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Mutual Exclusion in Cilk: Locks

cilk_lock(L) 

cilk_unlock(L)
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critical 
section

Assumptions about Locking 

• Lock/unlock pair is contained in a 
single thread 

• Holding a lock across a parallel 
control construct is forbidden

Terminology 

• “Lock set” of an access: set of locks held when access is 
performed 

• Lock set of several accesses: intersection of individual sets



A Cilk Program with a Data Race

• Conflicting accesses: at least one is a WRITE 

• No ordering by happens before and no common lock
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SP-Parse Tree

• ≺ 

• ≺≺≺
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Apparent vs. Feasible Races
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T1 
z = 1 
lock(L) 
x = 2 
unlock(L)

T2 
lock(L) 
y = x 
unlock(L) 
if (y == 2)  ... = z

initial condition: x = 0



Detecting Races in Cilk

• Data race if the lock set for two parallel accesses to the 
same location is empty and at least one is a WRITE 

• Problem: “At least one is a WRITE” is cumbersome 

• Simplification 
— introduce a fake R-LOCK 

– as if implicitly acquired and held for the duration of a read 
– for race detector: R-LOCK behaves as regular lock 

— if the lock set of two parallel accesses to the same location is 
empty, then a data race exists
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Two Algorithms for Race Detection

• ALL-SETS - general serial race detection algorithm 

• BRELLY - faster serial race detection algorithm limited to 
“umbrella locking discipline”
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ALL-SETS uses SP-Bags Representation

Use SP-Bags to determine concurrency relationship



ALL-SETS Protocol

lockers(L): set of tuples <thread, lock set> 
set of locks held by previous access to L by thread

!68

check for race:  
   parallel accesses 
   non-overlapping lock sets

                     

prune redundant lock sets  
   precedes & larger set                     
add new lock set if not  
redundant



ALL-SETS Detects Races

Detects a race in a Cilk execution based on a given input if 
and only if a data race exists in the execution. 

• if: any race reported between accesses by ALL-SETS meets 
the condition for a race: no common lock 

• only if: if a race between accesses A and C exists in the 
computation, a race will be reported 

—if lock set for A was not added to lockers, there must be another 
parallel access with a smaller lock set. a race will be reported. 

—what if there was an intervening non-racing access B that caused 
a lock set for A to be removed from the lock set? 
– there can be no such access B 

 B must have a larger lock set if it doesn’t race 
 a lock set will be removed only if its lock set is larger than B’s 
 thus, the A won’t have its lock set removed
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ALL-SETS Properties

• Cilk program executes in time T 

• Uses V variables 

• Uses a total of n locks; no more than k simultaneously 

• Let L = max number of distinct lock sets used for any 
location 

• Time: O(TL(k + α(V,V)) 
— loose upper bound for L: L ≤ sum of n choose i, i = 0, k = 

O(nk/k!) 
— at most 2L series/parallel tests (lines 2, 6) at cost of 

O(α(V,V)) 
— lock set comparisons take at most O(k) time 

• Space: O(kLV) 
— each lock set takes at most k space !70



ALL-SETS vs. BRELLY

• ALL-SETS detects data races directly 
— but at asymptotically high cost: factor of nk slower than SP-

bags protocol 

• Umbrella locking discipline 
— requires each that each location be protected by the same 

lock within every parallel subcomputation 
— threads in series may use different locks (or none) 

• BRELLY only detects violations of the “umbrella” locking 
discipline, which precludes races 
— more restrictive locking discipline than ALL-SETS requires
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What’s Not in the Umbrella Discipline?

• Umbrella discipline 
requires that all 
sections in a parallel 
subcomputation use 
the same lock for a 
variable 

• One thread uses A&B 

• Two serial 
computations in 
parallel with first use 
— only A 
— only B
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lock(A)
x =
unlock(A)

lock(B)
x =
unlock(B)

lock(A)
lock(B)
x =
unlock(B)
unlock(A)



Umbrellas in SP-Parse Tree
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Understanding our Example with its SP-Parse
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lock(A)
x =
unlock(A)

lock(B)
x =
unlock(B)

lock(A)
lock(B)
x =
unlock(B)
unlock(A)

P

S

P P

{A,B}

{A} {B}



Umbrellas and Races

A Cilk computation with a data race violates  
the umbrella discipline 

• Any two threads involved in a race must have a P-node as 
their LCA in the SP-Parse  

• The LCA P-node is the root of an unprotected umbrella 
—both threads access the same location 
—their lock sets are disjoint
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BRELLY Protocol
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Simplication: unlike ALL-SETS, keep only single lock set per location

Tag lock h in the lock set for L with 
- nonlocker[h] - a thread 

accessing L without holding h 
- alive[h] - whether h should be 

considered as belonging to the 
umbrella 
- kill h rather than removing 

from lock set to improve 
precision of race reports



BRELLY at Work

• e7 finds itself in 
parallel with non-
locker e4 for B  

• kills lock B leaving 
no live locks 

• causes a data race 
to be detected
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Notation 
A(x) : x is non-locker of A 
A : A is not alive



BRELLY Properties

• Cilk program executes in time T 

• Uses V variables 

• Uses a total of n locks; no more than k simultaneously 

• Time: O(kTα(V,V)) 
— tests if nonlocker[h] || e dominate running time 
— at most k series/parallel tests at cost of O(α(V,V)) each 

• Space: O(kV) 
— at most k locks per variable
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Cilkscreen

• Detects and reports data races when program terminates 
— finds all data races even those by third-party or system 

libraries 

• Does not report determinacy races 
— e.g. two concurrent strands use a lock to access a queue 

– enqueue & dequeue operations could occur in different order  
 potentially leads to different result
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// code with a data race 
int sum = 0; 
cilk_for (int i = 0; i < n; i++) { 

sum += a[i]; 
}



Race Detection Strategies in Cilkscreen

• Lock covers 
— two conflicting accesses to a variable don’t race if some lock 

L is held while each of the accesses is performed by a strand 

• Happens-before 
— two conflicting accesses do not race if one must happen 

before the other 
– access A is by a strand X, which precedes the spawn of strand Y 

which performs access B 
– access A is performed by strand X, which precedes a sync that is 

an ancestor of strand Y
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Cilkscreen Race Example

#include <stdio.h> 
#include <cilk++/cilk_mutex.h> 

int sum = 0; 
cilk::mutex m; 

#ifdef SYNCH 
#define LOCK m.lock() 
#define UNLOCK m.unlock() 
#else 
#define LOCK  
#define UNLOCK  
#endif 
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void do_accum(int l, int u) 
{ 
        if (u == l) { LOCK; sum += l; UNLOCK; }  
        else { 
          int mid = (u+l)/2; 
          cilk_spawn do_accum(l, mid); 
          do_accum(mid+1, u); 
        } 
} 
int cilk_main() 
{ 
        do_accum(0, 1000); 
        printf("sum = %d\n", sum); 

        int ssum = 0; 
        for (int i = 0; i <= 1000; i++) ssum +=i; 
        printf("serial sum = %d\n", ssum); 
} 



Cilkscreen Limitations

• Only detects races between Cilk++ strands 
— depends upon their strict fork/join paradigm 

• Only detects races that occur given the input provided 
— does not prove the absence of races for other inputs 
— choose your testing inputs carefully! 

• Cilkscreen runs serially, 15-30x slower 
• Cilkscreen increases the memory footprint of an 

application 
— could cause an error if too large 

• If you build your program with debug information, 
cilkscreen will associate races with source line numbers 
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Cilkscreen Output
Race on location 0x6033c0 between 

/users/johnmc/tests/race.cilk:17: _Z8do_accumii+0x31 (eip=0x40167d) 

and 

/users/johnmc/tests/race.cilk:17: _Z8do_accumii+0x31 (eip=0x40167d) 

/users/johnmc/tests/race.cilk:21: _Z8do_accumii+0x6a (eip=0x4016b6)  called from here 

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d)  called from here 

/users/johnmc/tests/race.cilk:20: _Z8do_accumii+0x5c (eip=0x4016a8)  called from here 

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d)  called from here 

/users/johnmc/tests/race.cilk:20: _Z8do_accumii+0x5c (eip=0x4016a8)  called from here 

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d)  called from here 

/users/johnmc/tests/race.cilk:20: _Z8do_accumii+0x5c (eip=0x4016a8)  called from here 

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d)  called from here 

...
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SigRace: Signature-based Race 
Detection 

Abdullah Muzahid, Dario Suarez,  
Shanxiang Qi, Josep Torrellas



The Big Picture

• People like shared-memory models for parallel 
programming 

• Data races are a significant problem 
— most people don’t write programs in languages like Ct or 

NESL 

• Software-only data race detection is slow 
— perhaps as much as 50x 

• Every 18 months: 2x transistors on a chip
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Hardware Support for Race Detection

• Monitor accesses in hardware and detect races 

• Typical approach 
— tag data in caches with timestamps as accesses occur 
— piggyback tags & race detection on cache coherence 

protocol 
– invalidation, external read of a dirty line 

• Specific approaches 
— happened-before (ReEnact, CORD, Min & Choi) 
— locksets (HARD) 

• SigRace approach  
— don’t require changes to L1 cache! 
— don’t change the coherence protocol
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Stephen Freund 
Williams College 

FastTrack: 
Efficient and Precise Dynamic 
Race Detection 
(+ identifying destructive races) 
Cormac Flanagan 
UC Santa Cruz 



Dynamic Race Detection 
Pr

ec
is

io
n 

Cost 

Happens 
 Before 

[Lamport 78] 

Eraser 
[SBN+ 97] 

•  Compute partial order of operations 
•  Ensure conflicting access are not concurrent 
•  Sound & Complete 



Dynamic Race Detection 
Pr

ec
is

io
n 

Cost 

Happens 
 Before 

[Lamport 78] 

Eraser 
[SBN+ 97] 

•  Track locks held on all accesses to var. 
-  empty lock set implies possible race 

•  Unsound & Incomplete 



Dynamic Race Detection 
Pr

ec
is

io
n 

Cost 

Happens 
 Before 

[Lamport 78] 

Eraser 
[SBN+ 97] 

Barriers [PS 03] 
Initialization [vPG 01] 

... 

Vector Clocks [M 88]  
 Goldilocks [EQT 07] 
DJIT+ [ISZ 99,PS 03] 

TRaDe [CB 01] 
...  RaceTrack [YRC 05] 

 MultiRace [PS 03] 
 Hybrid Race Detector [OC 03] 

 ... 

FastTrack 

•  Design Criteria: 
-  sound 
  (find at least 1st race on each var) 
-  complete (no false alarms) 
-  efficient 

•  Insight: Accesses to a var are  
    almost always totally ordered 
    in the Happens-Before relation 



x = 0 

rel(m) 

acq(m) 

x = 1 

y = x 

Thread A Thread B Happens-Before  
! Event Ordering: 

–  program order 
–  synchronization order 

! Types of Races: 
–  Write-Write  
–  Write-Read  

"  (write before read) 
–  Read-Write 

"  (read before write) 

... 
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x = 0 
4 1 

4 0 
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2 1 3 0 

VCA  VCB Lm Wx 
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2 0 

4 8 5 0 4 8 2 0 

Write-Write Check: Wx    VCA ? 

Read-Write Check:  Rx    VCA ? 
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4 1 0 1 

?  Yes 

?  Yes 

O(n) time 



x = 0 
4 1 

4 1 

2 8 

2 8 

2 1 3 0 

VCA  VCB Lm Wx 
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Rx 

0 1 



x = 0 

rel(m) 
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x = 0 

rel(m) 

acq(m) 
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x = 0 

rel(m) 

acq(m) 

x = 1 
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x = 0 

rel(m) 

x = 1 

y = x 

4 1 

5 1 

4 1 

5 1 

5 1 

0 8 

0 8 

0 8 
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0 0 0 0 

VCA  VCB Lm Wx 

0 0 4 0 

4 0 4 0 

4 1 4 0 

4 1 4 8 

2 0 

Rx 

2 0 

2 0 

0 1 

0 1 

Write-Read Check: Wx    VCA ?  

5 1 ?  No 4 8 

O(n) time 



Thread A Thread B Thread C Thread D 

x = 0 

x = 1 

read x 

x = 3 

Write-Write and Write-Read Races 

? 

? 

? 

O(n) 



Thread A Thread B Thread C Thread D 

x = 0 

x = 1 

read x 

x = 3 

No Races Yet: Writes Totally Ordered! 

? 

? 

? 

O(n) 



Thread A Thread B Thread C Thread D 

x = 0 

x = 1 

read x 

x = 3 

No Races Yet: Writes Totally Ordered! 

? 

O(1) 



x = 0 
4 1 

4 0 

2 8 

0 8 

2 1 1@B 

VCA  VCB Lm Wx 

0 0 4@A Write-Write Check: Wx    VCA ? 
4 1 ?    Yes 1@B 

(1 ! 1?) 

O(1) time 

Last Write 
"Epoch" 



x = 0 

rel(m) 

acq(m) 

x = 1 

4 1 

5 1 

4 1 

5 1 

5 1 

2 8 

2 8 

2 8 

4 8 

4 8 

2 1 3@A 

VCA  VCB Lm Wx 

2 1 4@A 

4 1 4@A 

4 1 4@A 

4 1 8@B 



x = 0 

rel(m) 

acq(m) 

x = 1 

y = x 

4 1 

5 1 

4 1 

5 1 

5 1 

0 8 

0 8 

4 8 

4 8 

4 8 

0 0 3@A 

VCA  VCB Lm Wx 

0 0 4@A 

4 0 4@A 

4 1 4@A 

4 1 8@B 

Write-Read Check: 

5 1 ?  No 8@B 

Wx     VCA ? 

O(1) time (8 ! 1?) 



Thread A Thread B Thread C Thread D 

read x 

read x 

x = 2 

read x 

Read-Write Races -- Ordered Reads 

? 

Most common case: thread-local, lock-protected, ... 



Thread A Thread B Thread C 

read x read x 

x = 2 

read x 

Read-Write Races -- Unordered Reads 

? 

fork 

? ? 

x = 0 



x = 0 
- 

VCA  VCB Wx Rx 

7 0 

fork  
7@A 7 0 

7 1 7@A 8 0 

read x 
7 1 7@A 8 0 

7@A 8 0 
x = 2 

7 1 8@A 

read x 

8 1 

8 1 

- 

- 

- 

1@B 
O(1) 

O(n) 

Read-Write Check:  Rx    VCA ? 

8 0 8 1 ?  No 

O(n) 



Thread A Thread B Thread C Thread D 

read x 

x = 2 

read x 

? ? 

O(n) 



Thread A Thread B Thread C Thread D 

read x 

x = 2 

read x 



Thread A Thread B Thread C Thread D 

read x 

x = 2 

read x 

x = 3 

? 

O(n) 

? 

? 



Thread A Thread B Thread C Thread D 

read x 

x = 2 

read x 

x = 3 

? 

Forget VC for Rx  
and switch back  

to "last read epoch" 

O(1) 



RoadRunner Architecture 

RoadRunner 
Instrumenter 

Error: race on x... Java 
Bytecode 

A: acq(m) 
A: read(x) 
B: write(y) 
A: rel(m) 

Event Stream Back-End 
Checker Instrumented 

Bytecode 

Standard JVM 



Validation 
! Six race condition checkers 

–  all use RoadRunner 
–  share common components (eg, VectorClock) 
–  profiled and optimized 

! Further optimization opportunities 
–  unsound extensions, dynamic escape analysis, 

static analysis, implement inside JVM, 
hardware support, ... 

! 15 Benchmarks 
–  250 KLOC 
–  locks, wait/notify, fork/join, barriers, ... 
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Slowdown (x Base Time) 
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O(n) Vector Clock Operations 
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O(n) Vector Clock Operations 
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Basic VC

DJIT+

FastTrack

Basic VC 100%
DJIT+ 26.0%
FastTrack <0.1%

96.4% of all ops are 
Reads/Writes 

R/W ops requiring      
O(n) time: 



! FastTrack allocated ~200x fewer VCs 

(Note: VCs for dead objects can be garbage collected)  

! Improvements 
–  accordion clocks [CB 01] 
–  analysis granularity [PS 03, YRC 05] (see paper) 

Checker Memory 
Overhead 

Basic VC, 
DJIT+ 7.9x 

FastTrack 2.8x 

Memory Usage 



Eclipse 3.4 
! Scale 

–  > 6,000 classes 
–  24 threads 
–  custom sync. idioms 

! Precision (tested 5 common tasks) 
–  Eraser:  ~1000 warnings 
–  FastTrack:  ~30 warnings 

! Performance on compute-bound tasks 
–  > 2x speed of other precise checkers 
–  same as Eraser 



Beyond Detecting Race Conditions 

! FastTrack finds real race conditions 
–  races correlated with defects 
–  cause unintuitive behavior on relaxed memory 

! Which race conditions are real bugs?  
–  that cause erroneous behaviors (crashes, etc) 
–  and are not “benign race conditions” 





Thread 0  Thread 1 Thread 2 
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!



Thread 0  Thread 1 Thread 2 
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!



Thread 0  Thread 1 Thread 2 
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

! Race: can return either write (mm non-determinism) 
! Typical JVM: mostly sequentially consistent 
! Adversarial memory 

–  use heuristics to return older stale values 



Timur Iskhodzhanov, Alexander Potapenko,
Alexey Samsonov, Kostya Serebryany, 

Evgeniy Stepanov, Dmitry Vyukov

LLVM developers' meeting, Nov 8 2012

ThreadSanitizer, MemorySanitizer

Scalable run-time detection of 
uninitialized memory reads and data races

with LLVM instrumentation

johnmc
Cross-Out



ThreadSanitizer
data races



ThreadSanitizer v1

● Race detector based on Valgrind

● Used since early 2009

● Slow (20x–300x slowdown)
○ Still, found thousands races
○ Faster & more usable than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)

● WBIA'09



ThreadSanitizer v2 overview

● Simple compile-time instrumentation
○ ~400 LOC

● Redesigned run-time library
○ Fully parallel 
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports



TSan report example: data race

void Thread1() { Global = 42; }
int main() {
  pthread_create(&t, 0, Thread1, 0);
  Global = 43;
  ...
% clang -fsanitize=thread -g a.c -fPIE -pie && ./a.out
WARNING: ThreadSanitizer: data race (pid=20373)
  Write of size 4 at 0x7f... by thread 1:
    #0 Thread1 a.c:1
  Previous write of size 4 at 0x7f... by main thread:
    #0 main a.c:4
  Thread 1 (tid=20374, running) created at:
    #0 pthread_create ??:0
    #1 main a.c:3



Compiler instrumentation

void foo(int *p) {
  *p = 42;
}

void foo(int *p) {
  __tsan_func_entry(__builtin_return_address(0));
  __tsan_write4(p);
  *p = 42;
  __tsan_func_exit()
}



Direct shadow mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = 4 * (Addr & kMask);



Shadow cell
An 8-byte shadow cell represents one memory 
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW



4 shadow cells per 8 app. bytes 
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW



Example: first access
T1

E1

0:2

W

Write in thread T1



Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2



Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3



Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not 
"happen-before" E3

 



Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)



Shadow word eviction 

● When all shadow cells are filled, one random 
cell is replaced



Informative reports

● Stack traces for two memory accesses:
○ current (easy)
○ previous (hard)

● TSan1: 
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection



Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit 
○ Information will be lost after some time
○ Buffer size is configurable

● Replay the event buffer on report
○ Unlimited number of frames 



Function interceptors

● 100+ interceptors 
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...



Atomics

● LLVM atomic instructions are replaced with 
__tsan_* callbacks 

%0 = load atomic i8* %a acquire, align 1

%0 = call i8 
@__tsan_atomic8_load(i8* %a, i32 504)



TSan slowdown vs clang -O1

Application TSan1 TSan2 TSan1/TSan2

RPC benchmark 40x 7x 5.5x

Web server test 25x 2.5x 10x

String util test 
(1 thread)

50x 6x 8.5x



Trophies

● 200+ races in Google server-side apps 
(C++)

● 80+ races in Go programs 
○ 25+ bugs in Go stdlib

● Several races in OpenSSL 
○ 1 fixed, ~5 'benign'

● More to come
○ We've just started testing Chrome :) 



Key advantages

● Speed
○ > 10x faster than other tools 

● Native support for atomics
○ Hard or impossible to implement with binary 

translation (Helgrind, Intel Inspector)



Limitations

● Only 64-bit Linux

● Hard to port to 32-bit platforms
○ Small address space
○ Relies on atomic 64-bit load/store

● Heavily relies on TLS
○ Slow TLS on some platforms

● Does not instrument:
○ pre-built libraries
○ inline assembly 



Timur Iskhodzhanov, Alexander Potapenko,
Alexey Samsonov, Kostya Serebryany, 

Evgeniy Stepanov, Dmitry Vyukov

LLVM developers' meeting, Nov 8 2012

ThreadSanitizer, MemorySanitizer

Scalable run-time detection of 
uninitialized memory reads and data races

with LLVM instrumentation



● AddressSanitizer  (aka ASan)
○ recap from 2011
○ detects use-after-free and buffer overflows (C++)

● ThreadSanitizer (aka TSan)
○  detects data races (C++ & Go)

● MemorySanitizer (aka MSan)
○ detects uninitialized memory reads  (C++)

● Similar tools, find different kinds of bugs

Agenda



AddressSanitizer (recap from 2011)

● Finds 
○ buffer overflows (stack, heap, globals)
○ use-after-free
○ some more

● LLVM compiler module (~1KLOC)
○ instruments all loads/stores
○ inserts red zones around Alloca and GlobalVariables

● Run-time library (~10KLOC)
○ malloc replacement (redzones, quarantine)
○ Bookkeeping for error messages



ASan report example: use-after-free

int main(int argc, char **argv) {
 int *array = new int[100];
 delete [] array;
 return array[argc];  } // BOOM
% clang++ -O1 -fsanitize=address a.cc && ./a.out
==30226== ERROR: AddressSanitizer heap-use-after-free
READ of size 4 at 0x7faa07fce084 thread T0
   #0 0x40433c in main a.cc:4
0x7faa07fce084 is located 4 bytes inside of 400-byte region
freed by thread T0 here:
   #0 0x4058fd in operator delete[](void*) _asan_rtl_
   #1 0x404303 in main a.cc:3
previously allocated by thread T0 here:
   #0 0x405579 in operator new[](unsigned long) _asan_rtl_
   #1 0x4042f3 in main a.cc:2



ASan shadow memory

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

char *shadow
 = addr >> 3;
if (*shadow)
  ReportError(a);
*a = ...

*a = ...
Instrumentation



● 2x slowdown (Valgrind: 20x and more)

● 1.5x-4x memory overhead

● 500+ bugs found in Chrome in 1.5 years
○ Used for tests and fuzzing, 2000+ machines 24/7
○ 100+ bugs by external researchers 

● 1000+ bugs everywhere else
○ Firefox, FreeType, FFmpeg, WebRTC, libjpeg-turbo, 

Perl, Vim, LLVM, GCC, MySQL

ASan marketing slide



Trivial hardware support 
may reduce the overhead 

from 2x to 20%

Plea to hardware vendors



ThreadSanitizer
data races



ThreadSanitizer v1

● Race detector based on Valgrind

● Used since early 2009

● Slow (20x–300x slowdown)
○ Still, found thousands races
○ Faster & more usable than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)

● WBIA'09



ThreadSanitizer v2 overview

● Simple compile-time instrumentation
○ ~400 LOC

● Redesigned run-time library
○ Fully parallel 
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports



TSan report example: data race

void Thread1() { Global = 42; }
int main() {
  pthread_create(&t, 0, Thread1, 0);
  Global = 43;
  ...
% clang -fsanitize=thread -g a.c -fPIE -pie && ./a.out
WARNING: ThreadSanitizer: data race (pid=20373)
  Write of size 4 at 0x7f... by thread 1:
    #0 Thread1 a.c:1
  Previous write of size 4 at 0x7f... by main thread:
    #0 main a.c:4
  Thread 1 (tid=20374, running) created at:
    #0 pthread_create ??:0
    #1 main a.c:3



Compiler instrumentation

void foo(int *p) {
  *p = 42;
}

void foo(int *p) {
  __tsan_func_entry(__builtin_return_address(0));
  __tsan_write4(p);
  *p = 42;
  __tsan_func_exit()
}



Direct shadow mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = 4 * (Addr & kMask);



Shadow cell
An 8-byte shadow cell represents one memory 
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW



4 shadow cells per 8 app. bytes 
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW



Example: first access
T1

E1

0:2

W

Write in thread T1



Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2



Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3



Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not 
"happen-before" E3

 



Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)



Shadow word eviction 

● When all shadow cells are filled, one random 
cell is replaced



Informative reports

● Stack traces for two memory accesses:
○ current (easy)
○ previous (hard)

● TSan1: 
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection



Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit 
○ Information will be lost after some time
○ Buffer size is configurable

● Replay the event buffer on report
○ Unlimited number of frames 



Function interceptors

● 100+ interceptors 
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...



Atomics

● LLVM atomic instructions are replaced with 
__tsan_* callbacks 

%0 = load atomic i8* %a acquire, align 1

%0 = call i8 
@__tsan_atomic8_load(i8* %a, i32 504)



TSan slowdown vs clang -O1

Application TSan1 TSan2 TSan1/TSan2

RPC benchmark 40x 7x 5.5x

Web server test 25x 2.5x 10x

String util test 
(1 thread)

50x 6x 8.5x



Trophies

● 200+ races in Google server-side apps 
(C++)

● 80+ races in Go programs 
○ 25+ bugs in Go stdlib

● Several races in OpenSSL 
○ 1 fixed, ~5 'benign'

● More to come
○ We've just started testing Chrome :) 



Key advantages

● Speed
○ > 10x faster than other tools 

● Native support for atomics
○ Hard or impossible to implement with binary 

translation (Helgrind, Intel Inspector)



Limitations

● Only 64-bit Linux

● Hard to port to 32-bit platforms
○ Small address space
○ Relies on atomic 64-bit load/store

● Heavily relies on TLS
○ Slow TLS on some platforms

● Does not instrument:
○ pre-built libraries
○ inline assembly 



MemorySanitizer
uninitialized memory reads (UMR)



MSan report example: UMR

int main(int argc, char **argv) {
  int x[10];
  x[0] = 1;
  if (x[argc]) return 1;
  ...
% clang -fsanitize=memory -fPIE -pie  a.c -g
% ./a.out
WARNING: MemorySanitizer: UMR (uninitialized-memory-read)

    #0 0x7ff6b05d9ca7 in main stack_umr.c:4
  ORIGIN: stack allocation: x@main



Shadow memory

● Bit to bit shadow mapping
○ 1 means 'poisoned' (uninitialized)

● Uninitialized memory:
○ Returned by malloc
○ Local stack objects (poisoned at function entry)

● Shadow is propagated through arithmetic 
operations and memory writes

● Shadow is unpoisoned when constants are 
stored



Direct 1:1 shadow mapping 

Application
0x7fffffffffff
0x600000000000

Protected
0x5fffffffffff
0x400000000000

Shadow
0x3fffffffffff
0x200000000000

Protected
0x1fffffffffff
0x000000000000

Shadow = Addr - 0x400000000000;



Shadow propagation

● Reporting UMR on first read causes false positives
○ E.g. copying  struct {char x; int y;}

● Report UMR only on some uses (branch, syscall, etc)
○ That's what Valgrind does

● Propagate shadow values through expressions
○ A = B + C:    A' = B' | C'
○ A = B & C:    A' = (B' & C')  |  (~B & C')  |  (B' & ~C)
○ Approximation to minimize false positives/negatives 
○ Similar to Valgrind

● Function parameter/retval: shadow is stored in TLS
○ Valgrind shadows registers/stack instead



Tracking origins

● Where was the poisoned memory allocated?
a = malloc() ...
b = malloc() ...
c = *a + *b  ...
if (c) ...  // UMR. Is 'a' guilty or 'b'?

● Valgrind --track-origins: propagate the origin of 
the poisoned memory alongside the shadow

● MemorySanitizer: secondary shadow 
○ Origin-ID is 4 bytes, 1:1 mapping
○ 2x additional slowdown



Secondary shadow (origin)

Application
0x7fffffffffff
0x600000000000

Origin
0x5fffffffffff
0x400000000000

Shadow
0x3fffffffffff
0x200000000000

Protected
0x1fffffffffff
0x000000000000

Origin = Addr - 0x200000000000; 



● Without origins:
○ CPU: 3x
○ RAM: 2x

● With origins:
○ CPU: 6x
○ RAM: 3x + malloc stack traces

MSan overhead



Tricky part :( 

● Missing any write instruction causes false reports
● Must monitor ALL stores in the program

○ libc, libstdc++, syscalls, etc

Solutions:
● Instrumented libc++, wrappers for libc

○ Works for many "console" apps, e.g. LLVM
● Instrument libraries at run-time

○ DynamoRIO-based prototype (SLOW)
● Instrument libraries statically (is it possible?)
● Compile everything, wrap syscalls

○ Will help AddressSanitizer/ThreadSanitizer too



MSan trophies

● Proprietary console app, 1.3 MLOC in C++
○ Not tested with Valgrind previously
○ 20+ unique bugs in < 2 hours
○ Valgrind finds the same bugs in 24+ hours
○ MSan gives better reports for stack memory

● 1 Bug in LLVM
○ LLVM bootstraps, ready to set regular runs

● A few bugs in Chrome (just started)
○ Have to use DynamoRIO module (MSanDR)
○ 7x faster than Valgrind



● AddressSanitizer (memory corruption)
○ A "must use" for everyone (C++)
○ Supported on Linux, OSX, CrOS, Android,
○ WIP: iOS, Windows, *BSD (?)

● ThreadSanitizer (races)
○ A "must use" if you have threads (C++, Go)
○ Only x86_64 Linux

● MemorySanitizer (uses of uninitialized data)
○ WIP, usable for "console" apps (C++)
○ Only x86_64 Linux

Summary (all 3 tools)



Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

http://code.google.com/p/memory-sanitizer/

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/memory-sanitizer/
http://code.google.com/p/memory-sanitizer/


ASan/MSan vs Valgrind (Memcheck)

Valgrind ASan MSan

Heap out-of-bounds YES YES NO

Stack out-of-bounds NO YES NO

Global out-of-bounds NO YES NO

Use-after-free YES YES NO

Use-after-return NO Sometimes NO

Uninitialized reads YES NO YES

CPU Overhead 10x-300x 1.5x-3x 3x



● Slowdowns will add up
○ Bad for interactive or network apps

● Memory overheads will multiply
○ ASan redzone vs TSan/MSan large shadow

● Not trivial to implement

Why not a single tool?




