
Comp 411
Principles of Programming Languages

Lecture 23
Types for Imperative Languages

Corky Cartwright
March 21, 2014

Does Hindley-Milner Polymorphism Work in
Imperative Languages?

The naïve extension of Hindley-Milner Polymorphism to imperative
languages fails!

Assume that we add ref objects and operations to our language. This
is purely an extension of the data model, which only involves the
definition of types (by adding new type constructors) and the set of
primitive operations in our base type environment.

New unary type constructor: ref
New primitive operations:
 ref: ∀α (α → ref α)
 !: ∀α (ref α → α)
 ←: ∀α (ref α α →)

Breaking the Resulting Type System
Counterexample to sound typing:
 let x := ref null
 in {x <- cons(4,null);
 ~first(!x)}

The empty list null has type ∀α(list α). What is the type of x?
ref (list)∀α α . Then x has type ref list int in the first
expression of the block and type ref list bool in the second. Yet
~first(!x) will generate a run-time type error because first(!x) is
an int .

What is going wrong? Recall our interpretation of let-polymorphism
as a syntactic abbreviation for an appropriate family of
non-polymorphic definitions. In this case,
let x1:(ref list int) := ref null;
 x2:(ref list bool) := ref null;
 . . .

This program is well-typed! But what went wrong in the translation?

What Is Fundamentally Different About
Imperative Values?

Their semantics involves the concept of sharing, which makes
reasoning about mathematical expression very messy. Why?
Changing the contents of one occurrence of ref may change the
contents of another because they are shared!

The semantics of function equality in Jam is not purely functional
because it relies on testing sharing relationships. A truly functional
semantics does not include any notion of sharing between values.

Can We Patch Hindley-Milner Typing So That
It Works for Imperative Languages

Yes! It can be done in a variety of ways by imposing additional
restrictions on the inference of polymorphic types for program
variables.

The original “solution” in Standard ML relied on “weak type
variables” and was/is generally regarded as incomprehensible.
Moreover, many formulations (including the early
implementations) of weak type variables are not sound! Soundness
proofs for a few variants of this system eventually appeared in the
mid-90's (ML dates from 1978) including one by John Greiner.

The winning restriction on H-M typing for imperative languages
was developed by my student Andrew Wright (in joint work with
Mathias Felleisen).

The Value Test for Polymorphic Generalization

Define a syntactic value as either a program variable or a data
value (value in the operational semantics). Then the type of a
variable introduced in a let construction can be generalized (the
close operation in our let-poly rule) if and only if the right hand
side of the definition is a value.

Why does this work? It is based on the idea that polymorphism
only works when the value of a variable can be transparently
copied (which is not true in our counterexample). Data values
can be copied. But computations (which generally produce new
results) cannot.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

