
Comp 411
Principles of Programming Languages

Lecture 26
Explaining letcc

Corky Cartwright

April 5, 2021

Continuations and Evaluation Contexts

For the sake of simplicity assume that every redex (phrase being evaluated) in

a program corresponds to a continuation, which is equivalent to performing

the cps conversion process on every node of a syntax tree including constants

(which is absurd in practice because almost every constant never escapes

[discards the passed continuation]). One of our goals is to produce a tail-

recursive interpreter, which can serve as a guide to implementing an

interpreter in machine code or writing a compiler to translate source

programs to machine code.

To recap our discussion of CPS, during the evaluation of a program, every

phrase is surrounded by some computation that is waiting to be performed

(and typically that depends on the value of this phrase). In a rewrite-rule

semantics, the program text for the remaining computation is simply the

surrounding text; it is called an evaluation context. Turning the meaning of

this evaluation context into a program function is the act of making the

continuation explicit. This process is called reification.

An Example of Reification

For instance in
(+ (* 12 3) (- 2 23))

the evaluation context of the first sub-
expression (assuming it is evaluated first) is

(+ _ (- 2 23))

(where we pronounce _ as ''hole''), so the
program function corresponding to this
context is
(lambda (x) (+ x (- 2 23)))

A CPSed Interpreter for LC

Let us consider our interpreter for LC:
(define Eval

(lambda (M env)
(cond ((var? M) (lookup M env))

((lam? M) (make-closure M env))
((app? M)
(Apply (Eval (app-rator M) env)

(Eval (app-rand M) env)))
((add? M) ...)

...)))

In this interpreter, we both create new implicit continuations
(growing the stack) and invoke implicit continuations
(returning into the stack). New implicit continuations are
created in the code for Apply. The other two clauses shown
invoke the current implicit continuation by returning a value.

A CPSed Interpreter for LC cont.

We now use the standard technique for transforming Scheme

code to transform the interpreter into CPS, making implicit

continuations explicit:

(define Eval/k

(lambda (M env k)

(cond ((var? M) (k (lookup M env)))

((lam? M) (k (make-closure M env)))

((app? M)

(Eval/k (app-rator M)

env

(lambda (rator-v)

(Eval/k (app-rand M)

env

(lambda (rand-v)

(Apply/k rator-v rand-v k))))))

...)))

Explaining letcc in JAM code

We want to add a letcc construct to LC with syntax (letcc x M) where x is a variable name
and M is an LC expression. This construct simply creates an extended environment (like
other let constructs) with bound to the current continuation (reified context) and evaluates
the expression M in the extended environment. Assume that have introduced an abstract
syntax structure for in our JAM interpreter (written in Scheme) including the operations
letcc?, body-of, and var-of. In our direct (non CPSed) interpreters written in Scheme, the
only way we can define letcc is to use the letcc construct in Scheme, which explains
nothing. The relevant clause in Eval would be

((letcc? M) (letcc k (Eval (body-of M) (extend env (var-of M) k))))

given the expression syntax

(define-struct letcc (var body)).

In our CPSed interpreter, we can define letcc without any special support from the
metalanguage:

((letcc? M) (Eval/k (body-of M) (extend env (var-of M) k) k))

Note that we can now easily implement letcc in interpreters written in languages (like Java)
without continuations. On the other hand, CPSing an interpreter written in Java is a
daunting task. In Assignment 6, we use a different approach. When we CPS programs, then
it is easy to support letcc in a framework without support for continuations because we
actually construct program text defining the continuation for each node in the AST.

A CPSed Interpreter for LC, cont.

Similarly

(define Apply
(lambda (f a)
(cond ((closure? f)

(Eval (body-of f)
(extend (env-of f) (param-of f) a)))

(else ...))))

becomes

(define Apply/k
(lambda (f a k)
(cond ((closure? f)

(Eval/k (body-of f) (extend (env-of f) (param-of f) a) k))
(else ...))))

where extend is treated as a primitive operation like body-of. Note that
the continuations for the two recursive calls on Eval in original
interpreter are different. Why?

Explaining letcc in JAM code, cont.
What if we had performed the CPS transformation on the Jam code instead of our
Scheme interpreter for Jam? Then we can write a continuation-based interpreter
Eval' by invoking Apply from a conventional (not CPSed!) Jam interpreter as a
help function. We simply define

(define (Eval' M-k) (Apply (Eval M-k Empty-Env) (lambda (x) x)))

where M-k is the CPS conversion (a lambda-expression) of the source program M and
Empty-Env is bound to the empty environment. If eliminating the associated stack
space and stack manipulation overhead is important, we could either write an
interpreter without any recursion (or even any procedure calls), exploiting the fact
that all calls on program-defined functions occur in tail position. But even a
conventional meta-interpreter using standard stack allocation (like your Java
interpreters for Jam) can still define the correct behavior for letcc if the input
programs (e.g., Jam source programs) have been CPSed because the CPSing process
can support letcc. When the CPS interpreter implements the clause for letcc with
binding variable k', the interpreter (Eval) can simply extend the environment by
binding k' to the value of k and recursively calling the interpreter (Eval) with the
extended environment.

<fn-name>(arg1, . . ., argn, k)
so the interpreter (Eval) can call Apply with three arguments f, a, k just like
Eval/k does after evaluating the n+1 arguments passed to the called function <fn-
name>.

