
Comp 411

Principles of Programming Languages

Lecture 2

Syntax

Corky Cartwright

January 27, 2021

Syntax: The Boring Part of

Programming Languages
• Programs are represented by sequences of symbols

(not characters).

• These symbols are represented as sequences of
characters that can be typed on a common keyboard
(ASCII).

• What about Unicode? (Potentially important in
practice.)

• To analyze or execute the programs written in a
language, we must translate the ASCII/Unicode
representation for a program to a higher-level tree
representation. This process, called parsing,
conveniently breaks into two parts:
• lexical analysis (sometimes called lexing or

tokenization), and

• context-free parsing (often simply called parsing).

Lexical Analysis

• Consider this sequence of characters: begin middle end

• What are the smallest meaningful pieces of syntax in this phrase?

• The process of converting a character stream into a
corresponding sequence of meaningful symbols (called
tokens or lexemes) is called tokenizing, lexing or lexical
analysis. A program that performs this process is called a
tokenizer or a lexer.

• In Scheme/Racket, we tokenize
(set! x (+ x 1)) as

(set! x (+ x 1))

• Similarly, in Java, we tokenize

System.out.println("Hello World!"); as

System . out . println ("Hello World!") ;

Lexical Analysis, cont.

• Tokenizing is straightforward for most languages
because it can be performed by a finite automaton
(equivalent to a regular grammar for those of you
who have take 412 or 481) that matches the longest
possible string of characters as the next token.
Fortran is an interesting exception!

• The rules governing this process are (a very boring)
part of the language definition.

• The details are generally provided as part of a
language definition but subsequently glossed over
as uninteresting.

• Parsing a stream of tokens into structural
description of a program (typically a tree) is harder.

Parsing
• Consider the Java statement: x = x + 1;

where x is an int variable.

• The grammar for Java stipulates (among other things):

• The assignment operator = may be preceded by an
identifier (other more complex, possibilities exist as
well) and must be followed by an expression.

• An expression may be two expressions (technically
restricted to special kinds of expressions) separated by
a binary operator such as +.

• An assignment expression can serve as a statement if it
is followed by the statement terminator symbol ;.
Hence, we can deduce from the grammatical rules of
Java that the above sequence of characters (tokens) is a
legal program statement that performs an assignment.

• Note: if you are unfamiliar with Context Free
Grammars, look up the topic on Wikipedia.

Parsing Token Streams into Trees
• Consider the following ways to express an assignment

operation:

x = x + 1 [Java]

x := x + 1 [Algol]

(set! x (+ x 1)) [Scheme]

• Which of these do you prefer? It should not matter much.

• To eliminate the irrelevant syntactic details, we can create a
stream-lined data representation that represents program syntax
using trees. Each language construct and program operation is
represented by a tree node. The leaves of the tree are typically
language constants. For instance, the abstract syntax for the
assignment code given above could be (assuming Scheme as the
implementation language)

(make-assignment <Rep of x> <Rep of x + 1>)

• Or (in Java as the implementation language)

new Assignment(<Rep of x> , <Rep of x + 1>)

A Simple Example

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp)

Num is the set of numeric constants (given in the lexer specification)

Var is the set of variable names (given in the lexer specification)

To represent this syntax as trees (abstract syntax) in Scheme/Racket

; exp := (make-num number) | (make-var symbol) | (make-app exp exp) |
; (make-proc symbol exp)
(define-struct (num n)) ;; num is the constructor name, n is a field
(define-struct (var s))
(define-struct (app rator rand))
(define-struct (proc param body)) ;; param is a field name not a

var!

where an app structure represents a function application and a proc structure represents a
function definition (typically a lambda-abstraction). Structures in Scheme correspond to
structures in C/C++ and data classes in Java.

Top Down (Predictive) Parsing

Idea: design the grammar so that we can always tell what rules can be used next starting from the root of

the parse tree by looking ahead (in a left-to-right scan) some small number (k) of tokens (formally LL(k)

parsing in the context of a context-free grammar defining the set of legal programs)

This algorithm an easily be implemented by manual coding using a technique called recursive descent.

Conceptual aid: we use syntax diagrams to express the legal sequences of symbols that appear in

production rules. Syntax diagrams are (almost) formally equivalent to context free grammars but also

imply an AST representation. They are some small but important technical differences between syntax

diagrams and extended context-free grammas which are generally ignored in the literature. The intuition

behind syntax diagrams is program recognition (parsing) while the intuition behind context-free grammars

is program generation. A key example where these two formalizations disagree is if statements with

optional else clauses. The extended CFG formulation is ambiguous (which if does a specific else

match) while the syntax diagram formulation is not (because of the maximal matching restriction in the

recognition process).

Intuition: k-symbol look-ahead is used to determine which branch to take at a fork in a syntax diagram.

We try to design LL(k) grammars (and the corresponding syntax diagrams) so that k is ≤ 1. Note that the

precise definition of LL(k) is tricky; if a parser can decide which branch (track) to take at a branching

point in a syntax diagram using the next symbol in the input is LL(0) not LL(1). Looking at the next

symbol to determine which branch to take is not classified as looking ahead!

