
NextGen Developer’s Guide

Eric Allen

eallen@cs.rice.edu

Rice University

6100 S. Main St.

Houston TX 77005

February 16, 2003

1 Introduction

This document describes the high-level architecture and code layout of the
NextGen prototype compiler, developed at Rice University. The NextGen

compiler was developed as an extension to the GJ compiler under special li-
cense from Sun Microsystems. This same compiler was extended independently
by Sun Microsystems to form the JSR-14 prototype compiler, scheduled for
inclusion in J2SE 1.5. In the process of developing NextGen, we have refac-
tored the original GJ compiler substantially, and no attempt has been made to
maintain compatibility with the JSR-14 source code. Nevertheless, the reader
may find that some of the architectural features of NextGen described here
are helpful when deciphering the JSR-14 code base (modulo class, package, and
variable name changes).

The GJ compiler, as well as the NextGen and JSR-14 compilers derived
from it, are written in Generic Java.1 As a result, we enjoy much more precise
type checking in the source code of these compilers than we would have with
ordinary Java. But we are also unable to use many of the powerful development
tools available for standard Java.2

1”Generic Java” is a specification for a family of languages that add generic types to Java.

This family includes both GJ and NextGen.
2Two very useful tools that are compatible with Generic Java are the CodeGuide and

DrJava IDEs. All NextGen developers are encouraged to leverage both tools. Drjava is

particularly useful for writing new unit tests; CodeGuide provides support for automated

refactoring and incremental compilation.

1

Throughout this document, it is assumed that the reader is familiar with
the GJ, NextGen, and MixGen language designs, as well as the published
descriptions of how these languages can be compiled to the JVM so as to main-
tain compatibility with existing compiled binaries. Readers not already familiar
with this material are referred to [10, 9, 3]. The References section also in-
cludes optional background material discussing various extensions of the Java
type system, including first-class genericity and non-generic mixins.

It is also assumed that the reader has set up a JavaPLT development envi-
ronment, is familiar with basic CVS commands, with JUnit, with Ant, and with
DrJava. Instructions on setting up a JavaPLT environment are available at

http://www.cs.rice.edu/~javaplt/doc/developer.pdf

A short tutorial on CVS is available at http://www.cvshome.org/docs/manual.
A tutorial on JUnit is available at http://www.junit.org. A tutorial on Ant
is available at http://www.jakarta.org. DrJava documentation is available at
http://drjava.sf.net.

2 The NextGen CVS Repository

The NextGen source code is maintained under the javaplt CVS repository. To
checkout the NextGen source code, go to your javaplt directory and checkout
the module nextgen. Because NextGen is written in JSR-14, you will need to
prepend JSR-14 to the bootclasspath when starting Ant. The best way to do
that is to set your ANT OPTS environment variable to the location of the JSR-14
jar. For example, on Unix systems, set it to:

-Xbootclasspath/p:‘javaplt-home‘/packages/jsr14_adding_generics-1_3-ea/javac.jar

Of course, on Windows/Cygwin, your path will look different.3

Once you have checked out a copy of the code, the first thing you should do
is cd to the new nextgen directory and type

$ ant all

Doing so will run all Ant targets in the project. An essential invariant
of the NextGen project is that ant all should succeed when invoked on a
clean checkout, on all supported platforms (Linux, Solaris, OS X, and Windows
XP/Cygwin) with a proper JavaPLT development environment. If it doesn’t,
be sure to correct any problems with your environment before continuing.

3Because we must set this variable before Ant starts, this is one place where Ant’s ability

to automatically convert path names doesn’t save us.

2

3 The NextGen Project Directory Structure

The nextgen project directory contains the following files and subdirectories:

• build.xml. This file contains the XML source code for all Ant targets
associated with the NextGen project.

• anttools. This directory contains the Java source code for custom Ant
tasks associated with NextGen. In particular, the NextGenCompilerTask

and NextGenJUnitRunner source code is contained here. Because all Java
source code in the NextGen project is placed in various subpackages
of edu.rice.cs.nextgen, the files in this directory (and all other direc-
tories containing Java source code) are all placed in subdirectories of
edu/rice/cs/nextgen.

NextGenCompilerTask is used in the ant compile target in build.xml. Al-
though the NextGen compiler could be invoked within Ant simply as a
Java program, the NextGenCompilerTask is much more convenient because
it allows the compiler to be invoked on Ant filesets and other compound
structures instead of just an explicit list of command-line arguments.

NextGenJUnitRunner is used for NextGen acceptance testing. It is called
by the simpletests target. This task uses the NextGen classloader to
invoke JUnit on TestCases compiled with the NextGenCompiler. Note that
such TestCases can’t be invoked by JUnit with the default class loader
because some of them may be template classfiles.

• benchmarks. Contains the source code for the NextGen benchmark suite.
There are three versions of this suite: edu.rice.cs.nextgen.javabenchmarks,
edu.rice.cs.nextgen.gjbenchmarks, edu.rice.cs.nextgen.nextgenbenchmarks,
corresponding to the three compilers tested in NextGen benchmarking.
All of these suites are compiled by the Ant target compile-benchmarks.
A bash script is provided for running the benchmarks in the bin subdi-
rectory, discussed below. Note that the benchmarks can’t be run (easily)
from within Ant because an entire run of the benchmarks involves invoking
several different JVMs with different classloaders. Also, to prevent skew-
ing performance results, we don’t want to use up resources by running an
Ant process during benchmarking.

• bin. Contains various bash scripts useful for performing tasks associ-
ated with the NextGen project. Ultimately, we’d like to turn all of

3

these scripts into platform-independent Ant targets, but in same cases,
we haven’t yet found a good way to do that.

• doc. Contains all documentation associated with the NextGen project,
including the sources for this document. The NextGen documentation
available online is a checked out copy of this directory. To make changes
to the live webpage, you must have write access to /home/javaplt. After
committing your changes, go to /home/javaplt/public html and execute
cvs update. That command will update both the public html module and
the copy of nextgen/doc. To update only the NextGen documentation,
simply perform a cvs update in the /home/javaplt/public html/nextgen

directory.

• lib. Contains all library classes needed by the Ant targets, including JSR-
14, JUnit, and all bootclasses for Linux, Solaris, OS X, and Windows XP.
Note that the bootclasses are included inside this project subdirectory to
maintain the invariant that ant all always succeeds on a clean check-
out. All bootclasses must be accessible not just to Ant, but also to the
NextGen compiler, to prevent it from signaling errors when compiling
sources with references to standard library classes. There is no standard-
ization of the placement of bootclassses across JDKs4 and we want to
decouple any quirks of the bootclasspath on a platform from the ability
of the Ant targets to work. By putting all bootclasses in a well-defined
location, we can ensure that we can always find them.

• manifests. Contains the manifest files used when bundling the NextGen

compiler and classloader into jar files.

• jars. Contains the jar files for the compiler and classloader, constructed
with target ant jar.

• simpletests. Contains all acceptance tests for the NextGen compiler,
in the form of JUnit TestCases written in NextGen. Running an ac-
ceptance test consists of compiling it under the NextGen compiler and
then invoking JUnit on it with the NextGen classloader. By running
JUnit on the compiled code, we check that the semantics of that code is
as expected, providing a powerful check on NextGen’s correctness. The
acceptance tests can be run by invoking the Ant target simpletests.

4Non-Sun JDKs such as the Mac OS X JDK do not always follow the file layout of the Sun

JDKs, and Sun hasn’t made JDK file layout part of any standard specification.

4

• src. Contains all source code for the NextGen compiler and classloader,
in packages edu.rice.cs.nextgen.compiler and edu.rice.cs.nextgen.classloader,
respectively. In the section on NextGen package design, we will discuss
the various subpackages in this directory.

• built. This directory is empty on a clean checkout. It’s used by Ant to
store the class files for all Generic Java sources associated with NextGen.

4 Ant Targets in the NextGen Project

For a complete list of targets, always refer to the build.xml file. Below are some
of the most common targets you will invoke.

• clean. Deletes all compiled classfiles.

• compile. Compiles the compiler and classloader.

• test. Runs all unit tests on the compiler and classloader.

• simpletests. Compiles the compiler and classloader and runs all accep-
tance tests.

• testall. Compiles the compiler and classloader and runs all unit tests
and acceptance tests.

• compile-tests. Compiles all acceptance tests with the most recently com-
piled version of NextGen.

• update. Updates this checked out copy of NextGen with the CVS repos-
itory.

• commit. Synchronizes with the CVS repository, compiles, ensures that all
unit tests and acceptance tests still pass, and, if so, creates new jar files
and commits the newly synchronized version to the repository. Run this
often! At least once a day, if not once an hour when actively working with
the code. The more often you run it, the easier it will be to diagnose new
bugs.

• jar. Constructs jar files for the most recently compiled versions of the
compiler and classloader.

• all. Runs all targets in the project. Useful for making sure that everything
still works.

5

• alloffline. Runs all targets in the project except commit. Useful for
making sure that everything testable works when you’re not connected to
a network.

5 Releasing a New Version of NextGen

The NextGen documentation and jar files are available online at http://www.cs.rice.edu/ javaplt/nextgen.
To release the latest committed version to the live website, simply go to /home/javaplt/nextgen

on csnet and do a cvs update. Concerning the documentation: be sure that the
latest committed LaTeX file corresponds to the latest committed pdf file.5

WARNING: If you edit anything in the live directories, be sure to perform
a cvs commit so your changes are included in the CVS repository. Better yet,
never edit the live directories directly. Instead, always make changes to your
local copy and update the live directory.

6 NextGen Package Design

6.1 Classloader Package Design

All classes in the NextGen classloader are contained in a single package:
edu.rice.cs.nextgen.classloader. There are no subpackages. The main en-
try point is class Runner.

6.2 Compiler Package Design

The source code for the NextGen compiler is divided into the following pack-
ages, found in src/edu/rice/cs/nextgen/compiler:

• main. Contains the main entry point for the compiler, in class Main, as well
as supporting code. In particular, class JavaCompiler contains the code
for invoking the various phases of the compiler.

• parser. Contains the code for scanning and parsing NextGen source
files.

• tree. Contains the code defining NextGen abstract syntax trees.
5In the long run, the pdf file should be re-generated during ant commit. Doing so would

require finding a portable LATEX to pdf generator, putting it in the NextGen lib directory,

and calling it in the commit target.

6

• comp. Contains the code for computing most phases of compilation, includ-
ing symbol table entry, type checking, data flow checking, and bytecode
generation.

• code. Contains code for many of the datastructures utilized by the var-
ious phases of compilation. Unfortunately, there is no sharp conceptual
distinction between the classes contained in this package and the classes
contained in the code package. A useful refactoring would be to move the
classes in these two packages so as to define the roles of each package more
precisely.

• flatten. Contains the visitors and support code that convert type depen-
dent operations into snippet calls. No comparable package exists in the
JSR-14 compiler. Parametric types are flattened according to the rules
for NextGen name mangling. Snippet methods are added to classes as
necessary. Template classes are generated. Finally, the jump targets for
break and continue statements are fixed after flattening.6

• instrument. Contains the code for pretty-printing all datastructures used
by the compiler. No comparable package exists in the JSR-14 compiler.
We originally added this code to facilitate diagnosis of errors when modi-
fying the datastructures during NextGen-specific phases of compilation.
It has been an invaluable tool in retrofitting unit tests over NextGen.

• util. Contains many general-purpose datastructures, including paramet-
ric versions of many Java collections classes. These collections classes were
written as part of the GJ compiler before the JSR-14 compiler was avail-
able. We’ve modified and rewritten many of them, particularly the List

classes. Although JSR-14 provides parametric versions of the collections
classes, our versions (particularly of Lists) have many advantages over
those in JSR-14, so in most cases there is little (or negative) incentive to
refactor them out of the codebase. One useful feature that is currently
missing from our hash tables is an iterator (however, a map facility is pro-
vided).

• hist. Contains some useful DrJava interactions histories. ImportAll.hist

imports all NextGen source packages. NextGenTestCase sets up all variables
initialized in class edu.rice.cs.nextgen.compiler.main.NextGenTestCase.

6These targets are broken by flattening because the positions of the targets are changed

when snippet methods are added.

7

JavaCompilerTest.hist performs the various tasks done in the imports and
setUp method of JavaCompilerTest, i.e., it initializes a new JavaCompiler

on a NextGen sourcefile:

> package edu.rice.cs.nextgen.compiler.main;

> import edu.rice.cs.nextgen.compiler.code.*;

> import edu.rice.cs.nextgen.compiler.comp.*;

> import edu.rice.cs.nextgen.compiler.instrument.*;

> import edu.rice.cs.nextgen.compiler.util.*;

> import edu.rice.cs.nextgen.compiler.tree.*;

> import java.io.IOException;

> import junit.framework.TestCase;

> import junit.framework.TestSuite;

>

> String[] args = new String[] {

"-classpath",System.getProperty("sun.boot.class.path"),

"simpletests/edu/rice/cs/nextgen/simpletests/InstanceofParameter.java"

};

> CompilerOptions options = new CompilerOptions();

> _fileNames = options.processArgs(args);

> _compiler = new JavaCompiler(options);

Be sure to add other useful interactions histories as you build them.

7 Unit Tests in NextGen

In both the compiler code and the classloader code, unit tests are contained
in files ending in Test. Each such file contains a public class that extends
junit.framework.TestCase. Although there is a significant set of working unit
tests over the source code, not all code is covered directly (yet). Nevertheless,
skeleton test cases are provided for all code, making it easier to add new tests.
Also, the PrintableObject class in package instrument, and the NextGenTestCase

class in package main make writing new unit tests easy over any part of the code
base.

7.1 Class PrintableObject

PrintableObject provides a mechanism for pretty-printing complex datastruc-
tures. By extending PrintableObject, a class inherits all the functionality

8

needed to pretty-print itself. All that is needed is for the extending class to
override method print() and use the inherited methods to specify how it should
be printed. A PrintableObject decides which fields of itself to print. It can also
tell its constituent fields that are PrintableObjects to print themselves selec-
tively, passing a Filter object to handle cyclic references.7 Virtually all complex
datastructures in NextGen extend PrintableObject. See their print methods
for examples of how to call the PrintableObject functionality for pretty-printing.

In addition to method print, which sends a pretty-printed representation
of an object to System.out, every PrintableObject has a longString() method
that takes no arguments and returns a (multiline) String representation of the
object. longString() is extremely useful when writing unit tests. Reasonable
toString methods are also written for most classes, but they contain much less
detailed information. The toString methods can be useful for quickly checking
the identity of an object.

To familiarize yourself with the various datastructures used in NextGen,
it is recommended that you experiment with printing out instances of them in
the DrJava interactions window while reading through their descriptions in this
document. Another great way to learn how these datastructures work is by
writing new unit tests over them.

7.2 Class NextGenTestCase

NextGenTestCase initializes default values for the most commonly used NextGen

datastructures, allowing you to quickly build complex datastructures in a test
case. It also defines the following convenience methods:

• String removeWhiteSpace(String). This method takes a String and re-
turns a new String with all whitespace removed. It’s useful for checking
that a multiline String representation of an Object is as expected (without
breaking everytime that the whitespace in the representation is changed).

• String removeNewlines(String). Like removeWhiteSpace, with similar mo-
tivation, but only newlines are removed.

• String wrapInQuotes(String). Often in a test method, you will want to
check that the String representation of an object is as expected. To specify

7See classes edu.rice.cs.nextgen.compiler.code.Scope and

edu.rice.cs.nextgen.compiler.code.Symbol.ClassSymbol for two examples of

cyclic structures printed with Filters.

9

what’s expected in source code, you have to wrap the String representa-
tion inside quotes. For multiline String representations, this task can be
extremely tedious. wrapInQuotes is a static method that takes a String

and returns a new String with each line wrapped in quotes. This method
can be conveniently called in the DrJava interactions window while con-
structing new test methods. In the long run, wrapInQuotes should become
functionality provided by DrJava on selected blocks of text in the editor.
Until that functionality is added, this method will save you time.

• Parser makeParser(String). Takes a String representing source code and
returns an instance of edu.rice.cs.nextgen.parser.Parser to read that
source code.

• Tree.TopLevel makeClassTree(String). Takes a String representing the
source code of a complete Java source file, parses it and returns an instance
of Tree.TopLevel.8

• Tree.Import makeImport(String). Takes a String representing an import
declaration, parses it and returns an instance of Tree.Import.

Other make methods should be added to this class as they become useful
in the unit tests. It is recommended that all new NextGen test case classes
extend NextGenTestCase.

8 Phases of The NextGen Compiler

When class Main is invoked with a sequence of keyword arguments and files, it
stores all keyword arguments in a new CompilerOptions object named options,
creates a new instance of JavaCompiler named compiler, with a field reference
to options, and calls compiler.compile() on a List of all source files to compile.
The phases of compilation corresponding precisely to the sequence of method
calls in method JavaCompiler.compile(). Those phases are as follows.

ListBox<Tree> trees = parseFiles(filenames);

List<Environment<AnalyzerContext>> envs = enterClasses(trees);

checkTypes(envs);

envs = flatten(envs);

patchSnippets();

eraseTypes(envs);

8For more information on Trees, seee the section“Phases of the NextGen Compiler”.

10

flattenGroundedSuperClasses();

List<ClassSymbol> classSyms = generateByteCode(envs);

We will now provide a high-level overview of the entire compilation process
and then delve into the datastructures manipulated during each phase.

During parsing (Stage I), the initial List<String> of filenames is converted
into a List<Tree>. Next, (Stage II), the classes and packages in this tree are
entered into a SymbolTable object, and Symbols for various lexical items are filled
into the Trees. A List<Environment<AnalyzerContext>> (basically the original
List<Tree> with each Tree wrapped in an Environment) is returned from this
phase. The List<Environment<AnalyzerContext>> is named envs and is the pri-
mary datastructure passed through subsequent phases.

After symbols are entered, envs is type checked (Stage III). The type of each
Tree is recorded in a field in the Tree . After type-checking comes NextGen-
specific processing. Type names are flattened, snippets are added and template
classes and interfaces are generated as static nested classes in the corresponding
base class (Stage IV). Afterward, various source-position-specific targets must
be patched in the base class (Stage V), since the locations of items will move
after adding snippet methods.

After snippets are patched, types are erased, as in GJ (Stage VI).9 Then the
superclasses of grounded types are flattened (Stage VII). 10 Finally, bytecode is
generated from envs (Stage VIII) and returned as a List<ClassSymbol>. These
ClassSymbols are then written out to disk to form the corresponding classfiles.

Notice that not all stages take all datastructures they depend on as argu-
ments. In particular, patchSnippets and flattenGroundedSuperClasses do not
take envs as an argument. They operate on envs via field references set to it.
Obviously, this situation is undesirable; an important refactoring is to finish
decoupling all field references to envs and to always pass it as an argument.11

Every major phase of compilation after parsing12 is implemented as a walk
over the parsed Trees. Consequently, each phase is associated with a sub-
class of class Tree.Visitor. For example, symbol entry is handled by visitor

9Notice that flattened types won’t be erased, as they are no longer parametric.
10This part of flattening must be deferred because Stage IV depends on the unflattened

representation. In addition, Stage II as currently written depends on this deferral because

it tests whether or not the superclass is parametric and ground to determine whether the

supercall for a constructor must be modified.
11Originally, there were many other phases that kept field references to envs. The remaining

phases are the most difficult to refactor.
12Snippet patching is not performed by a visitor because the targets to fix are accumulated

during type flattening. Class SnippetPatcher simply walks over the accumulated list.

11

SymbolEnterer. Static checking is handled primarily by visitor StaticAnalyzer,
which is assisted by visitor TypeChecker. Flattening of parametric type refer-
ences is handled by visitor TypeFlattener. Type erasure is handled by visitor
TypeEraser13 Code generation is handled by visitor CodeGenerator. We will
now examine the various datastructures manipulated by these phases. We will
start with Trees because the first internal representation of the source code
constructed is a List<Tree>, and all other datastructures built depend on them.

8.1 Trees

Tree ::= TopLevel | Import | ClassDef | MethodDef | VarDef | Block

| DoLoop | WhileLoop | ForLoop | Labelled | Switch | Case

| Synchronized | Try | Catch | Conditional | Exec | Break

| Continue | Return | Throw | Apply | NewInstance | NewArray

| Assign | Assignop | Operation | TypeCast | TypeTest

| Indexed | Select | Ident | Literal | TypeIdent | TypeArray

| TypeApply | TypeParameter | Erroneous

Figure 1: Abstract Syntax Trees

Trees in NextGen represent abstract syntax trees. Trees form a composite
class hierarchy rooted at class edu.rice.cs.nextgen.compiler.tree.Tree. All
subclasses in this composite hierarchy are static nested classes in class Tree.
Every syntactic construct in NextGen corresponds to a subclass of class Tree.
For example, source files are parsed to TopLevels and class definitions are parsed
to ClassDefs. The entire composite hierarchy is represented in BNF notation in
Figure 8.1.

8.2 Trees and PrintableObjects

Trees are a subclass of class edu.rice.cs.nextgen.compiler.instrument.PrintableObject,
allowing them to be pretty-printed easily in the DrJava interactions pane. For
example, suppose we want to pretty-print the Tree for this simple NextGen

source file:

package example;

public class C<T> {}

13TypeEraser is a subtype of TreeTranslator, which is a subtype of Tree.Visitor.

12

We can print it in the DrJava interactions window as follows:

> package edu.rice.cs.nextgen.compiler.main;

> NextGenTestCase.makeClassTree(

"package example; \n" +

"public class C<T> { } \n"

).longString()

Resulting in:

"{TopLevel for null

packageId: {Ident example} packageSymbol: null

starImportScope (except for java.lang): null

namedImportScope: null

==========

{ClassDef C<{TypeParameter T extends null implements null}> extends null implements ()

flags: 1

null}}

"

This result is a pretty-printed representation of a Tree.TopLevel. The first line
indicates the source file corresponding to the TopLevel. In this case it is null

because this TopLevel was parsed directly from a String instead of a file. If
the TopLevel were constructed from a file f, the first line would read TopLevel

for f. The fields printed represent the package, the imports, and the list of
ClassDefs. Notice the use of null values as defaults for many fields.

Underneath the horizontal bar are listed the constituent class definitions in
the source file. The pretty-printed ClassDef follows the structure of the original
source code. The flags field of a ClassDef is an int that stores various attributes
of the class, such as the included visibility modifiers. Underneath the header of
the ClassDef is its contained ClassSymbol, initialized to null and filled in during
symbol entry.

If class C contained any members, the Trees for those members would be
printed out underneath the ClassSymbol. For example, below is the source for
acceptance test ReturnIntegerTest:

package edu.rice.cs.nextgen.simpletests;

class C<T> {

13

Object m(Integer i) {

return i;

}

}

This source will parse to

{TopLevel for simpletests/edu/rice/cs/nextgen/simpletests/ReturnIntegerTest.java

packageId: {Select {Select {Select {Select {Ident edu}.rice}.cs}.nextgen}.simpletests}

packageSymbol: null

starImportScope (except for java.lang): null

namedImportScope: null

==========

{ClassDef C<{TypeParameter T extends null implements null}> extends null implements ()

flags: 0

null

{MethodDef <> {Ident Object} m({VarDef {Ident Integer} i}) throws flags: 0

null

{Block {Return {Ident i}}}}}}

The headers of method definitions include the type parameters (between an-
gle brackets), the return type, name, parameter types, throws clause, and the
visibility flags. Beneath the header is a MethodSymbol (filled in during symbol
entry). Finally, beneath the MethodSymbol is the parsed body of the method.

The generated bytecodes of a method are stored in a MethodSymbol. After
bytecode generation, the printed MethodSymbol will display these bytecodes. For
example, here is the same TopLevel as above after all phases including bytecode
generation:

{TopLevel for simpletests/edu/rice/cs/nextgen/simpletests/ReturnIntegerTest.java

packageId: {Select {Select {Select {Select {Ident edu}.rice}.cs}.nextgen}.simpletests}

packageSymbol: [PackageSymbol edu.rice.cs.nextgen.simpletests]

starImportScope (except for java.lang): null

namedImportScope:

[Scope: [ClassSymbol fullname: edu.rice.cs.nextgen.simpletests.C

flatname: edu.rice.cs.nextgen.simpletests.C flags: 1024

members (cyclic references have been filtered):

[Scope: [MethodSymbol m

[Code: aload_1; -80;]]

[MethodSymbol <init>

14

[Code: aload_0; -73; nop; aconst_null; -79;]]]]]

==========

{ClassDef C<{TypeParameter T extends null implements null}> extends null implements ()

flags: 0

[ClassSymbol fullname: edu.rice.cs.nextgen.simpletests.C

flatname: edu.rice.cs.nextgen.simpletests.C flags: 1024

members (cyclic references have been filtered):

[Scope: [MethodSymbol m

[Code: aload_1; -80;]]

[MethodSymbol <init>

[Code: aload_0; -73; nop; aconst_null; -79;]]]]

{MethodDef <> null <init>() throws flags: 0

[MethodSymbol <init>

[Code: aload_0; -73; nop; aconst_null; -79;]]

{Block {ExpressionStatement {Apply {Ident super}()}}}}

{MethodDef <> {Ident Object} m({VarDef {Ident Integer} i}) throws flags: 0

[MethodSymbol m

[Code: aload_1; -80;]]

{Block {Return {Ident i}}}}}}

MethodSymbols inside ClassSymbols contain bytecode, as well as the the MethodSymbols
attached to MethodDefs in Trees (which are actually the same as (== to) the
Symbols contained in the ClassSymbol. Incidentally, notice that a default con-
structor has been added to class C.

8.3 Environments

A List<Environment<AnalyzerContext>> is returned from Stage II. An Environment

is a structure associated with a Tree; each Environment contains its associated
Tree as a field. The List returned from Stage II contains one environment for
each Tree in the List<Tree> passed to it.

In addition to referencing its associated Tree, each Environment contains a
reference to its enclosing Environment. For example, if an Environment E is
associated with an immediate subtree T of a enclosing Tree T ′, and Environment

E′ is associated with T ′, then E contains a reference to E′. Each element
of the List<Environment<AnalyzerContext>> resulting from the parsing phase
of compilation is associated with a TopLevel representing a file in the original
list of filenames. Contained Environments can be constructed from enclosing
Environments by method spawn(Tree).

15

Environments store information relevant to their associated Tree. They are
used during two phases of compilation: static analysis and code generation. The
information stored during these two phases is significantly different. In order
to decouple the general-purpose functionality of Environments from the code for
storing the information relevant to a particular usage, Environments are parame-
terized by a type parameter A. A field context of type A contains the information
stored at each level of an Environment. So, during static analysis, we make use of
a List<Environment<AnalyzerContext>> where each Environment<AnalyzerContext>

in the List contains a context field of type AnalyzerContext.

8.4 AnalyzerContexts

AnalyzerContexts contain many fields relevant to static analysis, but most im-
portantly they contain the following three fields:

1. An expectedType field of type Type. Types represent the results of static
checking. This field is initialized to NoType.ONLY and filled in during static
checking.

2. An expectedKind field of type int. Kinds are very high-level descriptions
of the expected syntactic structure of a Tree that are filled in during
static checking. The possible Kinds of a Tree are as follows: NO KIND,
PACKAGE KIND, TYPE KIND, VAR KIND, VAL OR VAR KIND, METHOD KIND, ALL KINDS.
Each Kind is represented as an int in interface edu.rice.cs.nextgen.compiler.code.Kinds.14

The expectedKind of an AnalyzerContext is initialized to NO KIND and filled
in by subsequent analysis.

3. A Scope. Conceptually, Scopes are lists of identifiers introduced in a lexical
context. We now turn our attention to their internal structure.

8.5 Scopes and Entries

Each Scope is owned by a Symbol corresponding to the lexical environment the
Scope represents. For example, a Scope corresponding to fields in a class would

14Representing a dataset of atomic elements as int fields in an interface is an common

idiom in NextGen, inherited from the GJ compiler. This idiom is a workaround for the lack

of enumeration types in Java. By “implementing” an interface corresponding to a dataset, a

class can refer to all of the elements of the dataset directly. Also, a class can iterate over the

elements of the dataset with a simple int counter in a for loop. One serious disadvantage

of this idiom is that values of the dataset must be deciphered when they’re printed out in an

error message. Also, proper data abstraction is not enforced; there is nothing to prevent us

from using an element of a dataset in a nonsensical arithmetic operation.

16

be owned by the associated ClassSymbol. The first identifier appearing in a Scope

is stored in an Entry. Each Entry contains a Symbol and a reference to a sibling

in the Scope. So, we can iterate over the Entries in a Scope by starting with the
contained Entry and following the sibling links. The final Entry contains null

as its sibling.15

Each Entry also refers to the Entry it shadows in an enclosing Scope. The
shadowed Entry is contained in field shadowed.

New Symbols may be destructively added to a Scope with method addSymbol.
Entries in a Scope may be accessed with method lookup that takes a Name

and returns the Entry in that Scope corresponding to the given Name. Names

are identifiers; they can be constructed from Strings with the static method
Name.fromString(String). For more information on Names, see their unit tests in
package edu.rice.cs.nextgen.util. For convenience, lookup is overridden with
a method that takes a String and converts it to a Name.

Each Scope refes to its enclosing Scope, in field nextScope. Consequently,
Scopes mirror the structure of the Environments they’re associated with.16

8.5.1 Environments and Scopes as PrintableObjects

Like Trees, Environments and their constituents can be printed to examine their
contents. For example, here is a call on longString() of an empty Scope (con-
structed from a default ClassSymbol available in NextGenTestCase):

> new Scope(NextGenTestCase.CLASS_SYMBOL).longString()

[Scope:]

Using addSymbol and lookup, we can build and examine Scopes in the DrJava
interactions window:

> s = new Scope(NextGenTestCase.CLASS_SYMBOL)

edu.rice.cs.nextgen.compiler.code.Scope@7dfcf1

> s.addSymbol(NextGenTestCase.METHOD_SYMBOL);

> s.lookup("METHOD_SYMBOL")

edu.rice.cs.nextgen.compiler.code.Scope$Entry@7abaab

15Obviously, Scopes and Entries are rich with opportunities for refactoring. Because they

represent list-like structures, it would be better to make them either subtypes of type List,

or containers, each with a field of type List.
16This mirrored structure is undesirable because it can result in “Rogue Data” where one

of the two structures is modified but the other is not. A potential refactoring would be to

eliminate the nextScope field and replace it with a method that accesses the scope contained

in the enclosing Environment.

17

> s.lookup("METHOD_SYMBOL").longString()

"[MethodSymbol METHOD_SYMBOL]

"

We can also build and print Environments17:

> new Environment(null, null)

edu.rice.cs.nextgen.compiler.comp.Environment@53be7c

> new Environment(null, null).longString()

"[Environment

null

null]

"

The two arguments to the constructor are the associated Tree and the associated
context. Likewise, the longString representations of Environments include the
associated context and tree. Here is a more complex example:

> Tree.TopLevel simpleTree = NextGenTestCase.makeClassTree("public class C {}");

Environment env = new Environment(simpleTree, null);

> env.longString()

"[Environment

null

{TopLevel for null

packageId: null packageSymbol: null

starImportScope (except for java.lang): null

namedImportScope: null

==========

{ClassDef C<> extends null implements () flags: 1

null

}}]

"

Environments can be spawned from other Environments as follows:
17Raw types are used in this example because, at the time of this writing, the DrJava

interactions window does not yet support generic types. In some unit tests where the con-

text is unimportant, Environments are instantiated as Environment<VoidContext>. Class

VoidContext is never used outside the unit tests.

18

> e1 = new Environment(null, null);

> e2 = e1.spawn(null);

When printed, spawned Environments first print out their own contents, and
then print the contents of their enclosing Environment:

> e2.longString()

"[Environment

null

null]

[Environment

null

null]

"

Of course, we can also spawn Environments containing non-null Trees:

> Tree.TopLevel innerTree = NextGenTestCase.makeClassTree("public class C {}");

Environment innerEnv = new Environment(innerTree, null);

Tree.TopLevel outerTree = NextGenTestCase.makeClassTree("public class D {}");

Environment outerEnv = innerEnv.spawn(outerTree);

> outerEnv.longString()

"[Environment

null

{TopLevel for null

packageId: null packageSymbol: null

starImportScope (except for java.lang): null

namedImportScope: null

==========

{ClassDef D<> extends null implements () flags: 1

null

}}]

[Environment

null

{TopLevel for null

packageId: null packageSymbol: null

starImportScope (except for java.lang): null

namedImportScope: null

19

==========

{ClassDef C<> extends null implements () flags: 1

null

}}]

"

Notice that the original Environment is unaffected by the spawn.

8.6 Symbols

Symbols are containers for identifiers. They also hold relevant information such
as the bytecode generated for an identifier. The various types of Symbols form
a composite class hierarchy rooted at class Symbol. All subclasses are static
nested classes of class Symbol. The composite hierarchy is represented in BNF
notation in Figure 8.6.18 Each ClassSymbol contains a Scope of its members.

Symbol ::= TypeSymbol | VarSymbol | MethodSymbol | OperatorSymbol

TypeSymbol ::= (type variable) TypeSymbol | ClassSymbol | PackageSymbol

Figure 2: Symbols

Because each method’s bytecode is stored in its corresponding MethodSymbol,
and because the Scope of a ClassSymbol contains all Symbols for methods (and
other members) appearing in a class, all of the information needed to write
out a classfile for a given class can be accessed in the class’s ClassSymbol after
bytecode generation.

8.7 SymbolTables and ClassReaders

During Phase II, a SymbolTable is constructed and kept as a field in JavaCompiler

for use in subsequent phases. A SymbolTable contains a field classReader (of
type ClassReader) that stores all constituent symbols. ClassReaders store their
symbols in two Hashtables: one mapping package names to their corresponding
PackageSymbols, and one mapping class names to their ClassSymbols. In addi-
tion to all classes explicitly referred to in a program, SymbolTables include all
classes in java.lang. They also contain mappings for all Java infix operators.
Because the ClassSymbols in java.lang and the infix operators are the same for

18Notice that concrete class TypeSymbol forms the root of a composite subhierarchy,

and also represents naked type parameters! An important refactoring would be to make

TypeSymbol abstract and add a new subclass for naked type parameters.

20

all SymbolTables, they are omitted from the longString representation. To see
precisely what is entered during SymbolTable initialization, refer to the source
file edu.rice.cs.nextgen.compiler.comp.SymbolTable.java.

In the DrJava interactions session below, we create a new SymbolTable cor-
responding to NextGen acceptance test InstanceofParameter.java. The text of
that test is:

package edu.rice.cs.nextgen.simpletests;

public class InstanceOfParameter<T> {

public boolean is(Object o) {

boolean ret = o instanceof T;

return ret;

}

}

Here is the interactions session:

> load JavaCompilerTestSetup.hist

> trees = _compiler.parseFiles(_fileNames);

> envs = _compiler.enterClasses(trees);

> _compiler.getSymbolTable().longString()

"[SymbolTable

packages:

edu.rice.cs.nextgen => [PackageSymbol edu.rice.cs.nextgen]

edu.rice => [PackageSymbol edu.rice]

edu.rice.cs.nextgen.simpletests =>

[PackageSymbol edu.rice.cs.nextgen.simpletests]

edu.rice.cs => [PackageSymbol edu.rice.cs]

edu => [PackageSymbol edu]

classes: edu.rice.cs.nextgen.simpletests.InstanceOfParameter =>

[ClassSymbol fullname: edu.rice.cs.nextgen.simpletests.InstanceOfParameter

flatname: edu.rice.cs.nextgen.simpletests.InstanceOfParameter flags: 4194305

members (cyclic references have been filtered):

[Scope: [MethodSymbol is]

[MethodSymbol <init>]]]

]

21

"

8.8 CodeGenerators, GenContexts, and ClassWriters

Class JavaCompiler drives class generation by first using a CodeGenerator visi-
tor to write bytecode to a ClassSymbol, and then passing that ClassSymbol to
method ClassWriter.writeClassFile(), on an instance of ClassWriter stored in
the SymbolTable.

When generating bytecode for a given Tree, CodeGenerators keep information
for each subtree in an Environment<GenContext>. Class GenContext is a non-
public class, written in source file CodeGenerator.java, that stores the following
information for each subtree:

1. The expectedType of the subtree (a Type).

2. All unresolved exitingJumps out of the code represented by the subtree,
represented as aa Chain. Chains are described below.

3. All unresolved continuingJumps to the code represented by the subtree,
also represented as a Chain.

Class Chain is a static nested class of class Code (contained in source file
Code.java).19 Conceptually, Chains are lists of jumps. Each Chain contains
three fields:

1. The next Chain in the list.

2. pc (an int). This field represents the position of the jump instruction.

3. stackSize (an int). The stack size after the jump instruction.20

An important invariant of a chain is that all elements of the chain list have the
same stackSize.

19Instances of Code represent all information that goes into a code attribute in a classfile.
20When the locations of jumps are resolved, the compiler ensures as a sanity check that

the stackSize non-negative in each block of code. In an old (unreleased) version of the

NextGen compiler, jump targets were resolved incorrectly because snippet methods moved

the locations of all code in a parametric class. As a result, the sanity check on stackSizes

would fail during compilation of some classes.

22

8.8.1 Writing to Disk

Once all bytecode has been generated and stored in the ClassSymbols, ClassWriters
are responsible for writing class files to disk. The ClassSymbols to be written
are not stored in class ClassWriter. Instead, each class component is passed as
an argument to the appropriate method, and written to a file.

9 Conclusion

We have attempted to provide a high-level roadmap of the NextGen code base,
capturing enough detail that the reader possesses an accurate understanding of
the architecture, while keeping the discussion at a level high enough that there is
an advantage to reading this document as opposed to simply perusing the code
base. Consequently, there are many details of various stages of compilation that
have been omitted. The reader is encouraged to bolster his understanding of
the code base through interactive exploration in the DrJava interactions window
and through adding unit tests. Additionally, an IDE such as CodeGuide that
allows one to quickly navigate from uses of identifiers to definitions of identifiers,
and that provides support for automated refactoring of code, can be extremely
helpful when working with this code base.

The source for this document is contained in the NextGen code repository,
in the doc directory. Readers are strongly encouraged to update and improve
this document while using it to learn the code base. New readers are in a
particularly good position to assess the clarity and usefulness of this document.
By improving it, you will help future generations of NextGen programmers to
understand NextGen more quickly, just as this document has helped you to
do so.

References

[1] O. Agesen, S.. Freund and J. Mitchell. Adding Type Parameterization to
the Java Language. In OOPLSA’97.

[2] D. Ancona and E. Zucca. A Theory of Mixin Modules: Basic and Derived
Operators. Mathematical Structures in Computer Science, 8(4):401–446,
1998.

[3] E. Allen, J. Bannet, R. Cartwright. First-class Genericity for Java. Sub-
mitted to ECOOP 2003.

23

[4] E. Allen, J. Bannet, R. Cartwright. Mixins in Generic Java are Sound.
Technical Report, Computer Science Department, Rice University, De-
cember 2002.

[5] E. Allen, R. Cartwright, B. Stoler. Efficient Implementation of Run-time
Generic Types for Java. IFIP WG2.1 Working Conference on Generic Pro-
gramming, July 2002.

[6] E. Allen, R. Cartwright.The Case for Run-time Types in Generic Java.
Principles and Practice of Programming in Java, June 2002.

[7] D. Ancona, G.Lagorio, E.Zucca. JAM-A Smooth Extension of Java with
Mixins. ECOOP 00, LNCS, Spring Verlag, 2000.

[8] J. Bloch, N. Gafter. Personal communication.

[9] R. Cartwright, G. Steele. Compatible Genericity with Run-time Types for
the Java Programming Language. In OOPSLA ’98 , October 1998.

[10] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler. Making the Future Safe
for the Past: Adding Genericity to the Java Programming Language. In
OOPSLA ’98, October 1998.

[11] M. Flatt, S. Krishnamurthi, M. Felleisen. A Programmer’s Reduction Se-
mantics for Classes and Mixins. Formal Syntax and Semantics of Java,
volume 1523, June 1999.

[12] Martin Odersky and Philip Wadler. Pizza into Java: Translating Theory
into Practice. In POPL 1997, January 1997, 146–159.

[13] Sun Microsystems, Inc. JSR 14: Add Generic Types To The Java Program-
ming Language. Available at http://www.jcp.org/jsr/detail/14.jsp.

24

