
Comp 411
Principles of Programming Languages

Lecture 14
Eliminating Lambda Using Combinators

Corky Cartwright

February 24, 2021

How to Eliminate lambda (map in Jam)

Goal: devise a few combinators (functions expressed

as λ-abstractions with no free variables) that enable us

to express all λ-expressions without explicitly using λ.

Notation: let λ*x.M denote λx.M converted to an

equivalent syntactic form that eliminates the starred λ.

Then

λ*x.x → I (where I = λx.x)

λ*x.y → Ky (where K = λy.λx.y)
λ*x.(M N) → S(λ*x.M)(λ*x.N)

(where S = λx.λy.λz.((x z)(y z)))

How to Eliminate lambda (map in Jam) cont.

Question: Where did S come from?

• Intuition: it falls out when we formulate the

translation to combinatory form using structural

recursion on the abstract syntax of λ-expressions.

• The first two cases on the preceding slide do not

involve recursion.

• In the third case, the form of the “magic” S
combinator is determined by structural

recursion! It is simply the pure λ-abstraction that

works when plugged in for λ*.

How Can We Systematically Eliminate All λs?

Strategy:

• Eliminate λ-abstractions from inside out,

one-at-a-time. This process terminates because it strictly

reduces the sum of the depth*s of every λ-abstraction. The

definition of depth* is

a bit tricky because each reduction rule (on slide 2) must strictly

lower it for all λ-abstractions. The rule involving S must be

handled delicately.

• Warning: this transformation can (and usually does) cause

exponential blow-up because the third rule replaces one λ-

abstraction by two of them. Note that the depth* function

grows exponentially with tree depth because the depth* must

add the depths of both subtrees of an application.

Final Observations

• Checking the App case

S (λx.M) (λx.N)

= (λx.λy.λz.(x z)(y z)) (λx.M) (λx.N)

= (λy.λz.((λx.M) z)(y z)) (λx.N)

= (λz.((λx.M) z)((λx.N) z))

= (λz.(Mx←z) ((λx.N) z))

= (λz.(Mx←z) (Nx←z)) = λx.(M N) (by α-conversion)

Note: the names x y z are fresh and arbitrary, distinct from any free names

in λx.M λx.N

