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Major Challenge

• LC does not include a recursive binding operation 

(like Scheme letrec or local).  How would we define 

eval for such a construct? 

• Key problem: the closure structure for a recursive 

lambda must include an environment that refers 

to itself! 

• In imperative Java, how would we construct such an 

environment.  Hint: how do we build “circular” data 

structures in general in Java?  Imperativity is brute 

force.  But it works.  We will use it in Project 3 

and thereafter.      



Minor Challenge

• How could we define an environment that refers to

itself in functional Scheme (or Ocaml)?

• Key problem: observe that in both let and lambda, the 

expression defining the value of a variable cannot

refer to itself because the corresponding variable is out 

of scope.  Moreover, it is not yet bound.

• Solution: does functional Scheme (or Ocaml) contain a

recursive binding construct? (Yes for function 

definitions [define in Scheme].)

• What environment representation must we use?



Advantages of Representing

Environments as Functions

Languages that support functions as values (or an OO equivalent like anonymous inner 

classes [Java] or anonymous delegates [C#]) support the dynamic definition of recursive 

functions.   So we can write a purely functional interpreter that assigns a meaning to a 

recursive binding by constructing a new environment (a function) that recurs on itself 

(refers to itself).  In Scheme/Racket, given a function e that represents the current 

environment, we can extend e with a new binding of symbol f to an AST rhs (right-hand-

side) that is evaluated in the extended environment by constructing the environment
(define new-e (lambda (sym) (if (=? sym 'f) (eval rhs new-e) (e sym))))

where eval is the meta-interpreter.  Scheme/Racket also includes a local recursive binding  

construct called letrec.

Scheme/Racket letrec is akin to let except that it performs recursive binding instead of 

conventional binding, i.e., that the new environment created by letrec is used to evaluate 

all subexpressions on the right-hand-side (rhs) of the symbol definition added by letrec

(see the syntax for let in the previous lecture).  Note that the binding of the new symbol 

is unavailable (sometimes represented by the error value *void*) until the evaluation of 

the rhs is complete.  This trick works for letrec constructs that introduce new function 

definitions but not for other kinds of data unless the constructors for that form of data are 

“lazy” (delaying the evaluation of their arguments until demanded by an accessor 

operation).



A Bigger Challenge

• Assume that we want to write LC in a purely 

functional language without a recursive binding 

construct (say functional Scheme without letrec).

• Key problem: must expand letrec into lambda.  

• There is no simple solution to this problem. We 

need to invoke syntactic magic or (equivalently) 

develop some sophisticated mathematical 

machinery (which motivates the syntactic magic).  

The syntactic magic (for call-by-name) is the Y

operator from the pure lambda calculus.



Key Intuitions
• Computation is incremental—not monolithic.

• Slogan: general computation is successive 

approximation (typically in response to successive 

demands for more information).

• Familiar example: a program mapping a potentially 

infinite input stream of characters to a potentially 

infinite output stream of characters.

• Generalization: infinite trees mapped to infinite trees.  

This generalization is very powerful.  In the framework 

of sequential computation with aborting error elements 

(like the result of division by zero), every function can 

be canonically represented by a potentially infinite t



Mathematical Foundations
A (Scott) domain of computation D (like streams, trees, partial functions as graphs) 

is a partially ordered set (po) with the following properties:

• D has a countable subset B (set of finite approximations), called the finitary 

basis, which is a po that is finitely consistent, i.e., closed under LUBs on finite 

bounded subsets (implying a unique least elt ⊥ exists as the LUB of the empty 

set).  We will restrict our attention to finitary bases B where no element b in B

is the LUB of an infinite subset of B (called finitely-founded).  Since B is a 

basis, every element d in D is the LUB of the finite elements that approximate 

it.

• D is chain-complete: every chain b
0

≤ b
1

≤ … ≤ b
k

≤ ... (a countable ascending 

sequence) in B has a LUB in D.

• A po with that is chain-complete is called a cpo (complete partial order). 

Every computational domain can be formalized as a Scott-doain

Note: in the reference monograph, directed sets are used instead of chains.  When 

the finitary basis is countable, it is straightforward to show that chain-complete

and directed-complete are equivalent.

Examples of (Scott) domains:
• flat domains: integers, booleans, finite trees with no undefined (⊥) leaves;

• lazy tree domains: potentially infinite trees with a finite set of node types and undefined 

(⊥) leaves.



Key Mathematical Concepts

Computable functions on domains:

• monotonic (universal)

• continuous (universal)

• strict (typical in practical programming languages)

For a brief, intuitive overview, see the topic notes for 

lecture 11 

https://www.cs.rice.edu/~javaplt/411/19-spring/Notes/11/06.html

For an in-depth treatment of (Scott) domains, see the 

monograph linked under references for lecture 10. 

https://www.cs.rice.edu/~javaplt/411/19-spring/Notes/11/06.html
https://www.cs.rice.edu/~javaplt/411/19-spring/Readings/domains.pdf


Examples

Domains

• flat domains

• strict function spaces on flat domains (CBV)

• lazy trees of booleans

• continuous functions A → B where A and B 

are domains

The notion of continuity here is very important; it 

enables interchanging function application and the 

LUB operation on chains.


