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Continuations and Evaluation Contexts

For the sake of simplicity assume that every redex (phrase being evaluated) in 

a program corresponds to a continuation, which is equivalent to performing 

the cps conversion process on every node of a syntax tree including constants 

(which is absurd in practice because almost every constant never escapes 

[discards the passed continuation]).  One of our goals is to produce a tail-

recursive interpreter, which can serve as a guide to implementing an 

interpreter in machine code or writing a compiler to translate source 

programs to machine code.

To recap our discussion of CPS, during the evaluation of a program, every 

phrase is surrounded by some computation that is waiting to be performed 

(and typically that depends on the value of this phrase). In a rewrite-rule 

semantics, the program text for the remaining computation is simply the 

surrounding text; it is called an evaluation context. Turning the meaning of 

this evaluation context into a program function is the act of making the 

continuation explicit.  This process is called reification.



An Example of Reification

For instance in
(+ (* 12 3) (- 2 23))

the evaluation context of the first sub-
expression (assuming it is evaluated first) is

(+ _ (- 2 23))

(where we pronounce _ as ''hole''), so the 
program function corresponding to this 
context is
(lambda (x) (+ x (- 2 23)))



A CPSed Interpreter for LC

Let us consider our interpreter for LC:
(define Eval

(lambda (M env)
(cond ((var? M) (lookup M env))

((lam? M) (make-closure M env))
((app? M)
(Apply (Eval (app-rator M) env)

(Eval (app-rand M) env)))
((add? M) ...)

...)))

In this interpreter, we both create new implicit continuations 
(growing the stack) and invoke implicit continuations 
(returning into the stack).  New implicit continuations are 
created in the code for Apply.  The other two clauses shown 
invoke the current implicit continuation by returning a value.



A CPSed Interpreter for LC cont.

We now use the standard technique for transforming Scheme 

code to transform the interpreter into CPS, making implicit 

continuations explicit:

(define Eval/k

(lambda (M env k)

(cond ((var? M) (k (lookup M env)))

((lam? M) (k (make-closure M env)))

((app? M)

(Eval/k (app-rator M)

env

(lambda (rator-v)

(Eval/k (app-rand M)

env

(lambda (rand-v)

(Apply/k rator-v rand-v k))))))

...)))



Explaining letcc in JAM code

We want to add a letcc construct to LC with syntax (letcc x M) where x is a variable name 
and M is an LC expression.  This construct simply creates an extended environment (like 
other let constructs) with  bound to the current continuation (reified context) and evaluates 
the expression M in the extended environment. Assume that have introduced an abstract 
syntax structure for  in our JAM interpreter (written in Scheme) including the operations 
letcc?, body-of, and var-of. In our direct (non CPSed) interpreters written in Scheme, the 
only way we can define letcc is to use the letcc construct in Scheme, which explains 
nothing. The relevant clause in Eval would be

((letcc? M) (letcc k (Eval (body-of M) (extend env (var-of M) k))))

given the expression syntax

(define-struct letcc (var body)).

In our CPSed interpreter, we can define letcc without any special support from the 
metalanguage:

((letcc? M) (Eval/k (body-of M) (extend env (var-of M) k) k))

Note that we can now easily implement letcc in interpreters written in languages (like Java) 
without continuations.  On the other hand, CPSing an interpreter written in Java is a 
daunting task.  In Assignment 6, we use a different approach.  When we CPS programs, then 
it is easy to support letcc in a framework without support for continuations because we 
actually construct program text defining the continuation for each node in the AST.



A CPSed Interpreter for LC, cont.

Similarly

(define Apply
(lambda (f a)
(cond ((closure? f)

(Eval (body-of f)
(extend (env-of f) (param-of f) a)))

(else ...))))

becomes

(define Apply/k
(lambda (f a k)
(cond ((closure? f)

(Eval/k (body-of f) (extend (env-of f) (param-of f) a) k))
(else ...))))

where extend is treated as a primitive operation like body-of.  Note that 
the continuations for the two recursive calls on Eval in original 
interpreter are different.  Why?



Explaining letcc in JAM code, cont.
What if we had performed the CPS transformation on the Jam code instead of our 
Scheme interpreter for Jam? Then we can write a continuation-based interpreter 
Eval' by invoking Apply from a conventional (not CPSed!) Jam interpreter as a 
help function. We simply define

(define (Eval' M-k) (Apply (Eval M-k Empty-Env) (lambda (x) x)))

where M-k is the CPS conversion (a lambda-expression) of the source program M and 
Empty-Env is bound to the empty environment.  If eliminating the associated stack 
space and stack manipulation overhead is important, we could either write an 
interpreter without any recursion (or even any procedure calls), exploiting the fact 
that all calls on program-defined functions occur in tail position.   But even a 
conventional meta-interpreter using standard stack allocation (like your Java 
interpreters for Jam) can still define the correct behavior for letcc if the input 
programs (e.g., Jam source programs) have been CPSed because the CPSing process 
can support letcc.  When the CPS interpreter implements the clause for letcc with 
binding variable k', the interpreter  (Eval) can simply extend the environment by 
binding k' to the value of k and recursively calling the interpreter (Eval)  with the 
extended environment.

<fn-name>(arg1, . . ., argn, k)
so the interpreter (Eval) can call Apply with three arguments f, a, k just like 
Eval/k does after evaluating the n+1 arguments passed to the called function <fn-
name>.


