
Comp 411
Principles of Programming Languages

Lecture 20
What is a Type?

Corky Cartwright
March 14, 2014

What is a Type?
Canonical example: consider the expression of the form

 (if big-ugly-expression
 (5 6)
 a-nice-value)
which may be embedded deep inside a program. What type should a
language translator (compiler/interpreter) assign to this expression?

How will this expression behave? If big-ugly-expression is false, then the
expression will produce a legal result. In this case, it is plausible for the
type-checker to return the type of this value as the type of a-nice-value.
But what if big-ugly-expression is true? Then the expression will generate
a run-time error. Even worse, it is a statically detectable run-time error.

Type-checkers should assume all code fragments are meaningful (reachable in
execution). Otherwise, why is the fragment included as part of the program?
Hence, all type checkers will reject this expression – even if
big-ugly-expression is obviously false (e.g., big-ugly-expression is the
constant false).

Intuitive Assumptions in Type Checking
Idea 1: Types are names for sets of values.

Idea 2: The valid sets of ``input values'' for each program
operation can be described in terms of types (most of the time).

Perhaps the second idea can be made completely true by imposing it as
part of the contract for any operation. Example: zip in a functional
language. In this case, contract should include check for equal lengths.
Idea 3: The application of program operations and the returning
of values as the results of defined operations (methods, functions,
procedures) induces constraints on program types.
The mathematical constraints are subtyping relationships:
(i) the type of an operation argument must be a subtype of its declared
input type;
(ii) the type of the result returned by an operation must be a subtype of
its declared result type.
In practice, most type systems force the type equality instead of type
containment. It greatly simplifies the structure of the type systems.

Typed Lambda Calculus

The (simply) typed lambda calculus is the foundation
of structural typing which is the overwhelmingly
dominant typing discipline in functional languages.

Syntax:
 M :: =  V:. M | (M M) | V
  :: = D | 
where D is an unspecified “ground” (non-functional)
type like int. and V is the set of variable symbols.

Typing Rules for Typed Lambda Calculus

Typing Judgment has form:  | M:
where is a set of typings of the form x: where x is
either a variable or a constant.

x:  M:
abstraction rule)
 x:.M : → 

   f:→  M:
application rule)
 f M):

Typing Rules for Typed Lambda Calculus

● Top level programs are typed with respect to a base type
environment that contains the typings of all program
constants (including functions). For the simply typed lamba
calculus, the base type environment is empty, because there
are no constants.

● In some formulations of structural typing rules, the typings
of constants are placed in a separate constant type
environment that is always implicitly available in addition
to the explicit type environment  appearing in type
judgments.

● The typed lambda-calculus requires exact matching
between the input type of a function and the type of
arguments to which it is applied. Why? There is no
subtyping. Every value belongs to a unique type.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

