
Comp 411

Principles of Programming Languages

Lecture 21

Extending the (Simply) Typed λ-Calculus to

λ-Languages with Functional Constructs

Corky Cartwright

March 22, 2021

Accomodating Standard Ground Types
(Review)

Any realistic statically typed function language includes ground types
like bool and int (and many more such as char and float).

Hence, the definition of types (type expressions) τ looks like:

τ ::= int | bool | ... | τ → τ
and the base environment (which is empty in the simply typed lambda
calculus) contains types for all of the primitive functions and operators.
(We interpret operators as abbreviated syntax for conventional function
applications.)

To support multi-ary functions, we also need to introduce Cartesian
products of types τ × τ as an extra clause after τ → τ above. We

will use this extension without further comment when we need it.

How Do We Type Functional Constructs?

Examples:

• Conditional expressions

• New algebraic (inductively defined) data types

• Recursive let

General answer:

(i) for each new syntactic construct like conditionals, we introduce a
new rule;

(ii) for each new form of data (which only requires adding new
constants [including functions] to the languge), we simply augment the
set of type constructors by the new type constructor (e.g. int-list)
and augment the contents of the base type environment by the new
constants and their types.

Let's look at each example in our list above.

Typing Conditional Expressions

Note: if conditional expressions are simply written as applications
of a ternary if operator, then all we need to do is add if to the set
of constant symbols and add the type of if to the base type
environment (assuming our typing framework is polymorphic
which we will explain later). In fact, our new rule for the if
construct simply codifies the same typing constraints (but does not
introduce a new constant symbol or rely on polymorphism).

Our conditional expressions presume the existence of a bool type

Γ Ͱ B:bool; Γ Ͱ M:τ; Γ Ͱ N:τ
――――――――――――――――――――――――――――

Γ Ͱ if B then M else N : τ

Typing New Forms of Data

Assume we define some new form of data in a program. In
structurally typed programming languages, all data values have a
unique type. Hence, when a new union type is introduced, all values
of that type must be disjoint from all existing types. This invariant is
maintained by forcing all of the components of a new union type to be
tagged. This data construction is called a discriminated union.

Example: binary trees

BT :: = leaf(int) | BT(BT, BT)

In ML-like languages, new forms of data are introduced in datatype
declarations which have an abstract syntax similar to our example. In
ML, the names of accessors (selectors) are implicit because pattern-
matching notation is used to extract the fields of constructed data
objects.

Typing New Forms of Data cont.
Given

BT :: = leaf(int) | BT(BT, BTbb)
we augment the set of type expressions by the primitive type BT and the base typing

environment by the declarations:

make-leaf: int → BT
make-BT: BT x BT → BT
leaf-1: BT → int
BT-1: BT → BT
BT-2: BT → BT

assuming that we use the name leaf-1 for the accessor for make-leaf and the names

BT-1 and BT-2 for the accessors for make-BT. In languages with pattern matching like

ML, the names of the accessors (can be implicit because pattern matching notation makes

them unnecessary.

In ML-like languages, data type definitions are typically lexically scoped so datatype
statements have an abstract syntax like let with an explicit body which is the scope of the
definition. We will ignore scoping for data definitions and fix the data types for any
program that we consider. (In Java, data definitions do not have scope. Visibility is an
administrative notion not a semantic one.) Values of a given type can escape from their
scope which creates some interesting semantic problems.

Key intuition: to accommodate new forms of data, we only need to add new primitive
types (corresponding to the new data) and entries (the types of new constants) to the base
type environment Γ0.

The typing rule for pure let is simply an abbreviation for

appropriately combining the abstraction and application rules:

Γ Ͱ M:σ; Γ ∪ {x:σ} Ͱ N:τ
―――――――――――――――――――――――――――― (pure let rule)
Γ Ͱ letbb x:σ := M in N : τ

The corresponding rule for recursive let is:

Γ ∪ {x:σ} Ͱ M:σ; Γ ∪ {x:σ} Ͱ N:τ
―――――――――――――――――――――――――――――― (letrec rule)

Γ Ͱ let x:σ := M in N : τ

which differs only in one small (but very important!) detail: the

type environment for proving M:σ.

Typing Let and Recursive Let

Type Soundness
If a type system is properly designed, we can prove that it guarantees some (fairly weak)
semantic properties hold. In particular, we can prove that the type system is sound, i.e.
that well-typed programs (those that “type check”) “never go wrong”. More precisely,
we can prove (using a simple syntactic, substitution based [often called small-step]
semantics that every program expression M of type τ either:

(i) Evaluates to a value of type τ.

(ii) Generates a run-time error (and aborts) where type errors are not classified as run-
time errors.

(iii) Diverges.

Note that expression M cannot evaluate to a value that does not belong to type τ, which
is extremely important.

The standard approach to proving type soundness breaks down into two steps:

(i) Type preservation: every reduction rule preserves the type of the reduced
expression.

(ii) The syntactic evaluation process never get “stuck” where the program text cannot
be reduced but does not denote a value (an answer).

The type preservation proof typically proceed by induction on the length of evaluations
(which look exactly like the hand evaluations we have learned to do for Jam). The
proofs are typically straightforward but tedious because there are many cases (reduction
rules applied in the last evaluation step) to consider. The “stuck-free” proof proceeds by
structural induction on the form of closed ASTs; we simply show that every closed AST
that is not a value is reducible.

A Glimpse at the Technical Details

To prove type-soundness in languages with run-time errors involving
operations that are not strict (do not necessarily evaluate all of their arguments)
like conditional expressions (if in Jam) and short-circuit & and |, we need to
formalize aborting errors in our syntactic semantics by including the constant
abort in our language and reductions to abort in our table specifying the
behavior of primitive operations (function constants) applied to type correct
arguments. The constant abort is not a value; if it ever appears as the leftmost
unreduced expression in a computation, the computation immediately aborts
with a run-time error. We have already been doing the same computation steps
informally to handle run-time errors in hand evaluations.

This approach is mathematically precise and correct, but it means the statement
“well-typed programs never go wrong” is a bit of an exaggeration. More
accurately, well-typed programs never generate type errors in the course of
syntactic evaluation. These type errors are modeled as “stuck” states, but run-
time errors (like 1/0) other than type errors still exist.

Type soundness proofs were originally done using a denotational semantics
including an error element for type errors (modeled by stuck states in our
syntactic semantics) and a separate error element for run-time errors that are
not type errors (modeled by abort in our syntactic semantics). Note that both
of these error elements are distinct from divergence (┴).

Type Reconstruction

• Given an untyped expression M in a λ-language with

constants, can we determine if it has a typing in the

corresponding simply typed λ-language?

• Yes! Moreover the reconstructed type τ (sometimes

ambiguously called the inferred type) may contain free type

variables that can be instantiated (replaced) by arbitrary type

expressions (perhaps containing type variables. These
instantiations correspond to valid types for τ. The

reconstructed type τ with the free type variables is called the

principal (most general) type of M. Languages in the ML

family (Haskell, Ocaml, …) perform type reconstruction.

