
Cilk Multithreaded Language
Introduction and implementation

Robert D. Blumfoe, Christopher F. Joerg, Bradley C. Kuszmaul , Yuli Zhou(V 1.)
Matteo Frigo (V 5., Cilk++)

Pablo Halpern, Stephen Lewin-Berlin (Cilk++)
Keith H. Randall(Cilk, Cilk5), Charles E Leiserson,

MIT Laboratory for Computer Science

Rice University
COMP 522

Advait Balaji

Outline

COMP 522 Multicore computing 02/19/2019 2

Introduction

The Cilk Language

Work-first principle

Cilk compiler

Work Stealing

Evaluations

Cilk++ - Hyperobjects

Summary

Introduction

• General purpose programming language for multi-
threaded computing.

• Designed at MIT in 1990’s (Cilk-1 launched in 1994)

• Generalizes semantics of C language.

• Cilk Scheduler gives guarantee of application performance-
Work Stealing!
• Performance measures – Work and Critical Path

02/19/2019 COMP 522 Multicore computing 3
https://www.cilkplus.org/cilk-history

Silk threads!
Source: Encyclopedia Britannica

Introduction

02/19/2019 COMP 522 Multicore computing 4
Blumfoe R. et al, PPoPP (1995)

• Represented as a DAG. Collection of Cilk
procedures and sequence of threads

• Each thread is non-blocking.
• Threads are required to spawn successor that

can accept values from children.
• Thread receiving value can’t begin until

another thread sends value – Dependency
• Execution is constrained to follow precedence

relation determined by DAG.

The Cilk Language
• Philosophy- make Cilk a true parallel extension of C
• On a parallel computer, Cilk control constructs allow the program to execute

parallelly
• If Cilk keywords are elided- C elision

• On a uniprocessor – Cilk nearly as fast as C.
• Performance characterization measures
• Work - Time used by one processor execution (T1)
• Critical Path – Time required for execution by an infinite processor (T∞)
• For P processors – TP ≥ T1/P

• Follows the Work First principle
• “Minimize scheduling overhead borne by the work of a computation. Move

overheads out of work and onto the critical path”
02/19/2019 COMP 522 Multicore computing 5

The Cilk Language

• Work-first principle – strategy for compilation
• Cilk2c compiler – transforms a Cilk source to a C postsource
• C post source run through a gcc compiler
• Two clones – “fast clone” and “slow clone”

• Communication due to scheduling occurs in the slow clone and
contributes to the critical-path overhead.
• Work-first principle – Mutual exclusion and load-balancing scheduler
• ”Thieves” and “victims” – Idle-processor steal threads from busy

processors. Guarantees overhead contributes only to critical-path
• Minimize work overhead – Dijkstra-like mutual exclusion (THE)

02/19/2019 COMP 522 Multicore computing 6

• Cilk-5

02/19/2019 COMP 522 Multicore computing 8

The Cilk Language

9

Cilk Plus Terminology
• Parallel control

—cilk_spawn, cilk_sync
—return from spawned function

• Strand
—maximal sequence of instructions not containing parallel control

unsigned int fib(n) {
if (n < 2) return n;
else {
unsigned int n1, n2;
n1 = cilk_spawn fib(n - 1);
n2 = cilk_spawn fib(n - 2);
cilk_sync;
return (n1 + n2);
}

}

Strand C: n1+ n2 before the return

Strand B: compute n-2 before 2nd spawn

Strand A: code before first spawn

A B Ccontinuation

fib(n)

Cilk Program Execution as a DAG

Legend
continuation
spawn
return

each circle
represents
a strand

A B Ccontinuation
fib(4)

A
fib(1)

A
fib(0)

A
fib(1)

A
fib(0)

A B C
fib(2)

A B C
fib(3)

A B C
fib(2)

A
fib(1)

spawn return

• Cilk-5

02/19/2019 COMP 522 Multicore computing 11

The Cilk Language
• Inlets - C function internal to Cilk
• In normal Cilk syntax – spawning cannot

be linked to a statement
• Inlets can call spawn as an argument.
• Control of the parent procedure shifts to

the statement after the inlet call.
• Returned result added to x within inlet.
• Cilk provides atomicity implicitly among

threads so updates aren’t lost.
• Don’t spawn from an inlet!
• x += spawn fib(n-1)

• Cilk-5

02/19/2019 COMP 522 Multicore computing 12

The Cilk Language
• Abort - ”Speculative work” can be aborted

inside an inlet.
• Think parallel searches!
• When executed inside the inlet all the

spawned children of the procedure
automatically terminate.

• Authors considered using other synchronizing
techniques but critical path cost too high.

• Sync - useful for systems that support relaxed
memory-consistency model.

• Cilk programmers can also use additional
locking for mutual exclusion – Future work

Work-first principle
• Three assumptions for work-first principle:

• Cilk scheduler operates in practice according to the theoretical analysis
• Ample ”Parallel slackness” (enough parallel work to keep all threads busy)
• Every Cilk program has a C elision against which its one-processor performance is

measured

• Two fundamental lower bounds must hold:
• TP ≥ T1/P
• TP ≥ T∞

• Cilk’s randomized work-stealing scheduler executes a Cilk computation on
P processors in expected time
• TP = T1/P + O(T∞) ----[Eqn 1.]
• This equation is optimal within a constant factor since RHS are both lower bounds.

02/19/2019 COMP 522 Multicore computing 13

• The first term in equation 1 – work term and the second term is the critical
path term.
• Modifying Eqn 1 to make overheads explicit:

• TP ≤ T1/P + c∞ T∞ ----[Eqn 2.]
• Define smallest constant c∞ as the critical-path overhead.

• Terms relevant to second assumption
• Average parallelism P = T1 / T∞
• Parallel slackness P / P (assumption. >> c∞)
• From Equation 2 we have, T1 / P >> c∞ T∞ ; TP ≅ T1/P

• Third assumption
• C1 = T1 / TS
• TP ≤ c1Ts/P + c∞ T∞ ; c1TS / P [Minimize C1 even at the expense of larger C ∞!]
02/19/2019 COMP 522 Multicore computing 14

Work-first principle

02/19/2019 COMP 522 Multicore computing 15

Cilk’s compilation strategy
• Cilk scheduling
• Worker maintains ready deque of

ready procedures.
• Worker operates on it tail- C call stack
• Thief attempts to steal procedure;

worker becomes a victim.
• Thief grabs procedures from the head

of the deque
• When spawned fast clone runs and as

soon as thief steals procedure
converted to slow clone

H T

WORKER
(Processor)

POP

PUSH

POP

PUSH
Process instances

THIEF
(Idle processor)

02/19/2019 COMP 522 Multicore computing 16

Cilk’s compilation strategy
• Cilk2c
• Lines 4 and 5 represent the activation

frame for fib. Frame initialized in 5 by
storing static structure.

• First spawn [Lines 12 – 18]
• Lines 12-13 state of fib is saved

onto the activation frame.
• Lines 14-15 the frame is pushed on

to the runtime deque.
• Line 16 C call to function
• Lines 17-18 check to whether

parent procedure was stolen.

02/19/2019 COMP 522 Multicore computing 17

Cilk’s compilation strategy
• Cilk2c
• In a fast clone all sync statements

compile to no-ops.
• Line 20, sync is empty! Line 21-22 fib

deallocates the frame and returns to
parent procedure.

• Slow clone – when a procedure is
stolen control has been suspended
between spawn or sync points

• Goto statement used to restore
program counter after slow cone
resumes.

02/19/2019 COMP 522 Multicore computing 18

Cilk’s compilation strategy
• Cilk2c runtime linkage

• Sync in slow clone – cilk2c inserts a call to

runtime system which checks for spawned

children

• Parallel book-keeping is minimum as:

• No contribution to work
• Stealing guaranteed to be minimum

• Separation between fast clones and slow clones

allows efficient compilation of inlets and abort

• Implicit inlet calls compile directly to C elision. An

abort statement, similar to sync, is a no-op.

• Runtime system tethers fast and slow clones
• Includes protocols for stealing procedures, returning values between processors,

executing inlets and aborting computation subtrees.
• All costs amortized against critical path

• What’s the work overhead ?
• Stealing protocol executed by the worker
• Allocating and freeing of activation frame, saving state before a spawn and

checking if a procedure is stolen or not.
• A small portion of this overhead is due to Cilk compiler duplicating the work done

by the C compiler –overhead is small!

02/19/2019 COMP 522 Multicore computing 19

Cilk’s compilation strategy

02/19/2019 COMP 522 Multicore computing 20

Cilk’s compilation strategy
• Allocating activation frames is an important step during Cilk2c operation
• Cilk-4: Stack-based allocation
• Cilk-5: Heap-based allocation

• So, Stack or Heap ?
• ‘Cactus Stack’ – Cilk-4 had to manage the virtual-

memory map on each processor explicitly.
• Overhead due to page fault in critical sections

lead to complicated protocols- an expensive user-
level interrupt during which memory map is modified

Cactus Stack or a Spaghetti Stack
Source: Wiki/Parent-pointer-tree

02/19/2019 COMP 522 Multicore computing 21

Cilk’s compilation strategy
Critical path is a concern!
• These overheads could be moved on to the critical path
• But in practice it overburdens the critical path and violates the

assumption of parallel slackness
• One-processor execution – fast but insufficient slackness sometimes

resulted in poor parallel performance.
Cilk-5 has a Heap
• Frame allocated off a free list and deallocation requires frame to be

pushed into free list. Heap allocation only slightly more expensive.
• Heap has a disadvantage- potentially waste a lot more memory

because of fragmentation of memory.

• Carefully evaluate critical-path overheads.
• Can tip the scales where underlying parallel slackness assumption will not hold.

• Cilk-5 overhead believed to be optimal.
• Portability vs performance tradeoff

• Lazy threads obtains better efficiency
• Implementing its own calling conventions, stack layouts etc.

02/19/2019 COMP 522 Multicore computing 22

Cilk’s compilation strategy

• Work-stealing mechanism called “THE” protocol.
• Implementations:
• Thief interrupts a worker and demand attention from this victim.
• Post steal requests and workers could periodically poll them.

• Possible data-race between Thief and Victim- steal the same frame
victim is trying to pop!
• One possible solution: add lock to deque
• Adopt a solution similar to mutual exclusion where only reads and

writes are atomic!

02/19/2019 COMP 522 Multicore computing 23

Work Stealing

02/19/2019 COMP 522 Multicore computing 24

Work Stealing

• “THE”:

• 3 atomic variables, T,H,E
• Aim to move costs from the worker to the thief

• Many thieves and one victim- need a hardware

lock

• Worker and a sole thief- can use mutual

exclusion with little work overhead.

• Pseudocode:

• T,H stored in shared memory and visible to all

processors.

• Worker treats deque as a stack

• Before spawn: push frame to tail

• After spawn: pop frame

02/19/2019 COMP 522 Multicore computing 25

Work Stealing
• Always safe to push onto deque!

• Case (a) - enough frames available for thief and

worker

• Case (b) - only one frame – data race condition!

• Case (c) – deque empty. Pop fails and steal fails!

Will there be a deadlock?

• No significant overhead – Push just updates T

and pop takes 6 operations. Expensive lock on

theft- depends on T∞, can be considered critical

path.

02/19/2019 COMP 522 Multicore computing 26

Work Stealing
• Performance:
• Compared to pop with lock - THE performs 25%

faster in UltraSPARC –I. Requires membar between
lines 5 and 6.

• On Pentium Pro- THE is only 5% faster, spends
about half of its time in this memory fence

• “Non-blocking” THE has advantages:
• Less prone to problems arising out of spin lock
• The infrequency of locking means that a thief can

usually complete a steal operation on the workers
deque.

02/19/2019 COMP 522 Multicore computing 27

Work Stealing
• Introducing E:
• Simplified model can be extended to incorporate

communication.
• In the simplified version, H marks head of deque

and marks points that victim can’t cross.
• Now, E marks this point and E > T asserted in line 6
• Lines 7 to 15 are replaced by a call to an exception

handler.
• Before stealing, thief increments E. If stolen,

increment H, else, restore E.
• Exception mechanism executes abort

02/19/2019 COMP 522 Multicore computing 28

Benchmarks

02/19/2019 COMP 522 Multicore computing 29

Benchmarks

• Non-local variables introduce “race conditions” in
otherwise independent threads of multi-threaded
program.
• A determinacy race exists if strands access the

same shared location and at least one of the
strands modifies values in the location.
• Code shows an example of walking down a binary

tree to check for node property.
• There might be trouble in output_list!

02/19/2019 COMP 522 Multicore computing 30

Cilk++ Hyperobjects

• Solution: Associate a mutual-exclusion lock (mutex) L
with output list.
• Mutex is acquired in line 9 and released in line 11.
• But, Mutex creates a bottleneck.
• Alternative may be to restructure the code to

accumulate the output lists in each sub-
computation. Ordering might be a challenge but may
be possible.
• Hyperobjects – Linguistic construct that allows

strands to coordinate in updating a shared variable.

02/19/2019 COMP 522 Multicore computing 31

Cilk++ Hyperobjects

• Hyperobject as seen by a given strand of execution is called
a “view”
• Strands view is private, but when two or more strands

combine their views are combined.
• Any query or update to the hyperobject may update the

strand’s view.
• Why are hyperobjects important?
• Simplify the parallelization of programs with non-local variable,

without forcing the programmer to restructure logic of the
program.

02/19/2019 COMP 522 Multicore computing 32

More on Hyperobjects

• Similar Reduce?
• Open MP – reduction clause
• Intel Thread Building Blocks
• Microsoft parallel Pattern Library – combinable object

• Result is declared as the reduction variable.
• Iterations of the loop spread across processors

and local copies of the variable result are made.
• In order for the result to be same as serial code

reduction operation- associative and commutative

02/19/2019 COMP 522 Multicore computing 33

Cilk++ Reducers

Reducers in OpenMP

• Reducers in Cilk++ similar to other
languages with some augmentations
• Can parallelize global or non-local variables
• Associativity is necessary and sufficient.
• Operate independently of control constructs

• Sum_reducer<int> declares result to be a
reducer hyperobject over integers.
• Cilk for – all iterations of the loop can

operate in parallel. This is similar to
OpenMP but Cilk++ doesn’t wait to
combine local views

02/19/2019 COMP 522 Multicore computing 34

Cilk++ Reducers

• Tree walking code with reducers:

• Declare a reducer output_list.

• Output list has a list_append reducer operation

• Cilk++ runtime load balances computation.

• When the branches synchronize, the private
views are reduced by concatenating the lists.

• No additional logic needs to be restructured!

• OpenMP, TBB and PPL have limitations w.r.t race-
free parallelization.

02/19/2019 COMP 522 Multicore computing 35

Cilk++ Reducers

02/19/2019 COMP 522 Multicore computing 36

Defining Reducers

• Define Reducers as Monoids:
• Set T, operator op and identity e
• Closure, identity and associative defined

• In Cilk++, class M inherits from cilk::monoid_base<T>.
• Class M supplies a reduce() and identity().
• View() -> runtime returns the local view as a reference to underlying

type T upon which M is defined.
• Two disadvantages:

• clumsy syntax: for incrementing x will be x.view()++
• Access to reducer is unconstrained x.view() *=2

• Wrap reducers into abstract data types

• View of the reducer is an object that is uniquely “owned” by one strand.

• Cilk_spawn and Cilk_sync execution transfers or creates additional views.

• Cilk_spawn creates two new cilk++ strands (child and continuation)

• XC <- XC op XP ; Delete XP ; Parent strand P becomes the new owner of XC.

• Why not swap the view of cont and child?
• Helps in serial execution and allows the entire program to executed with a single view

with no overhead for reduce.
• Parent having no view does not result in error because parent doesn’t resume till

child has returned

• Cilk++ doesn’t wait for sync to reduce -> Need unbounded amount of
memory to store all unreduced views.

02/19/2019 COMP 522 Multicore computing 37

Semantics of Reducers

• Frames stalled at a cilk_sync lie outside any
extended deque. The youngest frame of an
extended deque has no children,. All other
frames in the extended deque have exactly
one child.
• Cilk++ partitions frames into two classes:

stack frames, which only store a continuation
and a parent pointer (but not a lock, join
counter, or list of children), and full frames,
which store the full parallel state

02/19/2019 COMP 522 Multicore computing 38

Implementation of Reducers

• Invariants:
1. The oldest frame is a full frame
2. A frame not belonging to deque is full frame
3. All descendants of stack frames are stack frames
4. Youngest frame on level-I stack is the parent of frame on

level-i+1 stack
5. A stack frame belongs to (only) one deque
6. Oldest frame is a stack frame created by spawn or a full

frame
7. Every frame except the oldest frame was created by a

function call.
8. When a frame is stolen it is converted to a full frame
9. A frame being executed is the youngest frame in deque
10. Execution of stack frame (frame has no children) cilk_sync is

a no op.
02/19/2019 COMP 522 Multicore computing 39

Implementation of Reducers

02/19/2019 COMP 522 Multicore computing 40

Implementation of Reducers
Function call. To call a procedure instance B from a

procedure instance A, a worker sets the continuation

in A’s frame so that the execution of A resumes

immediately after the call when B returns. The

worker then allocates a stack frame for B and pushes

B onto the current call stack as a child of A’s frame.

The worker then executes B.

Spawn. To spawn a procedure instance B from a

procedure instance A, a worker sets the continuation

in A’s frame so that the execution of A resumes

immediately after the cilk_spawn statement. The

worker then allocates a stack frame for B, pushes the

current call stack onto the tail of its deque, and starts

a fresh current call stack containing only B. The

worker then executes B.

02/19/2019 COMP 522 Multicore computing 41

Implementation of Reducers
Return from a call. If the frame A executing the
return is a stack frame, the worker pops A from the
current call stack. The current call stack is now
nonempty (Invariant 6), and its youngest frame is A’a
parent.

Return from a spawn. If the frame A executing the
return is a stack frame, the worker pops A from the
current call stack, which empties it (Invariant 7). The
worker tries to pop a call stack S from the tail of its
deque. If the pop operation succeeds (the deque was
nonempty), the execution continues from the
continuation of A’s parent (the youngest element of
S), using S as the new current call stack. Otherwise,
the worker begins random work stealing

Sync. If the frame A executing a cilk_sync is a stack frame, do
nothing. (Invariant 10). Otherwise, A is a full frame with a join
counter. Pop A from the current call stack (which empties the
extended deque by Invariant 1), increment A’s join counter,
and steal A.

• Cilk++ uses address of reducer object as a
key into hypermap hash table.
• Hypermap is lazy: elements are not stored

until accessed for the first time
• Hypermaps maintained only in full frames
• USER hypermap, CHILDREN hypermap and

RIGHT hypermap.

02/19/2019 COMP 522 Multicore computing 42

Modification for reducers

• Return from a call. Let C be a child frame of the parent frame P that originally called C, and
suppose that C returns. We distinguish two cases: the “fast path” when C is a stack frame,
and the “slow path” when C is a full frame.

• If C is a stack frame, do nothing,
• Otherwise, C is a full frame. We update USERP ← USERC, which transfers ownership of
child views to the parent

• Return from a spawn. Let C be a child frame of the parent frame P that originally spawned C,
and suppose that C returns.

• If C is a stack frame, do nothing. Because C is a stack frame, P has not been stolen
since C was spawned.
• Otherwise, C is a full frame. We update USERC ← REDUCE(USERC, RIGHTC), which is
to say that we reduce the views of all completed right-sibling frames of C into the views
of C

02/19/2019 COMP 522 Multicore computing 43

Modification for reducers

• Cilk general purpose multithreading language based on C
/C++ .
• Adopts Work-first principle based on the assumption of

sufficient parallelism.
• Work-stealing protocol implemented on shared-memory

between victim and thief processors.
• “THE” protocol results in significance performance speedup
• Efficient implementation of reducers and other hyperobjects

help resolves determinacy race conditions.

02/19/2019 COMP 522 Multicore computing 46

Summary

