
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@cs.rice.edu

Detecting Data Races in  
Parallel Programs (Part 2)

COMP 522 5 March 2019

!60

Detecting Data Races in Cilk Programs
that use Locks

Guang-Ien Cheng, Mingdong Feng,
Charles Leiserson, Keith Randall,

Andrew Stark

Mutual Exclusion in Cilk: Locks

cilk_lock(L)

cilk_unlock(L)

!61

critical
section

Assumptions about Locking

• Lock/unlock pair is contained in a
single thread

• Holding a lock across a parallel
control construct is forbidden

Terminology

• “Lock set” of an access: set of locks held when access is
performed

• Lock set of several accesses: intersection of individual sets

A Cilk Program with a Data Race

• Conflicting accesses: at least one is a WRITE

• No ordering by happens before and no common lock
!62

SP-Parse Tree

• ≺

• ≺≺≺

!63

S

≺

II
P

Apparent vs. Feasible Races

!64

T1
z = 1
lock(L)
x = 2
unlock(L)

T2
lock(L)
y = x
unlock(L)
if (y == 2) ... = z

initial condition: x = 0

Detecting Races in Cilk

• Data race if the lock set for two parallel accesses to the
same location is empty and at least one is a WRITE

• Problem: “At least one is a WRITE” is cumbersome

• Simplification
— introduce a fake R-LOCK

– as if implicitly acquired and held for the duration of a read
– for race detector: R-LOCK behaves as regular lock

— if the lock set of two parallel accesses to the same location is
empty, then a data race exists

!65

Two Algorithms for Race Detection

• ALL-SETS - general serial race detection algorithm

• BRELLY - faster serial race detection algorithm limited to
“umbrella locking discipline”

!66

!67

ALL-SETS uses SP-Bags Representation

Use SP-Bags to determine concurrency relationship

ALL-SETS Protocol

lockers(L): set of tuples <thread, lock set>
set of locks held by previous access to L by thread

!68

check for race:
 parallel accesses
 non-overlapping lock sets

prune redundant lock sets
 precedes & larger set
add new lock set if not
redundant

ALL-SETS Detects Races

Detects a race in a Cilk execution based on a given input if
and only if a data race exists in the execution.

• if: any race reported between accesses by ALL-SETS meets
the condition for a race: no common lock

• only if: if a race between accesses A and C exists in the
computation, a race will be reported

—if lock set for A was not added to lockers, there must be another
parallel access with a smaller lock set. a race will be reported.

—what if there was an intervening non-racing access B that caused
a lock set for A to be removed from the lock set?
– there can be no such access B

 B must have a larger lock set if it doesn’t race
 a lock set will be removed only if its lock set is larger than B’s
 thus, the A won’t have its lock set removed

!69

ALL-SETS Properties

• Cilk program executes in time T

• Uses V variables

• Uses a total of n locks; no more than k simultaneously

• Let L = max number of distinct lock sets used for any
location

• Time: O(TL(k + α(V,V))
— loose upper bound for L: L ≤ sum of n choose i, i = 0, k =

O(nk/k!)
— at most 2L series/parallel tests (lines 2, 6) at cost of

O(α(V,V))
— lock set comparisons take at most O(k) time

• Space: O(kLV)
— each lock set takes at most k space !70

ALL-SETS vs. BRELLY

• ALL-SETS detects data races directly
— but at asymptotically high cost: factor of nk slower than SP-

bags protocol

• Umbrella locking discipline
— requires each that each location be protected by the same

lock within every parallel subcomputation
— threads in series may use different locks (or none)

• BRELLY only detects violations of the “umbrella” locking
discipline, which precludes races
— more restrictive locking discipline than ALL-SETS requires

!71

What’s Not in the Umbrella Discipline?

• Umbrella discipline
requires that all
sections in a parallel
subcomputation use
the same lock for a
variable

• One thread uses A&B

• Two serial
computations in
parallel with first use
— only A
— only B

!72

lock(A)
x =
unlock(A)

lock(B)
x =
unlock(B)

lock(A)
lock(B)
x =
unlock(B)
unlock(A)

Umbrellas in SP-Parse Tree

!73

Understanding our Example with its SP-Parse

!74

lock(A)
x =
unlock(A)

lock(B)
x =
unlock(B)

lock(A)
lock(B)
x =
unlock(B)
unlock(A)

P

S

P P

{A,B}

{A} {B}

Umbrellas and Races

A Cilk computation with a data race violates  
the umbrella discipline

• Any two threads involved in a race must have a P-node as
their LCA in the SP-Parse

• The LCA P-node is the root of an unprotected umbrella
—both threads access the same location
—their lock sets are disjoint

!75

BRELLY Protocol

!76

Simplication: unlike ALL-SETS, keep only single lock set per location

Tag lock h in the lock set for L with
- nonlocker[h] - a thread

accessing L without holding h
- alive[h] - whether h should be

considered as belonging to the
umbrella
- kill h rather than removing

from lock set to improve
precision of race reports

BRELLY at Work

• e7 finds itself in
parallel with non-
locker e4 for B

• kills lock B leaving
no live locks

• causes a data race
to be detected

!77

Notation
A(x) : x is non-locker of A
A : A is not alive

BRELLY Properties

• Cilk program executes in time T

• Uses V variables

• Uses a total of n locks; no more than k simultaneously

• Time: O(kTα(V,V))
— tests if nonlocker[h] || e dominate running time
— at most k series/parallel tests at cost of O(α(V,V)) each

• Space: O(kV)
— at most k locks per variable

!78

Cilkscreen

• Detects and reports data races when program terminates
— finds all data races even those by third-party or system

libraries

• Does not report determinacy races
— e.g. two concurrent strands use a lock to access a queue

– enqueue & dequeue operations could occur in different order
 potentially leads to different result

!79

// code with a data race
int sum = 0;
cilk_for (int i = 0; i < n; i++) {

sum += a[i];
}

Race Detection Strategies in Cilkscreen

• Lock covers
— two conflicting accesses to a variable don’t race if some lock

L is held while each of the accesses is performed by a strand

• Happens-before
— two conflicting accesses do not race if one must happen

before the other
– access A is by a strand X, which precedes the spawn of strand Y

which performs access B
– access A is performed by strand X, which precedes a sync that is

an ancestor of strand Y

!80

Cilkscreen Race Example

#include <stdio.h>
#include <cilk++/cilk_mutex.h>

int sum = 0;
cilk::mutex m;

#ifdef SYNCH
#define LOCK m.lock()
#define UNLOCK m.unlock()
#else
#define LOCK
#define UNLOCK
#endif

!81

void do_accum(int l, int u)
{
 if (u == l) { LOCK; sum += l; UNLOCK; }
 else {
 int mid = (u+l)/2;
 cilk_spawn do_accum(l, mid);
 do_accum(mid+1, u);
 }
}
int cilk_main()
{
 do_accum(0, 1000);
 printf("sum = %d\n", sum);

 int ssum = 0;
 for (int i = 0; i <= 1000; i++) ssum +=i;
 printf("serial sum = %d\n", ssum);
}

Cilkscreen Limitations

• Only detects races between Cilk++ strands
— depends upon their strict fork/join paradigm

• Only detects races that occur given the input provided
— does not prove the absence of races for other inputs
— choose your testing inputs carefully!

• Cilkscreen runs serially, 15-30x slower
• Cilkscreen increases the memory footprint of an

application
— could cause an error if too large

• If you build your program with debug information,
cilkscreen will associate races with source line numbers

!82

Cilkscreen Output
Race on location 0x6033c0 between

/users/johnmc/tests/race.cilk:17: _Z8do_accumii+0x31 (eip=0x40167d)

and

/users/johnmc/tests/race.cilk:17: _Z8do_accumii+0x31 (eip=0x40167d)

/users/johnmc/tests/race.cilk:21: _Z8do_accumii+0x6a (eip=0x4016b6) called from here

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d) called from here

/users/johnmc/tests/race.cilk:20: _Z8do_accumii+0x5c (eip=0x4016a8) called from here

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d) called from here

/users/johnmc/tests/race.cilk:20: _Z8do_accumii+0x5c (eip=0x4016a8) called from here

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d) called from here

/users/johnmc/tests/race.cilk:20: _Z8do_accumii+0x5c (eip=0x4016a8) called from here

/users/johnmc/tests/race.cilk:20: __cilk_spawn_do_accum_000+0x79 (eip=0x40161d) called from here

...

!83

!84

SigRace: Signature-based Race
Detection

Abdullah Muzahid, Dario Suarez,
Shanxiang Qi, Josep Torrellas

The Big Picture

• People like shared-memory models for parallel
programming

• Data races are a significant problem
— most people don’t write programs in languages like Ct or

NESL

• Software-only data race detection is slow
— perhaps as much as 50x

• Every 18 months: 2x transistors on a chip

!85

Hardware Support for Race Detection

• Monitor accesses in hardware and detect races

• Typical approach
— tag data in caches with timestamps as accesses occur
— piggyback tags & race detection on cache coherence

protocol
– invalidation, external read of a dirty line

• Specific approaches
— happened-before (ReEnact, CORD, Min & Choi)
— locksets (HARD)

• SigRace approach
— don’t require changes to L1 cache!
— don’t change the coherence protocol

!86

Stephen Freund
Williams College

FastTrack:
Efficient and Precise Dynamic
Race Detection
(+ identifying destructive races)
Cormac Flanagan
UC Santa Cruz

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

•  Compute partial order of operations
•  Ensure conflicting access are not concurrent
•  Sound & Complete

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

•  Track locks held on all accesses to var.
-  empty lock set implies possible race

•  Unsound & Incomplete

Dynamic Race Detection
Pr

ec
is

io
n

Cost

Happens
 Before

[Lamport 78]

Eraser
[SBN+ 97]

Barriers [PS 03]
Initialization [vPG 01]

...

Vector Clocks [M 88]
 Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [CB 01]
... RaceTrack [YRC 05]

 MultiRace [PS 03]
 Hybrid Race Detector [OC 03]

 ...

FastTrack

•  Design Criteria:
-  sound
 (find at least 1st race on each var)
-  complete (no false alarms)
-  efficient

•  Insight: Accesses to a var are
 almost always totally ordered
 in the Happens-Before relation

x = 0

rel(m)

acq(m)

x = 1

y = x

Thread A Thread B Happens-Before
! Event Ordering:

–  program order
–  synchronization order

! Types of Races:
–  Write-Write
–  Write-Read

"  (write before read)
–  Read-Write

"  (read before write)

...

4 1 2 8 2 1 3 0

VCA VCB Lm Wx

0 1

Rx

A B A B A B A B A B

x = 0
4 1

4 0

2 8

0 8

2 1 3 0

VCA VCB Lm Wx

0 0 4 0

0 1

Rx

2 0

4 8 5 0 4 8 2 0

Write-Write Check: Wx VCA ?

Read-Write Check: Rx VCA ?

4 1 3 0

4 1 0 1

? Yes

? Yes

O(n) time

x = 0
4 1

4 1

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

0 1

Rx

0 1

x = 0

rel(m)

4 1

5 1

4 1

2 8

2 8

2 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

x = 0

rel(m)

acq(m)

4 1

5 1

4 1

5 1

2 8

2 8

2 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

0 1

Rx

0 1

0 1

0 1

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3 0

VCA VCB Lm Wx

2 1 4 0

4 1 4 0

4 1 4 0

4 1 4 8

0 1

Rx

0 1

0 1

0 1

0 1

x = 0

rel(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

0 8

4 8

4 8

0 0 0 0

VCA VCB Lm Wx

0 0 4 0

4 0 4 0

4 1 4 0

4 1 4 8

2 0

Rx

2 0

2 0

0 1

0 1

Write-Read Check: Wx VCA ?

5 1 ? No 4 8

O(n) time

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

Write-Write and Write-Read Races

?

?

?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

No Races Yet: Writes Totally Ordered!

?

?

?

O(n)

Thread A Thread B Thread C Thread D

x = 0

x = 1

read x

x = 3

No Races Yet: Writes Totally Ordered!

?

O(1)

x = 0
4 1

4 0

2 8

0 8

2 1 1@B

VCA VCB Lm Wx

0 0 4@A Write-Write Check: Wx VCA ?
4 1 ? Yes 1@B

(1 ! 1?)

O(1) time

Last Write
"Epoch"

x = 0

rel(m)

acq(m)

x = 1

4 1

5 1

4 1

5 1

5 1

2 8

2 8

2 8

4 8

4 8

2 1 3@A

VCA VCB Lm Wx

2 1 4@A

4 1 4@A

4 1 4@A

4 1 8@B

x = 0

rel(m)

acq(m)

x = 1

y = x

4 1

5 1

4 1

5 1

5 1

0 8

0 8

4 8

4 8

4 8

0 0 3@A

VCA VCB Lm Wx

0 0 4@A

4 0 4@A

4 1 4@A

4 1 8@B

Write-Read Check:

5 1 ? No 8@B

Wx VCA ?

O(1) time (8 ! 1?)

Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...

Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Races -- Unordered Reads

?

fork

? ?

x = 0

x = 0
-

VCA VCB Wx Rx

7 0

fork
7@A 7 0

7 1 7@A 8 0

read x
7 1 7@A 8 0

7@A 8 0
x = 2

7 1 8@A

read x

8 1

8 1

-

-

-

1@B
O(1)

O(n)

Read-Write Check: Rx VCA ?

8 0 8 1 ? No

O(n)

Thread A Thread B Thread C Thread D

read x

x = 2

read x

? ?

O(n)

Thread A Thread B Thread C Thread D

read x

x = 2

read x

Thread A Thread B Thread C Thread D

read x

x = 2

read x

x = 3

?

O(n)

?

?

Thread A Thread B Thread C Thread D

read x

x = 2

read x

x = 3

?

Forget VC for Rx
and switch back

to "last read epoch"

O(1)

RoadRunner Architecture

RoadRunner
Instrumenter

Error: race on x... Java
Bytecode

A: acq(m)
A: read(x)
B: write(y)
A: rel(m)

Event Stream Back-End
Checker Instrumented

Bytecode

Standard JVM

Validation
! Six race condition checkers

–  all use RoadRunner
–  share common components (eg, VectorClock)
–  profiled and optimized

! Further optimization opportunities
–  unsound extensions, dynamic escape analysis,

static analysis, implement inside JVM,
hardware support, ...

! 15 Benchmarks
–  250 KLOC
–  locks, wait/notify, fork/join, barriers, ...

Warnings
27

5

3

8 8 8

0

5

10

15

20

25

30

Eraser

[SBN+ 97]

MultiRace

[PS 03]

GoldiLocks

[EQT 07]

 Basic VC

[M 88]

 DJIT+

[PS 03]

FastTrack

22 false positives
 3 false negatives

Slowdown (x Base Time)

4.1

8.6

21.7

31.6

89.8

20.2

8.5

0

5

10

15

20

25

30

35

40

45

50

Empty Eraser MultiRace Goldilocks Basic VC DJIT+ FastTrack

O(n) Vector Clock Operations

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

1.0E+11

co
lt

cr
yp

t

lu
fa
ct

m
ol
dy

n

m
on

te
ca

rl
o

m
tr
t

ra
ja

ra
yt
ra

ce
r

sp
ar

se

se
ri
es so

r
ts
p

el
ev

at
or

ph
ilo

he
dc jb

b

Basic VC

DJIT+

FastTrack

O(n) Vector Clock Operations

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1.0E+9

1.0E+10

1.0E+11

co
lt

cr
yp

t

lu
fa
ct

m
ol
dy

n

m
on

te
ca

rl
o

m
tr
t

ra
ja

ra
yt
ra

ce
r

sp
ar

se

se
ri
es so

r
ts
p

el
ev

at
or

ph
ilo

he
dc jb

b

Basic VC

DJIT+

FastTrack

Basic VC 100%
DJIT+ 26.0%
FastTrack <0.1%

96.4% of all ops are
Reads/Writes

R/W ops requiring
O(n) time:

! FastTrack allocated ~200x fewer VCs

(Note: VCs for dead objects can be garbage collected)

! Improvements
–  accordion clocks [CB 01]
–  analysis granularity [PS 03, YRC 05] (see paper)

Checker Memory
Overhead

Basic VC,
DJIT+ 7.9x

FastTrack 2.8x

Memory Usage

Eclipse 3.4
! Scale

–  > 6,000 classes
–  24 threads
–  custom sync. idioms

! Precision (tested 5 common tasks)
–  Eraser: ~1000 warnings
–  FastTrack: ~30 warnings

! Performance on compute-bound tasks
–  > 2x speed of other precise checkers
–  same as Eraser

Beyond Detecting Race Conditions

! FastTrack finds real race conditions
–  races correlated with defects
–  cause unintuitive behavior on relaxed memory

! Which race conditions are real bugs?
–  that cause erroneous behaviors (crashes, etc)
–  and are not “benign race conditions”

Thread 0 Thread 1 Thread 2
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

Thread 0 Thread 1 Thread 2
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

Thread 0 Thread 1 Thread 2
p = null!
px = 0!
py = 0!
fork 1,2!

read p // null!
acquire!
read p // null!
p = new Point!
px = 1!
py = 1!
release!
read px // get 1!
read py // get 1!

read p // non-null!
read px // ?!

! Race: can return either write (mm non-determinism)
! Typical JVM: mostly sequentially consistent
! Adversarial memory

–  use heuristics to return older stale values

Timur Iskhodzhanov, Alexander Potapenko,
Alexey Samsonov, Kostya Serebryany,

Evgeniy Stepanov, Dmitry Vyukov

LLVM developers' meeting, Nov 8 2012

ThreadSanitizer, MemorySanitizer

Scalable run-time detection of
uninitialized memory reads and data races

with LLVM instrumentation

johnmc
Cross-Out

ThreadSanitizer
data races

ThreadSanitizer v1

● Race detector based on Valgrind

● Used since early 2009

● Slow (20x–300x slowdown)
○ Still, found thousands races
○ Faster & more usable than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)

● WBIA'09

ThreadSanitizer v2 overview

● Simple compile-time instrumentation
○ ~400 LOC

● Redesigned run-time library
○ Fully parallel
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports

TSan report example: data race

void Thread1() { Global = 42; }
int main() {
 pthread_create(&t, 0, Thread1, 0);
 Global = 43;
 ...
% clang -fsanitize=thread -g a.c -fPIE -pie && ./a.out
WARNING: ThreadSanitizer: data race (pid=20373)
 Write of size 4 at 0x7f... by thread 1:
 #0 Thread1 a.c:1
 Previous write of size 4 at 0x7f... by main thread:
 #0 main a.c:4
 Thread 1 (tid=20374, running) created at:
 #0 pthread_create ??:0
 #1 main a.c:3

Compiler instrumentation

void foo(int *p) {
 *p = 42;
}

void foo(int *p) {
 __tsan_func_entry(__builtin_return_address(0));
 __tsan_write4(p);
 *p = 42;
 __tsan_func_exit()
}

Direct shadow mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = 4 * (Addr & kMask);

Shadow cell
An 8-byte shadow cell represents one memory
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW

4 shadow cells per 8 app. bytes
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

Example: first access
T1

E1

0:2

W

Write in thread T1

Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2

Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3

Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not
"happen-before" E3

Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)

Shadow word eviction

● When all shadow cells are filled, one random
cell is replaced

Informative reports

● Stack traces for two memory accesses:
○ current (easy)
○ previous (hard)

● TSan1:
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection

Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit
○ Information will be lost after some time
○ Buffer size is configurable

● Replay the event buffer on report
○ Unlimited number of frames

Function interceptors

● 100+ interceptors
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...

Atomics

● LLVM atomic instructions are replaced with
__tsan_* callbacks

%0 = load atomic i8* %a acquire, align 1

%0 = call i8
@__tsan_atomic8_load(i8* %a, i32 504)

TSan slowdown vs clang -O1

Application TSan1 TSan2 TSan1/TSan2

RPC benchmark 40x 7x 5.5x

Web server test 25x 2.5x 10x

String util test
(1 thread)

50x 6x 8.5x

Trophies

● 200+ races in Google server-side apps
(C++)

● 80+ races in Go programs
○ 25+ bugs in Go stdlib

● Several races in OpenSSL
○ 1 fixed, ~5 'benign'

● More to come
○ We've just started testing Chrome :)

Key advantages

● Speed
○ > 10x faster than other tools

● Native support for atomics
○ Hard or impossible to implement with binary

translation (Helgrind, Intel Inspector)

Limitations

● Only 64-bit Linux

● Hard to port to 32-bit platforms
○ Small address space
○ Relies on atomic 64-bit load/store

● Heavily relies on TLS
○ Slow TLS on some platforms

● Does not instrument:
○ pre-built libraries
○ inline assembly

Timur Iskhodzhanov, Alexander Potapenko,
Alexey Samsonov, Kostya Serebryany,

Evgeniy Stepanov, Dmitry Vyukov

LLVM developers' meeting, Nov 8 2012

ThreadSanitizer, MemorySanitizer

Scalable run-time detection of
uninitialized memory reads and data races

with LLVM instrumentation

● AddressSanitizer (aka ASan)
○ recap from 2011
○ detects use-after-free and buffer overflows (C++)

● ThreadSanitizer (aka TSan)
○ detects data races (C++ & Go)

● MemorySanitizer (aka MSan)
○ detects uninitialized memory reads (C++)

● Similar tools, find different kinds of bugs

Agenda

AddressSanitizer (recap from 2011)

● Finds
○ buffer overflows (stack, heap, globals)
○ use-after-free
○ some more

● LLVM compiler module (~1KLOC)
○ instruments all loads/stores
○ inserts red zones around Alloca and GlobalVariables

● Run-time library (~10KLOC)
○ malloc replacement (redzones, quarantine)
○ Bookkeeping for error messages

ASan report example: use-after-free

int main(int argc, char **argv) {
 int *array = new int[100];
 delete [] array;
 return array[argc]; } // BOOM
% clang++ -O1 -fsanitize=address a.cc && ./a.out
==30226== ERROR: AddressSanitizer heap-use-after-free
READ of size 4 at 0x7faa07fce084 thread T0
 #0 0x40433c in main a.cc:4
0x7faa07fce084 is located 4 bytes inside of 400-byte region
freed by thread T0 here:
 #0 0x4058fd in operator delete[](void*) _asan_rtl_
 #1 0x404303 in main a.cc:3
previously allocated by thread T0 here:
 #0 0x405579 in operator new[](unsigned long) _asan_rtl_
 #1 0x4042f3 in main a.cc:2

ASan shadow memory

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

char *shadow
 = addr >> 3;
if (*shadow)
 ReportError(a);
*a = ...

*a = ...
Instrumentation

● 2x slowdown (Valgrind: 20x and more)

● 1.5x-4x memory overhead

● 500+ bugs found in Chrome in 1.5 years
○ Used for tests and fuzzing, 2000+ machines 24/7
○ 100+ bugs by external researchers

● 1000+ bugs everywhere else
○ Firefox, FreeType, FFmpeg, WebRTC, libjpeg-turbo,

Perl, Vim, LLVM, GCC, MySQL

ASan marketing slide

Trivial hardware support
may reduce the overhead

from 2x to 20%

Plea to hardware vendors

ThreadSanitizer
data races

ThreadSanitizer v1

● Race detector based on Valgrind

● Used since early 2009

● Slow (20x–300x slowdown)
○ Still, found thousands races
○ Faster & more usable than others

■ Helgrind (Valgrind)
■ Intel Parallel Inspector (PIN)

● WBIA'09

ThreadSanitizer v2 overview

● Simple compile-time instrumentation
○ ~400 LOC

● Redesigned run-time library
○ Fully parallel
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports

TSan report example: data race

void Thread1() { Global = 42; }
int main() {
 pthread_create(&t, 0, Thread1, 0);
 Global = 43;
 ...
% clang -fsanitize=thread -g a.c -fPIE -pie && ./a.out
WARNING: ThreadSanitizer: data race (pid=20373)
 Write of size 4 at 0x7f... by thread 1:
 #0 Thread1 a.c:1
 Previous write of size 4 at 0x7f... by main thread:
 #0 main a.c:4
 Thread 1 (tid=20374, running) created at:
 #0 pthread_create ??:0
 #1 main a.c:3

Compiler instrumentation

void foo(int *p) {
 *p = 42;
}

void foo(int *p) {
 __tsan_func_entry(__builtin_return_address(0));
 __tsan_write4(p);
 *p = 42;
 __tsan_func_exit()
}

Direct shadow mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = 4 * (Addr & kMask);

Shadow cell
An 8-byte shadow cell represents one memory
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW

4 shadow cells per 8 app. bytes
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

Example: first access
T1

E1

0:2

W

Write in thread T1

Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2

Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3

Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 does not
"happen-before" E3

Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from thread-local storage
○ 1 comparison

● Similar to FastTrack (PLDI'09)

Shadow word eviction

● When all shadow cells are filled, one random
cell is replaced

Informative reports

● Stack traces for two memory accesses:
○ current (easy)
○ previous (hard)

● TSan1:
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection

Stack trace for previous access

● Per-thread cyclic buffer of events
○ 64 bits per event (type + PC)
○ Events: memory access, function entry/exit
○ Information will be lost after some time
○ Buffer size is configurable

● Replay the event buffer on report
○ Unlimited number of frames

Function interceptors

● 100+ interceptors
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...

Atomics

● LLVM atomic instructions are replaced with
__tsan_* callbacks

%0 = load atomic i8* %a acquire, align 1

%0 = call i8
@__tsan_atomic8_load(i8* %a, i32 504)

TSan slowdown vs clang -O1

Application TSan1 TSan2 TSan1/TSan2

RPC benchmark 40x 7x 5.5x

Web server test 25x 2.5x 10x

String util test
(1 thread)

50x 6x 8.5x

Trophies

● 200+ races in Google server-side apps
(C++)

● 80+ races in Go programs
○ 25+ bugs in Go stdlib

● Several races in OpenSSL
○ 1 fixed, ~5 'benign'

● More to come
○ We've just started testing Chrome :)

Key advantages

● Speed
○ > 10x faster than other tools

● Native support for atomics
○ Hard or impossible to implement with binary

translation (Helgrind, Intel Inspector)

Limitations

● Only 64-bit Linux

● Hard to port to 32-bit platforms
○ Small address space
○ Relies on atomic 64-bit load/store

● Heavily relies on TLS
○ Slow TLS on some platforms

● Does not instrument:
○ pre-built libraries
○ inline assembly

MemorySanitizer
uninitialized memory reads (UMR)

MSan report example: UMR

int main(int argc, char **argv) {
 int x[10];
 x[0] = 1;
 if (x[argc]) return 1;
 ...
% clang -fsanitize=memory -fPIE -pie a.c -g
% ./a.out
WARNING: MemorySanitizer: UMR (uninitialized-memory-read)

 #0 0x7ff6b05d9ca7 in main stack_umr.c:4
 ORIGIN: stack allocation: x@main

Shadow memory

● Bit to bit shadow mapping
○ 1 means 'poisoned' (uninitialized)

● Uninitialized memory:
○ Returned by malloc
○ Local stack objects (poisoned at function entry)

● Shadow is propagated through arithmetic
operations and memory writes

● Shadow is unpoisoned when constants are
stored

Direct 1:1 shadow mapping

Application
0x7fffffffffff
0x600000000000

Protected
0x5fffffffffff
0x400000000000

Shadow
0x3fffffffffff
0x200000000000

Protected
0x1fffffffffff
0x000000000000

Shadow = Addr - 0x400000000000;

Shadow propagation

● Reporting UMR on first read causes false positives
○ E.g. copying struct {char x; int y;}

● Report UMR only on some uses (branch, syscall, etc)
○ That's what Valgrind does

● Propagate shadow values through expressions
○ A = B + C: A' = B' | C'
○ A = B & C: A' = (B' & C') | (~B & C') | (B' & ~C)
○ Approximation to minimize false positives/negatives
○ Similar to Valgrind

● Function parameter/retval: shadow is stored in TLS
○ Valgrind shadows registers/stack instead

Tracking origins

● Where was the poisoned memory allocated?
a = malloc() ...
b = malloc() ...
c = *a + *b ...
if (c) ... // UMR. Is 'a' guilty or 'b'?

● Valgrind --track-origins: propagate the origin of
the poisoned memory alongside the shadow

● MemorySanitizer: secondary shadow
○ Origin-ID is 4 bytes, 1:1 mapping
○ 2x additional slowdown

Secondary shadow (origin)

Application
0x7fffffffffff
0x600000000000

Origin
0x5fffffffffff
0x400000000000

Shadow
0x3fffffffffff
0x200000000000

Protected
0x1fffffffffff
0x000000000000

Origin = Addr - 0x200000000000;

● Without origins:
○ CPU: 3x
○ RAM: 2x

● With origins:
○ CPU: 6x
○ RAM: 3x + malloc stack traces

MSan overhead

Tricky part :(

● Missing any write instruction causes false reports
● Must monitor ALL stores in the program

○ libc, libstdc++, syscalls, etc

Solutions:
● Instrumented libc++, wrappers for libc

○ Works for many "console" apps, e.g. LLVM
● Instrument libraries at run-time

○ DynamoRIO-based prototype (SLOW)
● Instrument libraries statically (is it possible?)
● Compile everything, wrap syscalls

○ Will help AddressSanitizer/ThreadSanitizer too

MSan trophies

● Proprietary console app, 1.3 MLOC in C++
○ Not tested with Valgrind previously
○ 20+ unique bugs in < 2 hours
○ Valgrind finds the same bugs in 24+ hours
○ MSan gives better reports for stack memory

● 1 Bug in LLVM
○ LLVM bootstraps, ready to set regular runs

● A few bugs in Chrome (just started)
○ Have to use DynamoRIO module (MSanDR)
○ 7x faster than Valgrind

● AddressSanitizer (memory corruption)
○ A "must use" for everyone (C++)
○ Supported on Linux, OSX, CrOS, Android,
○ WIP: iOS, Windows, *BSD (?)

● ThreadSanitizer (races)
○ A "must use" if you have threads (C++, Go)
○ Only x86_64 Linux

● MemorySanitizer (uses of uninitialized data)
○ WIP, usable for "console" apps (C++)
○ Only x86_64 Linux

Summary (all 3 tools)

Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

http://code.google.com/p/memory-sanitizer/

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/memory-sanitizer/
http://code.google.com/p/memory-sanitizer/

ASan/MSan vs Valgrind (Memcheck)

Valgrind ASan MSan

Heap out-of-bounds YES YES NO

Stack out-of-bounds NO YES NO

Global out-of-bounds NO YES NO

Use-after-free YES YES NO

Use-after-return NO Sometimes NO

Uninitialized reads YES NO YES

CPU Overhead 10x-300x 1.5x-3x 3x

● Slowdowns will add up
○ Bad for interactive or network apps

● Memory overheads will multiply
○ ASan redzone vs TSan/MSan large shadow

● Not trivial to implement

Why not a single tool?

