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Accomodating Standard Ground Types 
(Review)

Any realistic statically typed function language includes ground types 
like bool and int (and many more such as char and float).

Hence, the definition of types (type expressions) τ looks like:

τ ::= int | bool | ... | τ → τ
and the base environment (which is empty in the simply typed lambda 
calculus) contains types for all of the primitive functions and operators. 
(We interpret operators as abbreviated syntax for conventional function 
applications.)

To support multi-ary functions, we also need to introduce Cartesian 
products of types τ × τ as an extra clause after τ → τ above. We 

will use this extension without further comment when we need it.



How Do We Type Functional Constructs?

Examples:

• Conditional expressions

• New algebraic (inductively defined) data types

• Recursive let

General answer:

(i) for each new syntactic construct like conditionals, we introduce a 
new rule;

(ii) for each new form of data (which only requires adding new 
constants [including functions] to the languge), we simply augment the 
set of type constructors by the new type constructor (e.g. int-list) 
and augment the contents of the base type environment by the new 
constants and their types.

Let's look at each example in our list above.



Typing Conditional Expressions

Note: if conditional expressions are simply written as applications 
of a ternary if operator, then all we need to do is add if to the set 
of constant symbols and add the type of if to the base type 
environment (assuming our typing framework is polymorphic 
which we will explain later).   In fact, our new rule for the if
construct simply codifies the same typing constraints (but does not 
introduce a new constant symbol or rely on polymorphism).

Our conditional expressions presume the existence of a bool type 

Γ Ͱ B:bool; Γ Ͱ M:τ; Γ Ͱ N:τ
―――――――――――――――――――――――――――― 

Γ Ͱ if B then M else N : τ



Typing New Forms of Data

Assume we define some new form of data in a program.  In 
structurally typed programming languages, all data values have a 
unique type.   Hence, when a new union type is introduced, all values 
of that type must be disjoint from all existing types.  This invariant is 
maintained by forcing all of the components of a new union type to be 
tagged.   This data construction is called a discriminated union.

Example: binary trees

BT :: = leaf(int) | BT(BT, BT)

In ML-like languages, new forms of data are introduced in datatype
declarations which have an abstract syntax similar to our example.  In 
ML, the names of accessors (selectors) are implicit because pattern-
matching notation is used to extract the fields of constructed data 
objects.



Typing New Forms of Data cont.
Given

BT :: = leaf(int) | BT(BT, BTbb)
we augment the set of type expressions by the primitive type BT and the base typing 

environment by the declarations:

make-leaf: int → BT
make-BT: BT x BT → BT
leaf-1: BT → int
BT-1: BT → BT
BT-2: BT → BT

assuming that we use the name leaf-1 for the accessor for  make-leaf and the names 

BT-1 and BT-2 for the accessors for make-BT.  In languages with pattern matching like 

ML, the names of the accessors (can be implicit because pattern matching notation makes 

them unnecessary.

In ML-like languages, data type definitions are typically lexically scoped so datatype
statements have an abstract syntax like let with an explicit body which is the scope of the 
definition.  We will ignore scoping for data definitions and fix the data types for any 
program that we consider.  (In Java, data definitions do not have scope.  Visibility is an 
administrative notion not a semantic one.)  Values of a given type can escape from their 
scope which creates some interesting semantic problems.

Key intuition: to accommodate new forms of data, we only need to add new primitive 
types (corresponding to the new data) and entries (the types of new constants) to the base 
type environment Γ0.



The typing rule for pure let is simply an abbreviation for 

appropriately combining the abstraction and application rules:

Γ Ͱ M:σ; Γ ∪ {x:σ} Ͱ N:τ
―――――――――――――――――――――――――――― (pure let rule)
Γ Ͱ letbb x:σ := M in N : τ

The corresponding rule for recursive let is:

Γ ∪ {x:σ} Ͱ M:σ; Γ ∪ {x:σ} Ͱ N:τ
―――――――――――――――――――――――――――――― (letrec rule)

Γ Ͱ let x:σ := M in N : τ

which differs only in one small (but very important!) detail: the 

type environment for proving M:σ.

Typing Let and Recursive Let



Type Soundness
If a type system is properly designed, we can prove that it guarantees some (fairly weak) 
semantic properties hold.  In particular, we can prove that the type system is sound, i.e. 
that well-typed programs (those that “type check”) “never go wrong”.  More precisely, 
we can prove (using a simple syntactic, substitution based [often called small-step] 
semantics that every program expression M of type τ either:

(i) Evaluates to a value of type τ.

(ii) Generates a run-time error (and aborts) where type errors are not classified as run-
time errors.

(iii) Diverges.

Note that expression M cannot evaluate to a value that does not belong to type τ, which 
is extremely important.

The standard approach to proving type soundness breaks down into two steps:

(i) Type preservation: every reduction rule preserves the type of the reduced 
expression.

(ii) The syntactic evaluation process never get “stuck” where the program text cannot 
be reduced but does not denote a value (an answer).

The type preservation proof typically proceed by induction on the length of evaluations 
(which look exactly like the hand evaluations we have learned to do for Jam).  The 
proofs are typically straightforward but tedious because there are many cases (reduction 
rules applied in the last evaluation step) to consider.  The “stuck-free” proof proceeds by 
structural induction on the form of closed ASTs; we simply show that every closed AST 
that is not a value is reducible.



A  Glimpse at the Technical Details

To prove type-soundness in languages with run-time errors involving 
operations that are not strict (do not necessarily evaluate all of their arguments) 
like conditional expressions (if in Jam) and short-circuit & and |, we need to 
formalize aborting errors in our syntactic semantics by including the constant 
abort in our language and reductions to abort in our table specifying the 
behavior of  primitive operations (function constants) applied to type correct 
arguments.  The constant abort is not a value; if it ever appears as the leftmost 
unreduced expression in a computation, the computation immediately aborts 
with a run-time error.  We have already been doing the same computation steps 
informally to handle run-time errors in hand evaluations.

This approach is mathematically precise and correct, but it means the statement 
“well-typed programs never go wrong” is a bit of an exaggeration.  More 
accurately, well-typed programs never generate type errors in the course of 
syntactic evaluation.  These type errors are modeled as “stuck” states, but run-
time errors (like 1/0) other than type errors still exist.

Type soundness proofs were originally done using a denotational semantics 
including an error element for type errors (modeled by stuck states in our 
syntactic semantics) and a separate error element for run-time errors that are 
not type errors (modeled by abort in our syntactic semantics).  Note that both 
of these error elements are distinct from divergence (┴).



Type Reconstruction

• Given an untyped expression M in a λ-language with 

constants, can we determine if it has a typing in the 

corresponding simply typed λ-language?

• Yes! Moreover the reconstructed type τ (sometimes 

ambiguously called the inferred type) may contain free type 

variables that can be instantiated (replaced) by arbitrary type 

expressions (perhaps containing type variables. These 
instantiations correspond to valid types for τ.  The 

reconstructed type τ with the free type variables is called the 

principal (most general) type of M.  Languages in the ML 

family (Haskell, Ocaml, …) perform type reconstruction.


