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Logistics

Instructor: John Mellor-Crummey 
—email: johnmc@rice.edu 
—phone: x5179  
—office: DH 3082 
—office hours: by appointment 

Teaching Assistant: Keren Zhou 
—email: kz21@rice.edu 
—office: DH 2069 
—office hours: by appointment 

Meeting time  
—scheduled T/Th 1:00 - 2:15 

Class Location: DH 1075 
Web site: http://www.cs.rice.edu/~johnmc/comp522
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Multicore Computing

How are modern microprocessors organized and why? 
How do threads share cores for efficient execution? 
How do threads share data? 
What are memory models and why do you need them? 
How does one synchronize data accesses and work? 
How does one write highly concurrent data structures? 
How do parallel programming models work? 
How can a runtime schedule work efficiently on multiple cores? 
How can you automatically detect errors in parallel programs? 
How can you tell if you are using microprocessors efficiently? 
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The Shift to Multicore 
Microprocessors



Advance of Semiconductors: “Moore’s Law”
Gordon Moore, 
Founder of Intel 

• 1965: since the 
integrated circuit was 
invented, the number 
of transistors in these 
circuits roughly 
doubled every year; 
this trend would 
continue for the 
foreseeable future 

• 1975: revised - circuit 
complexity doubles 
every two years

!5

By shigeru23 
CC BY-SA 3.0, 
via Wikimedia 
Commons

Increasing problems with power consumption 
and heat as clock speeds increase



25 Years of Microprocessors

• Performance increased over 1000x 

• Transistor density gains from Moore’s Law have driven 
—increases in transistor speed from higher clock rates 
—energy scaling 
—microarchitecture advances from additional transistors
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Why Multicore Microprocessors?

• Rising transistor count enables more functionality 

• Why not make single cores more sophisticated? 
—let’s take a look at a few microprocessors for some intuition …
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Pentium 4 (Super-Pipelined, Super-Scalar)
Stages 1-2 

— Trace cache next instruction 
pointer 

Stages 3-4 
— Trace cache fetch 

Stage 5 
— Drive (wire delay) 

Stages 6-8 
— Allocate and rename 

Stages 10-12 
— Schedule instructions 

– memory/fast ALU/slow ALU 
& general FP/simple FP

• Stages 13-14 
— Dispatch 

• Stages 15-16 
— Register access 

• Stage 17 
— Execute 

• Stage 18 
— Set flags 

• Stage 19 
— Check branches 

• Stage 20 
— Drive (more wire delay)

5 operations issued per clock 
1 load, 1 store unit 

2 simple/fast, 1 complex/slower integer units 
1 FP exe, 1 FP move unit 

Up to 126 instructions in flight: 48 loads, 24 stores, …
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Opteron Pipeline (Super-Pipelined, Super-Scalar)

Fetch/decode 3 inst/cycle, 3 integer units, 3 address units 
3 FPU/multimedia units, 2 load/stores to D-cache/cycle

C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. 2003. The AMD Opteron Processor for 
Multiprocessor Servers. IEEE Micro 23, 2 (March 2003), 66-76. http://dx.doi.org/10.1109/MM.2003.1196116
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Multicore Microprocessors

• Why not make single cores more sophisticated? 
—limits to instruction-level parallelism available in programs 

– especially for codes with difficult-to-predict branches 

—multiple cores 
– A single-chip multiprocessor, Lance Hammond, Basem Nayfeh, 

Kunle Olukotun. Computer 30(9):79-85, September 1997.

• A new approach  
—use available chip real estate to support thread-level parallelism

—multiple threads per core 
– Simultaneous multithreading: maximizing on-chip parallelism, Dean 

Tullsen, Susan Eggers, and Henry Levy, ISCA, 1995.

• Strategies
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IBM Power4 -  December 2001

From Hot Chips 15, August 2003  POWER5: IBM’s Next Generation POWER Microprocessor, Ron Kalla (IBM)
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IBM Power 5 - August 2003

From Hot Chips 15, August 2003  POWER5: IBM’s Next Generation POWER Microprocessor, Ron Kalla (IBM)
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Intel x86 Development Changes Course …

     May 17, 2004 … Intel, the world's largest chip maker, publicly 
acknowledged that it had hit a ''thermal wall'' on its microprocessor line. 
As a result, the company is changing its product strategy and disbanding 
one of its most advanced design groups. Intel also said that it would 
abandon two advanced chip development projects … 

     Now, Intel is embarked on a course already adopted by some of its major 
rivals: obtaining more computing power by stamping multiple processors 
on a single chip rather than straining to increase the speed of a single 
processor … Intel's decision to change course and embrace a ''dual core'' 
processor structure shows the challenge of overcoming the effects of heat 
generated by the constant on-off movement of tiny switches in modern 
computers … some analysts and former Intel designers said that Intel 
was coming to terms with escalating heat problems so severe they 
threatened to cause its chips to fracture at extreme temperatures… 

New York Times, May 17, 2004
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     August 31, 2004 - Advanced Micro Devices plans to demonstrate its version of a 
new approach to processor design on Tuesday, with a chip that is expected to 
offer faster computing and relatively less power consumption. The chip, which is 
called Opteron and has two processing units … 

    The shift to multiple processing units, or cores, embedded in the same chip has 
recently become a significant technological approach for IBM, Sun Microsystems 
and Intel as well as Advanced Micro, as computer designers hunt for new ways to 
increase processing power … Advanced Micro said on Monday that it would make 
the chips available commercially for servers in mid-2005 and in its 64-bit Athlon 
chips for desktop computers before the end of next year. Intel has not yet set 
dates for its dual-core X86 processors. 

New York Times, August 31, 2004

Dual-core AMD Opteron Announced
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Sun Niagara (Ultrasparc T1) Announced

    November 14, 2005 Sun Microsystems is set to announce the first of a 
new generation of processors for computer servers on Monday that the 
company says offers faster performance with far less energy use … The 
chip, code-named Niagara while in development, is designed for a 
specific niche of the server market: high-volume Web service 
operations, ... The UltraSparc T1, following a trend in the semiconductor 
industry, adds new features that conserve energy significantly … The 
UltraSparc T1 has eight processing cores, each able to execute four 
instruction sequences, called threads … 

New York Times, November 15, 2005
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Recent Multicore Designs



Intel Xeon Platinum 8180 Processor (2017)

• 2.5GHz (Turbo 3.8GHz) 

• 28 cores 
—  2 way SMT 
—32KB L1I cache 
—32KB L1D cache 
—1MB L2 cache 

• 56 threads per chip 

• 38.5MB L3 cache 

• 119.21 GB/s BW
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Latency-optimized cores



Oracle SPARC M7 (2015)

• 10B transistors 

• 4.13GHz  

• 32 cores 
—8 threads per core  
—16 KB L1 I-cache  
—16 KB of L1 D-cache 

• 256 KB L2 I-cache/4-cores 

• 256 KB L2 writeback data 
cache per 2-cores  
—total L2 BW > 8 TB/sec 

• 64 MB L3 cache
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http://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/

dual-issue, 2-way SMT

Throughput-optimized cores



Intel Knight’s Landing 7290F (2016)

• > 8 billion transistors 

• 1.3GHz (1.5GHz Turbo) 

• 72 cores 
— 4-way SMT per core 
— 288 threads per chip 

• Up to 384GB of 
DDR4-2400 main memory 
—115GB/s max mem BW 

• Up to 16GB of MCDRAM 
on-package (3D stacked) 
—400GB/s max mem BW
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http://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1_50-GHz-72-core

2nd Generation Xeon Phi 

Throughput-optimized cores



IBM Power9 (2017)
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Brian Thompto, Power9: Processor for the 
Cognitive Era, Hot Chips 28, August 2016. (link)

• 8B transistors 
• 24-core processor  

—16 execution units 
—4-way SMT per core 
—96 threads per chip 
—512KB L2 per core 
—12-stage pipeline 

• 120MB on-chip shared L3 
• 7TB/s on-chip BW 
• 120GB/s memory BW 
• OpenCAPI 

—coherent accelerator 
processor interface 

Latency-optimized cores
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Using Multicore Processors

The processor core is only part of the picture … 

Data sharing 
—cache hierarchy designs and implications 

– shared cache vs. private cache: costs vs. benefits? 

Synchronization 
—what is possible? 
—what hardware primitives exist? 
—how should they be used? 
—what are the implications for programming models? 
—what alternative hardware primitives should be explored?
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Isn’t Multicore just More of the Same?

No! The emergence of multicore processors  
marks a watershed for software  

Processor clock frequency increases can no longer compensate for 
increasing software bloat 

Application speed won’t track processor enhancements unless 
software is highly concurrent
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What about the Software?

With concurrency essential for performance … 
Languages and programming systems must embrace concurrency 
to survive 

—semantics: what operations are atomic? what ordering of operations is 
guaranteed? when are memory effects of operations visible? 

—expressiveness: embarrassingly parallel, data-parallel, task parallel  
—simplicity: make parallelism easy to use 
—efficient 

Challenge: concurrent programming is much more difficult! 
—software development is much harder 

– lack of standardized & effective development tools, programming models, 
and environments  

—algorithm development is harder 
– complexity of specifying and coordinating concurrent activities 

—concurrent data structures are extremely difficult to design 
—managing memory layout and data locality is critical for performance
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What Makes Concurrent Programming So Hard?

The problem of shared state  

Application threads generally need to share state 

Data race 
—two threads access a shared variable 
—at least one access is a write 
—no ordering guaranteed by synchronization 

Data races can yield unpredictable or corrupted values 

Race conditions are easy to write and hard to pinpoint  

Data races must be avoided for correct execution!
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Avoiding Data Races

Conventional approach: mutual exclusion via locks 
—each thread must acquire a lock for shared data before using it 

Problems with locks 
—not robust: if lock holder delayed, progress stalls 
—relationship between lock and data is implicit 

– preserved only through programmer discipline 
– association between lock and data is a global property 

 convention must be observed by all code accessing the data 
—hard to use 

– coarse-grain locks shackle parallelism 
– fine-grain locks admit possibility of deadlock 
– lack of composability when layering software 

 calling into code you don’t control is a recipe for deadlock 
 locks must be acquired in a fixed global order to avoid deadlock 

 extensible frameworks often call virtual functions while holding lock
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Java’s Synchronized Methods

Works as long as  
—methods properly annotated with synchronized declarations 
—data accessed only by methods 

Problems 
—calling virtual function while holding a lock admits deadlock 
—locking for synchronized methods adds overhead even when no 

concurrency 
—doesn’t guarantee atomicity across multiple method calls 

– example: acount1.debit(amount); account2.credit(amount); 
 object locking preserves atomicity of method, but not 

sequence 
 additional explicit synchronization required
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Alternatives to Locks

Lock free programming of concurrent data structures 
—requires deep knowledge of processor’s memory model 
—difficult and fragile 
—implementations of new data structures are publishable results! 

– e.g. Maged M. Michael, Michael L. Scott: Simple, Fast, and 
Practical Non-Blocking and Blocking Concurrent Queue 
Algorithms. PODC, 1996, 267-275. 
 doubly-ended queue, two-lock and non-blocking versions 

Transactional memory 
—operations that appear to execute indivisibly 

– concurrent operations see state before or after operation 
—area of active research 
—recent hardware implementations: IBM Power8, Intel Haswell
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Course Outline
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Objectives

Immersion in research related to multicore processors   
—issues shaping the design of multicore processors 
—difficulties of programming multicore systems 
—emerging programming models for multicore 
—emerging technologies to simplify multicore programming 

– synchronization, debugging, concurrent data structures  

Hone your ability to analyze research papers 
—paper evaluations 
—class discussions 

Develop skill preparing and delivering presentations 

Explore a topic of interest in greater depth 
—final project or term paper
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Topics
Microprocessors 

—explore the design space, threading, flavors of multicore designs 
Memory hierarchy 

—cache organizations and their implications for performance 
Memory models 

—hardware memory models, Java and C++ memory models 
Programming models 

— languages (Cilk/Cilk++/CilkPlus), directives (OpenMP), libraries (TBB)  
Performance analysis of multithreaded code 
Scheduling 

—strategies for distributing parallel work among processors 
Debugging 

— techniques for uncovering and pinpointing data races in parallel code 
Synchronization 

— theoretical underpinnings, a range of approaches h/w and s/w approaches 
Concurrent data structures 
Transactional memory 



Award Winning Papers ...

Simultaneous multithreading: maximizing on-chip parallelism, Dean Tullsen, Susan 
Eggers, and Henry Levy, ISCA, 1995. 25 Years of ISCA: Retrospectives and 
Reprints, 1998.  

The Implementation of the Cilk-5 Multithreaded Language, Matteo Frigo, Charles E. 
Leiserson, and Keith H. Randall. 1998 ACM SIGPLAN Conference on Programming 
Language Design and Implementation (PLDI), Montreal, Canada, June 1998. PLDI 
most influential paper award, 2008. 

Wait-free synchronization, Maurice Herlihy, ACM Trans. Program. Lang. Syst. 13, 1 
(Jan. 1991), 124-149. 2003 Edsger Dijkstra Prize. 

Transactional memory: architectural support for lock-free synchronization 
synchronization, Maurice Herlihy and J. Elliot Moss, ISCA 1993, 289-300. ISCA most 
influential paper award, 2008. 

Memory model papers by Sarita Adve,  2008 Maurice Wilkes Award. 

Algorithms for scalable synchronization on shared-memory multiprocessors, John 
Mellor-Crummey and Michael L. Scott, ACM Trans. Comput. Syst. 9, 1 (Feb. 1991), 
21-65. 2006 Edsger Dijkstra Prize
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Recommended Prerequisites

Understanding of computer systems (COMP 320) 

Understanding of machine architecture (COMP 425) 

See me if you have concerns!
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Course Format
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Paper Evaluations - 20%
Students must evaluate a paper for each class session. A paper evaluation 
consists of 

—your name 
—the paper name 
—paper summary (~5 sentences) 
—most important strengths (no more than 3; 1 sentence each) 
—most important weaknesses (no more than 3; 1 sentence each) 
—one problem or issue left open (no more than 3 sentences) 

Strengths and weaknesses should be technical issues. 

Evaluations will be a completion grade. Unsatisfactory evaluations will not 
receive credit. 

Submit evaluations of papers to the instructor before noon on the day before 
the papers will be discussed.  

Late or incomplete evaluations will receive no credit.
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Presentations - 20%

Analyze one or more papers + supporting work 

Prepare two or three (depends upon class size) presentations 
—the motivation for the work 
—the key techniques, insights, and/or results 
—a critical evaluation of the work 
—open issues 

Lead class discussion 

Presenter(s) advised, but not required, to show presentations to the 
instructor in advance 

Provide the instructor with electronic version of the presentation suitable for 
posting on the class WWW page
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Class Participation - 20%

Research papers  
—not always well written 
—sometimes make misleading claims 
—occasionally contain errors 

Students are expected to contribute to the discussion of the papers in class 
—subject the papers to critical analysis 
—ask questions 
—offer observations
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Presentation Evaluations - 10%

Submit brief written evaluations presentations by others  

Why?  
—if writing reviews of presentations, you will pay closer attention 
—it will encourage you to think about presentation issues 
—if you know that your presentation is being evaluated by your 

classmates, you may try harder to make it engaging 
A presentation evaluation  

—vision: how well did the presenters explain why the area matters? 
—style: mumbling, fail to make eye contact, too quickly or slowly? 
—exposition: were the slides too busy, too ugly, or just right? 
—question and answer: how well did the presenters seem to know 

the material? were they honest about admitting when they didn't 
know something? 

—comments: any additional information that you would like to add
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Final Project - 30%

Explore a topic of interest in greater depth  

Requirement: one of the following 
—a term paper (must be done individually) 

– may focus on the same topic as one of your presentations 
– you should study different papers  

—a final project (which may be a group), written project report 
– group projects will submit a single writeup  
– writeup will include a description of each member’s contribution to 

the project
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