
Comp 411

Principles of Programming Languages

Lecture 15

Church and State: Supporting Assignment

Corky Cartwright

February 26, 2021

What Is Assignment?
• Assignment is rebinding (changing the value of) a variable in the

current environment. This process is also called mutation since

the environment is destructively changed.

• Nearly all practical programming languages include operations for

mutating the values of program variables and data structures.

Only plausible exception is Haskell, but is it really practical?

• To incorporate this feature in LC, we add an assignment

operation to the language with syntax (taken from Scheme/Racket)

(set! x M)

and the abstract representation
(define-struct (setter lhs rhs))

where x is any lambda-bound identifier.

• Assignment (set!) enables us to model changing events in the real

world.

How Do We Define the Semantics of

Assignment Using a Meta-Interpreter?

Two common approaches:
1. Use mutation in the meta-language

2. Add another parameter to the eval function representing a store

that maps locations to values. The environment maps assignable

(mutable) variables [symbols] to locations. What is a location?

An element of a specified denumerable set, typically the natural

numbers (akin to machine addresses!). Such an interpreter is

called store-passing.

Implications:
• Trade-offs: the second approach is pure but ugly. It makes

interpreters look like compilers; identifiers stand for addresses.

• Conclusion: assignment is inherently ugly from a semantic perspective.

Store-passing is used in denotational semantics for imperative (mutation

supporting) languages but it gives no insight on how to build an efficient

implementation. Meta-interpreters that rely on mutation are much closer

to efficient language implementations because all modern computers

support mutation (updating the value at an address in memory!)

Two Different Formulations of Assignment

Assignable Variables

• Mutate (change) bindings in environment.

• The semantics of assignment critically depend on the

fact that extensions of an environment share that

environment.

• Racket Scheme/C++/Java/Scala/Swift use this

formulation.

Mutable Cells

• Cells (boxes) are values. In essence, the data domain is

augmented by a new unary constructor called box or

ref. The only mutable data cells are these cells.

• ML/Haskell uses this formulation.

Comparing the Two Different Formulations

Advantage of Assignable Variables

• Simpler notation but the cells/boxes holding the values of

variables typically are not data objects which forces extra

machinery (typically a prefix operator like @ in C) in parameter

passing (such as call-by-reference) or a distinction between left-

hand and right-hand evaluation.

• If cells are data objects (e.g., pointers as in C) the internals of the

language implementation are exposed (as in C).

Advantage of Mutable Cells

• Mutable cells are simply a special form of data.

• The design of the language is unaffected otherwise.

• Simulating call-by-reference is trivial; call-by-name requires a bit

of extra work, but not much. Call-by-need is more work but it is

generally not supported in languages with assignable variables

either.

Using Mutation to Define Mutation

Key intuition: implementation is easy, provided that environment

sharing-relationships are modeled correctly. A nested environment

shares its parent environment representation!

Observation: there is no straightforward way to support assignment

if environments are represented as functions. Why? Assignment

must update shared bindings but functions do not directly support

sharing relationships. Linked lists (and other concrete data structures)

foster sharing!

To change the value associated with a variable x, we must bind a

different value to the variable x. We can accomplish this by

including a clause in the MEval case-split of the form:

((setter? M) <change the environment>)

But how do we do this?

Using Mutation to Define Mutation cont.

• To make variables assignable, we need support changing the values they stand

for.

• Variables cannot be directly associated with values; rather, they must be

associated with an object which can be modified to hold a different value.

• What kind of object can we use?

• In Scheme, a particularly apt choice is to use a box (a built-in struct with a

single field to hold the value of each variable. Then we can use mutation on

Scheme boxes to change the value of the field. Note that we can also use

closures and mutate local variables in these closures, which is an important

trick featured in SICP (Structure and Interpretation of Progams).

• In Java, the value field in a Binding object simply has to be mutable.

• Moral: variables should stand for boxes (mutable cells).

• Comment: assignment languages like Java implicitly use boxes almost

everywhere, but these boxes are not objects. They cannot be passed as values.

They are not visible data values except via the Java reflection facility which is

ugly and often breaks portability and backward compatibility.

Revising Our Meta-Interpreter

We must revise the clause that binds new variables (which in LC are

only introduced in λ-expressions):

((app? M)
(Mapply
(MEval (app-fp M) env)

(box (MEval (app-ap M) env)))) ;; box is a constructor

Since variables are now bound to boxes containing values, we must

change the code that for evaluating variables:

((var? M)
(unbox (lookup (var-name M) env))) M)

We are finally ready to add the clause for assignment:
((setter? M)
(set-box! (lookup (setter-lhs M) env)

(MEval (setter-rhs M) env)))

Can Boxes Be Values?
• Yes. Many languages support some formulation of this concept. But the

details can be delicate because we must know from context whether a variable

x means either its value or the enclosing box. In ML, it is trivial.

• Traditional “limited” approach: support call-by-reference as a parameter

passing mechanism. The formal parameter declaration includes an attribute

stating that call-by-reference should be used. Examples: var parameters in

Pascal, reference (tagged with &) parameters in C++. Variables passed by

reference are interpreted differently (as the box or its contents) depending on

context.

• Cleaner “comprehensive” approach: treat boxes as ordinary values (as in ML)

or, in lower level languages, pointers as values (as in C). But there is a cost:

these boxes/pointers must be explicitly dereferenced to get the associated

values. In C, the data model is ultimately machine memory and explicit use of

pointers is perilous; tiny mistakes can cause catastrophic behavior (screen of

blue death [SOBD]) All “algol-like” languages (including C/C++) depend on

program context to determine when variables are automatically dereferenced.

Conceptually, the ML convention is much simpler but it requires explicit

dereferencing (using the unary prefix operator !) whenever we want the value

of the mutable variable.

