
The	Java	
Memory	
Model
Authors:	Jeremy	Manson,	William	
Pugh,	Sarita	V.	Adve
Presenter:	Keren	Zhou
COMP	522



Why	Java	needs	a	well-formed	
memory	model
• Java	supports	threads	running	on	shared	memory
• Java	memory	model	defines	multi-threaded	Java	
program	semantics
• Key	concerns:	Java	memory	model	specifies	legal	
behaviors	and	provides	safety	and	security	
properties

3/26/19 2



Why	should	we	care	about	Java	
Memory	Model
• A	programmer	should	know
• Junior	level

• Use	monitor,	locks,	and	volatile properly
• Learn	safety	guarantees	of	Java

• Intermediate	level
• Reason	the	correctness	of	concurrent	programs
• Use	concurrent	data	structures	(e.g ConcurrentHashMap)

• Expert	level
• Understand	and	optimize	utilities	in	java.util.concurrent

• AbstractExecutorService
• Atomic	variables

3/26/19 3



Create	a	singleton	to	get	a	static	
instance
• Singleton:	only	want	a	single	instance	in	a	program
• Database
• Logging
• Configuration

3/26/19 4

public class Instance {
private static Instance instance;
public static Instance getInstance() {
if (instance == null)
instance = new Instance();

return instance;
}

}

1
2
3
4
5
6
7
8



The	simple	singleton	is	thread-
unsafe

3/26/19 5

public class Instance {
private static Instance instance;
public static Instance getInstance() {
if (instance == null)
instance = new Instance();

return instance;
}

}

1
2
3
4
5
6
7
8

Threads

T0

T1

Line	4

Line	4

Line	5

Line	5

Line	6

Line	6

getInstance

getInstance

Time Line

Create	two	instances	at	the	same	time!



Use	synchronized	keyword

3/26/19 6

• Java	synchronized keyword	can	be	used	in	different	
contexts
• Instance	methods
• Code	blocks
• Static	methods

• Only	one	thread	can	execute	inside	a	static	synchronized	
method	per	class,	irrespective	of	the	number	of	instances	it	
has.



The	synchronized	singleton	has	
low	performance

3/26/19 7

public class Instance {
private static Instance instance;
public synchronized static Instance getInstance() {
if (instance == null)
instance = new Instance();

return instance;
}

}

1
2
3
4
5
6
7
8

Threads

T0

T1

Line	4 Line	5 Line	6getInstance

getInstance

Time Line

Line	4 Line	5 Line	6



Use	double-checked	lock	to	make	
it	more	efficient
• Motivation:	In	the	early	days,	the	cost	of	
synchronization	could	be	quite	high
• Idea:	Avoid	the	costly	synchronization	for	all	
invocations	of	the	method	except	the	first
• Solution:
• First	check	if	the	instance	is	null	or	not
• If	instance	is	null,	enter	a	critical	section	to	create	the	
object
• If	instance	is	not	null,	return	instance

3/26/19 8



Double	checked-lock	
implementation

3/26/19 9

public class Instance {
private static Instance instance;
public static Instance getInstance() {
if (instance == null) {
synchronized (Instance.class) {
if (instance == null) {

instance = new Instance();
}

}
}
return instance;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13



How	double-checked	lock	goes	
wrong
• Brief	answer:	instruction	reorder
• Suppose	T0	is	initializing	with	the	following	three	
steps
1) mem	=	allocate();	//Allocate	memory	for	Singleton
2) ctorSingleton(mem);	//Invoke	constructor
3) object.instance =	mem;	//initialize	instance.	

• What	if	step	2	is	interchanged	with	step	3?
• Another	thread	T1	might	see	the	instance	before	being	
fully	constructed

3/26/19 10



A	thread	returns	an	object	that	
has	not	been	constructed

3/26/19 11

public static Instance getInstance() {
if (instance == null) {
synchronized (UnsafeInstance.class) {
if (instance == null) {

instance = new Instance();
}

}
}
return instance;

}

3
4
5
6
7
8
9
10
11
12

Threads

T0

T1

Line	4

Line	4

Line	5

Line	11

Line	6getInstance

getInstance

Time Line

Line	7

mem = allocate();
object.instance = mem;
ctorSingleton(mem);

T1	returns	before	constructor	completes!



Use	volatile	to	avoid	reordering

• The	behavior	of	volatile differs	significantly	between	
programming	languages
• C/C++

• Volatile	keyword	means	always	read	the	value	of	the	variable	
memory

• Operations	on	volatile	variables	are	not	atomic
• Cannot	be	used	as	a	portable	synchronization	mechanism

• Java
• Prevent	reordering
• Derive	a	synchronization	order	on	top	of	Java	Memory	Model

3/26/19 12



Use	volatile	to	avoid	reordering

• Java’s	volatile was	not	consistent	with	developers	
intuitions
• The	original	Java	memory	model	allowed	for	volatile	
writes	to	be	reordered	with	nonvolatile	reads	and	writes

• Under	the	new	Java	memory	model	(from	JVM	
v1.5),	volatile	can	be	used	to	fix	the	problems	with	
double-checked	locking

3/26/19 13



Java	memory	model	history

• 1996:	An	Optimization	Pattern	for	Efficiently	
Initializing	and	Accessing	Thread-safe	Objects,	
Douglas	C.	Schmidt and	etc.
• 1996:	The	Java	Language	Specification,	chapter	17,	
James	Gosling	and	etc.
• 1999:	Fixing	the	Java	Memory	Model,	William	Pugh
• 2004:	JSR	133---Java	Memory	Model	and	Thread	
Specification	Revision

3/26/19 14



Review:	sequential	consistency

• Total	order:	Memory	actions	must	appear	to	
execute	one	at	a	time	in	a	single	total	order
• Program	order:	Actions	of	a	given	thread	must	
appear	in	the	same	order	in	which	they	appear	in	
the	program	

3/26/19 15



Review:	sequential	consistency	
violation

3/26/19 16

r2	=	x
y	=	1

r1	=	y
x	=	2

Thread	1 Thread	2

Initial	conditions:	x	=	y	=	0

Final	results: r2	==	2	and	r1	==	1?

Decision:	Disallowed.	Violates	sequential	consistency

1
2

3
4

Circular	dependency!

Inter	threads	dependency

Intra	thread	dependency



Java	memory	model	balances	
between	performance	and	safety
• Sequential	consistency
• Easy	to	understand
• Restricts	the	use	of	many	compiler	and	hardware	
transformations

• Relaxed	memory	models
• Allow	more	optimizations
• Hard	to	reason	about	the	correctness

3/26/19 17



Java	memory	model	hides	underlying	
hardware	memory	model

3/26/19 18

Java	Program

High-level	Language	Memory	Model

Java	Compiler

Java	Runtime

Hardware	Memory	Model

TSO, Power’s weak model, …



Java	defines	data-race-free	model

• Data	race	occurs	when	two	threads	access	the	
same	memory	location,	at	least	one	of	the	accesses	
is	a	write,	and	there	is	no	intervening	
synchronization
• A	data-race-free Java	program	guarantees	
sequential	consistency	(Correctly	synchronized)

3/26/19 19



Another	definition	of	data-race	from	
Java	Memory	Model’s	perspective
• Two	accesses	x and	y form	a	data	race	in	an	
execution	of	a	program	if	they	are	from	different	
threads,	they	conflict,	and	they	are	not	ordered	by	
happens-before

3/26/19 20



Happens-before	memory	model

• A	simpler	version	than	the	full	Java	Memory	Model
• Happens-before	order

• The	transitive	closure	of	program	order	and	the	synchronizes-
with	order

• Happens-before	consistency
• Determines	the	value	that	a	non-volatile	read	can	see

• Synchronization	order	consistency
• Determines	the	value	that	a	volatile	read	can	see

• Solves	part	of	the	Java	mysterious	problems

3/26/19 21



Program	order	definition

• The	program	order	of	thread	T is	a	total	order	that	
reflects	the	order	in	which	these	actions	would	be	
performed	according	to	intra-thread	semantics	of	T
• If	x and	y are	actions	of	the	same	thread	and	x comes	
before	y in	program	order,	then	hb(x,	y)	(i.e.	x happens-
before	y)

3/26/19 22



Eliminate	ambiguity	in	program	
order	definition
• Given	a	program	in	Java

• Program	order	does	not	mean	that	y	=	6	must	be	
subsequent	to	x	=	5	from	a	wall	clock	perspective.	It	
only	means	that	the	sequence	of	actions	executed	
must	be	consistent with	that	order

3/26/19 23

y	=	6
x	=	5

1
2



What	should	be	consistent	in	
program	order
• Happens-before	consistency

• A	read	r of	a	variable	v is	allowed	to	observe	a	write	w to	v if
• r does	not	happen-before	w (i.e.,	it	is	not	the	case	that	hb(r,	w))	– a	
read	cannot	see	a	write	that	happens-after	it,	and

• There	is	no	intervening	write	w0 to	v	(i.e.,	no	write	w0 to	v such	
that	hb(w,	w0),	hb(w0,	r))	–the	write	w is	not	overwritten	along	a	
happens-before	path.

• Given	a	Java	program

• hb(1,	2)	&	hb(2,	3)	->	hb(1,	3),	so	z sees	6	be	written	to	
y

3/26/19 24

y	=	6
x	=	5
z	=	y

1
2
3



Synchronization	Order	

• A	synchronization	order	is	a	total	order	over	all	of	
the	synchronization	actions	of	an	execution	
• A	write	to	a	volatile	variable	v synchronizes-with all	
subsequent	reads	of	v by	any	thread;
• An	unlock	action	on	monitor	m synchronizes-with all	
subsequent	lock	actions	on	m that	were	performed	by	
any	thread;
• …

• If	an	action	x synchronizes-with a	following	action	y,	
then	we	have	hb(x,	y)

3/26/19 25



What	should	be	consistent	in	
synchronization	order
• Synchronization	order	consistency
• Synchronization	order	is	consistent	with	program	order
• Each	read	r of	a	volatile	variable	v sees	the	last	write	to	v
to	come	before	it	in	the	synchronization	order

3/26/19 26



Happens-before	memory	model	
example

3/26/19 27

x	=	1
ready	=	true

if (ready)
r1	=	x

Thread	1 Thread	2

1
2

3
4

synchronization-with

program	order

Initial	conditions:	x	=	0,	ready	=	false,	ready	is	volatile

Final	results: r1	==	1?

Decision:	Allowed.	The	program	is	correctly	synchronized

Proof:
Program	order:	hb(L1,	L2)	and hb(L3,	L4)
Synchronization	order:	hb(L2,	L3)
Transitive:	hb(L1,	L4)

Recall data-race definition:
Two accesses x and y form a
data race in an execution of a
program if they are from
different threads, they conflict,
and they are not ordered by
happens-before



Correct	double-checked	lock	with	
volatile

3/26/19 28

public class Instance {
private volatile static Instance instance;
public static Instance getInstance() {
if (instance == null) {
synchronized (Instance.class) {
if (instance == null) {

instance = new Instance();
}

}
}
return instance;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13

1. mem = allocate();
2. ctorSingleton(mem);
3. object.instance = mem;

hb(2,	3)	ensures	that	L2’s	write	to	mem	can	be	seen	at	L3



Happens-before	doesn’t	solve	all	
problems

3/26/19 29

r1	=	x
if (r1	!= 0)
y	=	42

r2	=	y
if (r2	!= 0)
x	=	42

Thread	1 Thread	2

Initial	conditions:	x	=	y	=	0

Final	results: r1	==	r2	==	42?

Decision:	Disallowed.	Because	the	values	are	out-of-thin-air.

In	a	future	aggressive	system,	Thread	1	could	speculatively	write	the	value	42	to	y.
How	to	propose	a	methodology	to	disallow	these	behaviors?

1
2
3

4
5
6



Happens-before	doesn’t	solve	all	
problems

3/26/19 30

r1	=	a
r2	=	a
if	(r1	==	r2)
b	=	2

r3	=	b
a	=	r3

Thread	1 Thread	2

Initial	conditions:	a	=	0,	b	=	1

Final	results: r1	==	r2	==	r3	==	2?

Decision:	Allowed.	A	compiler	may	determines	that	r1 and	r2 have	the	same	value	and
eliminate	if r1	==	r2 (L3).	Then,	b	=	2	(L4) can	be	moved	to	an	earlier	position	(L1)

1
2
3
4

5
6

b	=	2
r1	=	a
r2	=	r1
if (true)

r3	=	b
a	=	r3

Thread	1 Thread	2

1
2
3
4

4
5



What’s	the	difference	between	
two	programs
• One	difference	between	the	acceptable	and	
unacceptable	results	is	that	in	latter	program,	the	
write	that	we	perform	(i.e.	b	=	2)	would	also	have	
occurred	if	we	had	carried	on	the	execution	in	a	
sequentially	consistent	way.
• In	the	former	program,	value	42	in	any	sequentially	
consistent	execution	will	not	be	written.

3/26/19 31



Well-behaved	execution

• We	distinguish	two	programs	by	considering	
whether	those	writes	could	occur	in	a	sequentially	
consistent	execution.
• Well-behaved	execution
• A	read	that	must	return	the	value	of	a	write	that	is	
ordered	before	it	by	happens-before.	

3/26/19 32



Disallowed	examples-data	
dependency

3/26/19 33

r1	=	x
a[r1]	=	0
r2	=	a[0]
y	=	r2

r3	=	y
x	=	r3

Thread	1 Thread	2

1
2
3
4

5
6

Initial	conditions:	x	=	y	=	0;	a[0]	=	1,	a[1]	=	2

Final	results: r1	==	r2	==	r3	==	1?

Decision:	Disallowed.	Because	values	are	out-of-thin-air.

Proof:	We	have	hb(L1,	L2),	hb(L2,	L3).	To	let	r2	==	1,	a[0]must	be	0.	Since	initially
a[0]	==	1	and	hb(L2,	L3),	we	have	r1	==	0	at	a[r1]	=	0	(L2).	r1 at	L2 is	the	final	value
Because	hb(L1,	L2),	r1 at	L2	must	see	the	write	to	r1 at	r1	=	x (L1).



Disallowed	examples-control	
dependency

3/26/19 34

z	=	1 r1	=	z
if (r1	== 0)
x	=	1

Thread	1 Thread	2

1 2
3
4

r2	=	x
y	=	r2

Thread	3

r3	=	y
x	=	r3

Thread	4
5
6

7
8

Initial	conditions:	x	=	y	=	z	=	0

Final	results: r1	==	r2	==	r3	==	1?

Decision:	Disallowed.	Because	values	are	out-of-thin-air.

Proof:	Because	we	have	hb(L5,	L6),	to	let	r2	==	1	(so	that	y	=	1),	x	=	1 (L4)	must	be
executed.	If	L4 is	executed,	if (r1	==	0) (L3)	must	be	true.	However,	since	r1 ==	1 and
hb(L2,	L3),	L4 cannot	be	executed.



Disallowed	examples-control	
dependency	

3/26/19 35

r1	=	x
if (r1	== 0)
x	=	1

Thread	1
1
2
3

r2	=	x
y	=	r2

Thread	2

r3	=	y
x	=	r3

Thread	3
4
5

6
7

Initial	conditions:	x	=	y	=	0

Final	results: r1	==	r2	==	r3	==	1?

Decision:	Disallowed.	Because	values	are	out-of-thin-air

Proof:	The	same	reason	as	the	previous	example.



Causality

• Actions	that	are	committed	earlier	may	cause	
actions	that	are	committed	later	to	occur
• The	behavior	of	incorrectly	synchronized	programs	
is	bounded	by	causality
• The	causality	requirement	is	strong	enough	to	
respect	the	safety	and	security	properties	of	Java	
and	weak	enough	to	allow	standard	compiler	and	
hardware	optimizations

3/26/19 36



Justify	a	correct	execution

• Build	up	causality	constraints	to	justify executions
• Ensures	that	the	occurrence	of	a	committed	action	and	
its	value	does	not	depend	on	an	uncommitted	data	race

• Justification	steps
• Starting	with	the	empty	set	as	C0
• Perform	a	sequence	of	steps	where	we	take	actions	from	
the	set	of	actions	A and	add	them	to	a	set	of	committed	
actions	Ci to	get	a	new	set	of	committed	actions	Ci+1
• To	demonstrate	that	this	is	reasonable,	for	each	Ci we	
need	to	demonstrate	an	execution	E containing	Ci that	
meets	certain	conditions

3/26/19 37



Justification	examples-reorder

3/26/19 38

r1	=	x
y	=	1

r2	=	y
x	=	r2

Thread	1 Thread	2

Initial	conditions:	x	=	y	=	0

Final	results: r1	==	r2	==	1?

Decision:	Allowed,	because	of	compiler	transformation.	y	=	1	(L2) is	a	constant	that
does	not	affect	r1	=	x	(L2).

1
2

3
4

y	=	1
r1	=	x

r2	=	y
x	=	r2

Thread	1 Thread	2
1
2

3
4

C1:
y	=	1
r2	=	y	(0)	
x	=	r2	(0)
r1	=	x	(0)

C2:
y	=	1
r2	=	y	(1)	
x	=	r2	(1)
r1	=	x	(0)

C3:
y	=	1
r2	=	y	(1)	
x	=	r2	(1)
r1	=	x	(0)

C4:
y	=	1
r2	=	y	(1)	
x	=	r2	(1)
r1	=	x	(1)



Justification	examples-redundant	
elimination

3/26/19 39

r1	=	a
if (r1	==	1)
b	=	1

r2	=	b
if	(r2	==	1)
a	=	1

if	(r2	==	0)
a	=	1

Thread	1 Thread	2

1
2
3

4
5
6
7
8Initial	conditions:	a	=	b	=	0

Final	results: r1	==	r2	==	1?

Decision:	Allowed.	A	compiler could	determine	that	Thread	2	always	writes	1 to	a and
hoists	the	write	to	the	beginning	of	Thread	2.

C1:
a	=	1
r1	=	a	(0)	
b	=	1	(0)
r2	=	b	(0)

C2:
a	=	1
r1	=	a	(1)	
b	=	1	(0)
r2	=	b	(0)

C3:
y	=	1
r1	=	a	(1)	
b	=	1	(1)
r2	=	b	(0)

C4:
y	=	1
r1	=	a	(1)	
b	=	1	(1)
r2	=	b	(1)

r1	=	a
if (r1	==	1)
b	=	1

a	=	1
r2	=	b

Thread	1 Thread	2

1
2
3

4
5



Justification	examples-inter	
thread	analysis

3/26/19 40

r1	=	x
r2	=	1	+	r1*r1	– r1
y	=	r2

r3	=	y
x	=	r3

Thread	1 Thread	2

1
2
3

4
5

Initial	conditions:	x	=	y	=	0

Final	results: r1	==	r2	==	1?

Decision:	Allowed.	Interthread	analysis	could	determine	that	x and	y are	always	either	
0 or	1,	and	thus	determine	that	r2 is	always	1.	Once	this	determination	is	made,	the	write
of	1 to	y could	be	moved	early	in	Thread	1.

r2	=	1
y	=	r2
r1	=	x

r3	=	y
x	=	r3

Thread	1 Thread	2

1
2
3

4
5

C1:
r2	=	1
y	=	r2	(0)
r3	=	y	(0)
x	=	r3	(0)
r1	=	x	(0)

C2:
r2	=	1
y	=	r2	(1)
r3	=	y	(0)
x	=	r3	(0)
r1	=	x	(0)

C3:
r2	=	1
y	=	r2	(1)
r3	=	y	(1)
x	=	r3	(0)
r1	=	x	(0)

C4:
r2	=	1
y	=	r2	(1)
r3	=	y	(1)
x	=	r3	(1)
r1	=	x	(0)

C5:
r2	=	1
y	=	r2	(1)
r3	=	y	(1)
x	=	r3	(1)
r1	=	x	(1)



Comparison	between	allowed	
examples	and	disallowed	examples

3/26/19 41

r1	=	x
if (r1	== 0)
x	=	1

Thread	1
1
2
3

r2	=	x
y	=	r2

Thread	2

r3	=	y
x	=	r3

Thread	3
4
5

6
7

r1	=	x
if (r1	== 0)
x	=	1

r2	=	x
y	=	r2

Thread	1
1
2
3
4
5

r3	=	y
x	=	r3

Thread	2
6
7

Initial	conditions:	x	=	y	=	0

Final	results: r1	==	r2	==	r3 == 1?

Decision:	Allowed.	Interthread	analysis	could	determine	that	x is	always	0	or	1.	So
we	can	replace	r2	=	x	by	r2	=	1 and	y	=	r2 by	y	=	1.	After	moving	y	=	1 and	r2	=	1 to	an
earlier	position,	we	get	r1	==	r2	==	r3.

y	=	1
r2	=	1
r1	=	x
if (r1	== 0)
x	=	1

Thread	1

r3	=	y
x	=	r3

Thread	2
6
7

1
2
3
4
5



Comparison	between	allowed	
examples	and	disallowed	examples

3/26/19 42

r1	=	x
if (r1	== 0)
x	=	1

Thread	1
1
2
3

r2	=	x
y	=	r2

Thread	2

r3	=	y
x	=	r3

Thread	3
4
5

6
7

Initial	conditions:	a	=	b	=	0

Final	results: r1	==	r2	==	r3 == 2?

Decision:	Allowed.	Although	there	are	some	SC	executions	in	which	r1	!=	r2	(L3),	we	can
hoist	b	=	2 (L4)	to	an	earlier	position	and	there	is	an	SC	execution	such	that	r1	==	r2.
For	the	above	case,	there’s	no	SC	execution	such	that	r1	==	0 (L2)	is	true and
r1	==	r2	==	r3	==	1.	That	is,	if	we	hoist	x	=	1 to	an	earlier	position,	L2	must	be	false.

r1	=	a
r2	=	a
if	(r1	==	r2)
b	=	2

r3	=	b
a	=	r3

Thread	1 Thread	2

1
2
3
4

1
2

1
2
3

1
2



Practical	issues-final	field

• “For	space	reasons,	we	omit	discussion	of	two	
important	issues	in	the	Java	memory	model:	the	
treatment	of	final	fields,	and	finalization	/	garbage	
collection.”
• Java’s	final field	also	allows	programmers	to	
implement	thread-safe	immutable	objects	without	
synchronization

3/26/19 43



Rule	of	thumb

• Set	the	final	fields	for	an	object	in	that	object's	
constructor;	and	do	not	write	a	reference	to	the	
object	being	constructed	in	a	place	where	another	
thread	can	see	it	before	the	object's	constructor	is	
finished.	
• What	happens	in	the	constructor
• If	a	read	occurs	after	the	field	is	set	in	the	constructor,	it	
sees	the	value	the	final	field	is	assigned,	otherwise	it	
sees	the	default	value.	

3/26/19 44



Can	we	change	a	final	field?

• Reflection	introduces	problems
• The	specification	allows	aggressive	optimization	of	
final	fields.	Within	a	thread,	it	is	permissible	to	
reorder	reads	of	a	final	field	with	those	
modifications	of	a	final	field	that	do	not	take	place	
in	the	constructor.	

3/26/19 45



Practical	issues-final	field

3/26/19 46

• new A().f()	could	return	-1,	0,	or	1
class A {
final int x;
A() { x = 1; }
int f() { return d(this,this); }
int d(A a1, A a2) {
int i = a1.x;
g(a1);
int j = a2.x;
return j - i;

}
static void g(A a) {

// uses reflection to change a.x to 2
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

reorder!



Practical	issues-final	field

3/26/19 47

• new A().f()	could	return	-1,	0,	or	1
class A {
final int x;
A() { x = 1; }
int f() { return d(this,this); }
int d(A a1, A a2) {
int i = a1.x;
g(a1);
int j = a2.x;
return j - i;

}
static void g(A a) {

// uses reflection to change a.x to 2
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

return	1



Practical	issues-final	field

3/26/19 48

• new A().f()	could	return	-1,	0,	or	1
class A {
final int x;
A() { x = 1; }
int f() { return d(this,this); }
int d(A a1, A a2) {
g(a1);
int i = a1.x;
int j = a2.x;
return j - i;

}
static void g(A a) {
// uses reflection to change a.x to 2

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

return	0



Practical	issues-final	field

3/26/19 49

• new A().f()	could	return	-1,	0,	or	1
class A {
final int x;
A() { x = 1; }
int f() { return d(this,this); }
int d(A a1, A a2) {
int j = a2.x;
g(a1);
int i = a1.x;
return j - i;

}
static void g(A a) {
// uses reflection to change a.x to 2

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

return	-1



Practical	issue-efficient	singleton	

• The	initialization-on-demand	holder	(design	pattern)	
idiom	is	a	lazy-loaded	singleton.	In	all	versions	of	
Java,	the	idiom	enables	a	safe,	highly	concurrent	lazy	
initialization	with	good	performance.

3/26/19 50

public class SafeInstance {
private SafeInstance() {}
private static class LazyHolder {
static final SafeInstance INSTANCE = new SafeInstance();

}
public static SafeInstance getInstance() {
return LazyHolder.INSTANCE;

}
}

1
2
3
4
5
6
7
8
9



Why	initialization-on-demand	
holder	is	safe?	
• When	the	class	is	initialized?
• A	class	or	interface	type	T	will	be	initialized	
immediately	before	the	first	occurrence	of	any	one	
of	the	following:	
• A	static	field	declared	by	T	is	used	and	the	field	is	not	a	
constant	variable
• A	variable	of	primitive	type	or	type	String,	that	is	final	and	
initialized	with	a	compile-time	constant	expression	is	called	a	
constant	variable.

• …

3/26/19 51



Why	initialization-on-demand	
holder	is	safe?	
• Why	initialization	is	safe?
• For	each	class	or	interface	C,	there	is	a	unique	
initialization	lock	LC.	The	mapping	from	C to	LC is	
left	to	the	discretion	of	the	Java	Virtual	Machine	
implementation.	
• We	can	also	implement	singleton	by	ENUM	in	Java.

3/26/19 52



Conclusion

• Following	happens-before	rules	allows	us	to	write	a	
data-race-free	program	that	is	correctly	
synchronized.
• Java	memory	model	provides	a	clear	definition	of	
well-behaved	executions,	preventing	values	come	
out-of-thin-air	in	the	presence	of	data	race.
• Double-checked	lock	is	thread-safe	for	JVM	later	
than	v1.5.

3/26/19 53



Reference	Books

• Goetz,	Brian,	et	al.	Java	concurrency	in	practice.	
Pearson	Education,	2006.
• Gosling,	James,	et	al.	The	Java	language	
specification.	Pearson	Education,	2014.
• Lea,	Doug.	"The	JSR-133	cookbook	for	compiler	
writers."	(2008).

3/26/19 54



Reference	URLs

• Double-checked	locking	
https://www.ibm.com/developerworks/java/library/j
-dcl/index.html
• Causality	test	cases
http://www.cs.umd.edu/~pugh/java/memoryModel/
unifiedProposal/testcases.html

3/26/19 55


