single inheritance class-based languages, every class must declare its immediate

superclass. In multiple inheritance class-based languages, every class must declare
one or more immediate superclasses. Each superclass is either another declared
class or a built-in universal (least common denominator) class [Object in Java]).
Every class inherits all members of its immediate superclass(es); it has the option of
overriding (replacing) the definitions of inherited methods.

• Java does not allow true multiple inheritance but it supports a cleaner alternative
(multiple interface inheritance) using special classes called interfaces.

• The superclass relation is the transitive closure of the immediate superclass
relation.

• A class cannot shadow a method defined in the parent class(es); it can only override
it (replace its definition in the current class). The overriding method appears in
class instances (objects) in place of the overridden one.

• A class can only shadow a field defined in the parent class; it cannot override it.
Shadowing is simply the hiding of the parent field by the new fields exactly as in
lexical scoping. The shadowed field still exists, but it can only be accessed by a
super or by upcasting the type of the receiver (in a typed OO language).

• The method lookup process in OO languages is called dynamic dispatch. The
meaning of a method call depends on the method code in this. In contrast, the
meaning of a field reference is fixed for all subclasses of the class where the field is
introduced. The field can only be shadowed but that does not affect the meaning of
code that cannot see a shadowing definition.

Overview III
• Implications of overriding vs. shadowing: a method invocation always

refers to the specified method in the receiver object even when the method
has a definition in the class where the invocation appears. This
mechanism is called dynamic dispatch; it is sometimes (misleadingly!)
called dynamic binding.

• In contrast, field references refer to the field determined by lexical scoping
rules (the corresponding binding occurrence of the field).

• A static type system can be used to restrict (discipline) class definitions
and guarantee for all method lookups that a match will be found.

• OO languages that are not class-based are prototype-based. Any object
can be a prototype (factory) for creating descendant objects.

• In prototype-based OO languages, objects literally contain methods. A
lookup failure within a given object triggers a search in the ancestor object
instead of the superclass.

• A prototype-based OO program can be written in a disciplined fashion
(where a few factory objects function as class surrogates) so they have the
same structure as a class-based program but type-checking is problematic.
Complex static analysis is possible but it is not transparent and not very
helpful (IMO) in locating and identifying program bugs.

Overview IV
Thumbnail history:

Simula (1967)
 Allows Algol blocks to be autonomous data values with independent lifetimes → objects
 Classes are special procedures that return blocks
 Allows autonomous blocks to be defined as extensions of other blocks; inheritance = lexical scoping + copying!
 Inheritance is single because it is block extension.
 No conventional overriding (?) but inner mechanism looks like inverse of overriding
 Good software engineering insights but no clear design methodology

Smalltalk (1972)
 Dynamically typed
 Class based
 Supports reflective access to the runtime (much like Java reflection).
 Single inheritance
 Dynamic extension of objects
 If dynamic features are exploited, software engineering is compromised

Self (1987)
• Dynamically typed
• Prototype based
• Activation records are objects (Simula in reverse!)
• Dynamic scoping except for explicit closures (Ugh!)

Aside; devise a statically typed dynamically scoped language. Impossible? AFAIK,

Pedagogic OO Extensions of ML culminating in OCaml; not truly OO because type system interferes.

Pragmatic OO extensions of C: Objective C, C++; truly OO except storage management is manual

Eiffel/Dylan (Scheme with classes and inheritance)/Java/C#/Scala

Important distinction: structural subtyping (ML and other pedagogic extensions) vs. nominal (C++, Java, etc.)

Java as a Real OO language

• Java is most important real OO design.
• Two views:

– C++ augmented by GC
– Dylan (Scheme + objects) with a C-like syntax

• I strongly support the latter view. Why? The
semantic definitions of C++ and Java are
completely different while the semantics of Dylan
and Java are very similar. It is easy to transliterate
Scheme (sans call/cc) into Java. It is essentially
impossible to transliterate C++ into Java.

Java Implementation I
Why talk about implementation? In real world languages, implementation
dictates semantic choices. Tradeoffs!

Part I: Data representation
• Java objects include a header specifying the object class and hash code.

The remaining record components [slots, fields in C parlance] are simply
the members of the object. The class “identifier” is a pointer to an object
(belonging to class Class) describing the class. How can super be
supported? (For fields, it is trivial. For methods, use Class object.)

• Method lookup: simply extract the method from the receiver object.
Trivial! In the absence of the method table optimization, inherited
methods are simply components [slots] of the object record. But space
optimization important.

 Space optimization: move (pointers to) member methods to a separate
method table for each class which can be shared by all instances of the
class. This table is part of the Class object for the class where the method
definition appears. Note that lookup is now much more complex because
only “local” methods (those explicitly defined in the object's class) are
defined in the local method table. “Non-local” method references must
look at superclasses.

Java Implementation II

• Interfaces can be supported in a variety of ways. Perhaps the simplest is to
create a separate interface method table for each class implementing the
interface. These tables are linked from the class method table. How can you
find the link? Internally support getInterfaceXXX methods (dynamic
dispatch)

• Observation: interface method dispatch is slower than class method dispatch.
• Fast instanceof: naïve implementation requires search (which can be

messy if subject type is an interface). Constant time implementations are
possible. One simple approach: assign consecutive indices starting at 0 to
types (classes/interfaces). Maintain a bit string for each class specifying
which types it belongs to. Then instanceof simply indexes this bitstring.

• Multiple inheritance in C++ is supported by partitioning an object into sub-
objects corresponding to each superclass and referring to objects using
“internal” pointers so that a subclass object literally looks like the relevant
superclass object. The bookkeeping (pointer adjustment) can get messy.
Object pointers do not necessarily point to the base of the object! How can
executing code find the base of an object (required by a cast to a different
type!)? By embedding a head pointer in each sub-object representation.

Java Implementation III

Part II: Runtime
• The central (control) stack holds activation records for

methods starting with main. There is no static link because
Java only supports local variables.

• All objects are stored in the heap. All fields are slots in
objects.

• Object values are represented by pointers (to the record
representing the objects).

• Object in the heap must be reached (transitively) through
local variables on the stack. In compiled code, computed
values are often cached in registers.

• Instances of (dynamic) inner classes include a pointer to
an enclosing parent object (static link!) so that inner class
code can access fields in the enclosing object.

Java Implementation IV
• Classes are loaded dynamically by the class loader; it maps a byte

stream in a file to a class object including code for all of the
methods. The class loader performs byte code verification to ensure
the loaded classes are well-formed and type-correct. In Java
systems using “exact” GC, the class loader must build stack maps
(indicating which words in the current activation record are
pointers) for a sufficient set of program “safe points” also called
“consistent regions”. There is not a single stack map for each
method because local variable usage can vary during method
execution! (Allowing this variance was a bad design decision in my
opinion!) Newer JVMs embed stack maps in class files.

• The Java libraries are simply an archive (typically in zip file format)
containing a file tree of class files (byte streams).

• Java allows programs to use custom class loaders. Our NextGen
compiler supporting first-class generics critically depends on this
fact. So does DrJava (for different reasons).

• Header optimization: use the pointer to the method table as the class
“identifier”; method table must contain pointer to the Class object.
Method table also includes a pointer to the superclass method table.

Java Implementation V
• In the presence of the method table optimization (which is

essentially universal), objects only contain header information
and fields (in OO parlance).

• Interfaces can be supported in a variety of ways. Perhaps the
simplest is tor create a separate interface method table for each
class implementing the interface. These tables are linked from
the class method table using dynamic dispatch (essentially a
hidden getInterfaceXXXTable() mehod).

• Fast instanceof: naïve implementation requires search (which
can be messy if subject type is an interface). Constant time
implementations are possible. One simple approach: assign
consecutive indices starting at 0 to types (classes/interfaces).
Maintain a bit string for each class specifying which types it
belongs to. Then instanceof simply indexes this bitstring.
Must be updated when a new class is loaded (if class indices
monotonicaly increase, can use demand-driven updates based
on index out-of-bounds exceptions).

Java Criticisms
• Not truly OO:

– Values of primitive types are not objects (should be hidden)
– Static fields and methods (useful in practice just like mutation in functional languages)

• Interfaces are not fully satisfactory as replacement for multiple inheritance.
Interfaces should be generalized to “traits” which are classes with no fields. The complexity of
multiple inheritance is due to the fact that the same field can be inherited in multiple ways (the
“diamond” relationship). This pathology cannot occur in multiple trait inheritance.

• Type system is too baroque and too restrictive.
Generic (parameterized) nominal type systems are still not fully understood. When Java was invented,
nominal typing was still a radical idea (in Eiffel, C++, and Objective C which were not type safe!
Eiffel subsequently added an ugly runtime check to salvage type safety).

• Excessive generalization of some constructs and mechanisms leads to baroque language specification.
● <receiver>.new <type>(...)
● new <InnerClassType>(...) outside of enclosing class
● excessively general local type inference for polymorphic methods
● unrestricted wildcard types (wildcards as bounds!)
●

,

• Erasure based implementation of generic types.
A huge (!) mistake IMO but note that I am clearly biased.

• The run-time check in array element updating is awkward.
The designers wanted co-variant subtyping for arrays (u <= v implies u[] <= v[]) which is important
in absence of generic types. Co-variant subtyping is difficult to support in an OO language (because
method input types behave contra-variantly in subtyping relationships!). Java 5/6 uses wildcard types
to support co-variance but did not get the details right. C# does not support any covariance.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

