
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

COMP 522 Multicore Computing:
An Introduction

COMP 522 Lecture 1 8 January 2019

!2

Logistics

Instructor: John Mellor-Crummey
—email: johnmc@rice.edu
—phone: x5179
—office: DH 3082
—office hours: by appointment

Teaching Assistant: Keren Zhou
—email: kz21@rice.edu
—office: DH 2069
—office hours: by appointment

Meeting time
—scheduled T/Th 1:00 - 2:15

Class Location: DH 1075
Web site: http://www.cs.rice.edu/~johnmc/comp522

!3

Multicore Computing

How are modern microprocessors organized and why?
How do threads share cores for efficient execution?
How do threads share data?
What are memory models and why do you need them?
How does one synchronize data accesses and work?
How does one write highly concurrent data structures?
How do parallel programming models work?
How can a runtime schedule work efficiently on multiple cores?
How can you automatically detect errors in parallel programs?
How can you tell if you are using microprocessors efficiently?

!4

The Shift to Multicore
Microprocessors

Advance of Semiconductors: “Moore’s Law”
Gordon Moore,
Founder of Intel

• 1965: since the
integrated circuit was
invented, the number
of transistors in these
circuits roughly
doubled every year;
this trend would
continue for the
foreseeable future

• 1975: revised - circuit
complexity doubles
every two years

!5

By shigeru23
CC BY-SA 3.0,
via Wikimedia
Commons

Increasing problems with power consumption
and heat as clock speeds increase

25 Years of Microprocessors

• Performance increased over 1000x

• Transistor density gains from Moore’s Law have driven
—increases in transistor speed from higher clock rates
—energy scaling
—microarchitecture advances from additional transistors

!6

!7

Why Multicore Microprocessors?

• Rising transistor count enables more functionality

• Why not make single cores more sophisticated?
—let’s take a look at a few microprocessors for some intuition …

!8

Pentium 4 (Super-Pipelined, Super-Scalar)
Stages 1-2

— Trace cache next instruction
pointer

Stages 3-4
— Trace cache fetch

Stage 5
— Drive (wire delay)

Stages 6-8
— Allocate and rename

Stages 10-12
— Schedule instructions

– memory/fast ALU/slow ALU
& general FP/simple FP

• Stages 13-14
— Dispatch

• Stages 15-16
— Register access

• Stage 17
— Execute

• Stage 18
— Set flags

• Stage 19
— Check branches

• Stage 20
— Drive (more wire delay)

5 operations issued per clock
1 load, 1 store unit

2 simple/fast, 1 complex/slower integer units
1 FP exe, 1 FP move unit

Up to 126 instructions in flight: 48 loads, 24 stores, …

!9

Opteron Pipeline (Super-Pipelined, Super-Scalar)

Fetch/decode 3 inst/cycle, 3 integer units, 3 address units
3 FPU/multimedia units, 2 load/stores to D-cache/cycle

C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. 2003. The AMD Opteron Processor for
Multiprocessor Servers. IEEE Micro 23, 2 (March 2003), 66-76. http://dx.doi.org/10.1109/MM.2003.1196116

!10

Multicore Microprocessors

• Why not make single cores more sophisticated?
—limits to instruction-level parallelism available in programs

– especially for codes with difficult-to-predict branches

—multiple cores
– A single-chip multiprocessor, Lance Hammond, Basem Nayfeh,

Kunle Olukotun. Computer 30(9):79-85, September 1997.

• A new approach
—use available chip real estate to support thread-level parallelism

—multiple threads per core
– Simultaneous multithreading: maximizing on-chip parallelism, Dean

Tullsen, Susan Eggers, and Henry Levy, ISCA, 1995.

• Strategies

!11

IBM Power4 - December 2001

From Hot Chips 15, August 2003 POWER5: IBM’s Next Generation POWER Microprocessor, Ron Kalla (IBM)

!12

IBM Power 5 - August 2003

From Hot Chips 15, August 2003 POWER5: IBM’s Next Generation POWER Microprocessor, Ron Kalla (IBM)

!13

Intel x86 Development Changes Course …

 May 17, 2004 … Intel, the world's largest chip maker, publicly
acknowledged that it had hit a ''thermal wall'' on its microprocessor line.
As a result, the company is changing its product strategy and disbanding
one of its most advanced design groups. Intel also said that it would
abandon two advanced chip development projects …

 Now, Intel is embarked on a course already adopted by some of its major
rivals: obtaining more computing power by stamping multiple processors
on a single chip rather than straining to increase the speed of a single
processor … Intel's decision to change course and embrace a ''dual core''
processor structure shows the challenge of overcoming the effects of heat
generated by the constant on-off movement of tiny switches in modern
computers … some analysts and former Intel designers said that Intel
was coming to terms with escalating heat problems so severe they
threatened to cause its chips to fracture at extreme temperatures…

New York Times, May 17, 2004

!14

 August 31, 2004 - Advanced Micro Devices plans to demonstrate its version of a
new approach to processor design on Tuesday, with a chip that is expected to
offer faster computing and relatively less power consumption. The chip, which is
called Opteron and has two processing units …

 The shift to multiple processing units, or cores, embedded in the same chip has
recently become a significant technological approach for IBM, Sun Microsystems
and Intel as well as Advanced Micro, as computer designers hunt for new ways to
increase processing power … Advanced Micro said on Monday that it would make
the chips available commercially for servers in mid-2005 and in its 64-bit Athlon
chips for desktop computers before the end of next year. Intel has not yet set
dates for its dual-core X86 processors.

New York Times, August 31, 2004

Dual-core AMD Opteron Announced

!15

Sun Niagara (Ultrasparc T1) Announced

 November 14, 2005 Sun Microsystems is set to announce the first of a
new generation of processors for computer servers on Monday that the
company says offers faster performance with far less energy use … The
chip, code-named Niagara while in development, is designed for a
specific niche of the server market: high-volume Web service
operations, ... The UltraSparc T1, following a trend in the semiconductor
industry, adds new features that conserve energy significantly … The
UltraSparc T1 has eight processing cores, each able to execute four
instruction sequences, called threads …

New York Times, November 15, 2005

!16

Recent Multicore Designs

Intel Xeon Platinum 8180 Processor (2017)

• 2.5GHz (Turbo 3.8GHz)

• 28 cores
— 2 way SMT
—32KB L1I cache
—32KB L1D cache
—1MB L2 cache

• 56 threads per chip

• 38.5MB L3 cache

• 119.21 GB/s BW

!17

Latency-optimized cores

Oracle SPARC M7 (2015)

• 10B transistors

• 4.13GHz

• 32 cores
—8 threads per core
—16 KB L1 I-cache
—16 KB of L1 D-cache

• 256 KB L2 I-cache/4-cores

• 256 KB L2 writeback data
cache per 2-cores
—total L2 BW > 8 TB/sec

• 64 MB L3 cache

!18

http://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/

dual-issue, 2-way SMT

Throughput-optimized cores

Intel Knight’s Landing 7290F (2016)

• > 8 billion transistors

• 1.3GHz (1.5GHz Turbo)

• 72 cores
— 4-way SMT per core
— 288 threads per chip

• Up to 384GB of
DDR4-2400 main memory
—115GB/s max mem BW

• Up to 16GB of MCDRAM
on-package (3D stacked)
—400GB/s max mem BW

!19

http://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1_50-GHz-72-core

2nd Generation Xeon Phi

Throughput-optimized cores

IBM Power9 (2017)

!20

Brian Thompto, Power9: Processor for the
Cognitive Era, Hot Chips 28, August 2016. (link)

• 8B transistors
• 24-core processor

—16 execution units
—4-way SMT per core
—96 threads per chip
—512KB L2 per core
—12-stage pipeline

• 120MB on-chip shared L3
• 7TB/s on-chip BW
• 120GB/s memory BW
• OpenCAPI

—coherent accelerator
processor interface

Latency-optimized cores

!21

Using Multicore Processors

The processor core is only part of the picture …

Data sharing
—cache hierarchy designs and implications

– shared cache vs. private cache: costs vs. benefits?

Synchronization
—what is possible?
—what hardware primitives exist?
—how should they be used?
—what are the implications for programming models?
—what alternative hardware primitives should be explored?

!22

Isn’t Multicore just More of the Same?

No! The emergence of multicore processors
marks a watershed for software

Processor clock frequency increases can no longer compensate for
increasing software bloat

Application speed won’t track processor enhancements unless
software is highly concurrent

!23

What about the Software?

With concurrency essential for performance …
Languages and programming systems must embrace concurrency
to survive

—semantics: what operations are atomic? what ordering of operations is
guaranteed? when are memory effects of operations visible?

—expressiveness: embarrassingly parallel, data-parallel, task parallel
—simplicity: make parallelism easy to use
—efficient

Challenge: concurrent programming is much more difficult!
—software development is much harder

– lack of standardized & effective development tools, programming models,
and environments

—algorithm development is harder
– complexity of specifying and coordinating concurrent activities

—concurrent data structures are extremely difficult to design
—managing memory layout and data locality is critical for performance

!24

What Makes Concurrent Programming So Hard?

The problem of shared state

Application threads generally need to share state

Data race
—two threads access a shared variable
—at least one access is a write
—no ordering guaranteed by synchronization

Data races can yield unpredictable or corrupted values

Race conditions are easy to write and hard to pinpoint

Data races must be avoided for correct execution!

!25

Avoiding Data Races

Conventional approach: mutual exclusion via locks
—each thread must acquire a lock for shared data before using it

Problems with locks
—not robust: if lock holder delayed, progress stalls
—relationship between lock and data is implicit

– preserved only through programmer discipline
– association between lock and data is a global property

 convention must be observed by all code accessing the data
—hard to use

– coarse-grain locks shackle parallelism
– fine-grain locks admit possibility of deadlock
– lack of composability when layering software

 calling into code you don’t control is a recipe for deadlock
 locks must be acquired in a fixed global order to avoid deadlock

 extensible frameworks often call virtual functions while holding lock

!26

Java’s Synchronized Methods

Works as long as
—methods properly annotated with synchronized declarations
—data accessed only by methods

Problems
—calling virtual function while holding a lock admits deadlock
—locking for synchronized methods adds overhead even when no

concurrency
—doesn’t guarantee atomicity across multiple method calls

– example: acount1.debit(amount); account2.credit(amount);
 object locking preserves atomicity of method, but not

sequence
 additional explicit synchronization required

!27

Alternatives to Locks

Lock free programming of concurrent data structures
—requires deep knowledge of processor’s memory model
—difficult and fragile
—implementations of new data structures are publishable results!

– e.g. Maged M. Michael, Michael L. Scott: Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent Queue
Algorithms. PODC, 1996, 267-275.
 doubly-ended queue, two-lock and non-blocking versions

Transactional memory
—operations that appear to execute indivisibly

– concurrent operations see state before or after operation
—area of active research
—recent hardware implementations: IBM Power8, Intel Haswell

!28

Course Outline

!29

Objectives

Immersion in research related to multicore processors
—issues shaping the design of multicore processors
—difficulties of programming multicore systems
—emerging programming models for multicore
—emerging technologies to simplify multicore programming

– synchronization, debugging, concurrent data structures

Hone your ability to analyze research papers
—paper evaluations
—class discussions

Develop skill preparing and delivering presentations

Explore a topic of interest in greater depth
—final project or term paper

!30

Topics
Microprocessors

—explore the design space, threading, flavors of multicore designs
Memory hierarchy

—cache organizations and their implications for performance
Memory models

—hardware memory models, Java and C++ memory models
Programming models

— languages (Cilk/Cilk++/CilkPlus), directives (OpenMP), libraries (TBB)
Performance analysis of multithreaded code
Scheduling

—strategies for distributing parallel work among processors
Debugging

— techniques for uncovering and pinpointing data races in parallel code
Synchronization

— theoretical underpinnings, a range of approaches h/w and s/w approaches
Concurrent data structures
Transactional memory

Award Winning Papers ...

Simultaneous multithreading: maximizing on-chip parallelism, Dean Tullsen, Susan
Eggers, and Henry Levy, ISCA, 1995. 25 Years of ISCA: Retrospectives and
Reprints, 1998.

The Implementation of the Cilk-5 Multithreaded Language, Matteo Frigo, Charles E.
Leiserson, and Keith H. Randall. 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Montreal, Canada, June 1998. PLDI
most influential paper award, 2008.

Wait-free synchronization, Maurice Herlihy, ACM Trans. Program. Lang. Syst. 13, 1
(Jan. 1991), 124-149. 2003 Edsger Dijkstra Prize.

Transactional memory: architectural support for lock-free synchronization
synchronization, Maurice Herlihy and J. Elliot Moss, ISCA 1993, 289-300. ISCA most
influential paper award, 2008.

Memory model papers by Sarita Adve, 2008 Maurice Wilkes Award.

Algorithms for scalable synchronization on shared-memory multiprocessors, John
Mellor-Crummey and Michael L. Scott, ACM Trans. Comput. Syst. 9, 1 (Feb. 1991),
21-65. 2006 Edsger Dijkstra Prize

!31

!32

Recommended Prerequisites

Understanding of computer systems (COMP 320)

Understanding of machine architecture (COMP 425)

See me if you have concerns!

!33

Course Format

!34

Paper Evaluations - 20%
Students must evaluate a paper for each class session. A paper evaluation
consists of

—your name
—the paper name
—paper summary (~5 sentences)
—most important strengths (no more than 3; 1 sentence each)
—most important weaknesses (no more than 3; 1 sentence each)
—one problem or issue left open (no more than 3 sentences)

Strengths and weaknesses should be technical issues.

Evaluations will be a completion grade. Unsatisfactory evaluations will not
receive credit.

Submit evaluations of papers to the instructor before noon on the day before
the papers will be discussed.

Late or incomplete evaluations will receive no credit.

!35

Presentations - 20%

Analyze one or more papers + supporting work

Prepare two or three (depends upon class size) presentations
—the motivation for the work
—the key techniques, insights, and/or results
—a critical evaluation of the work
—open issues

Lead class discussion

Presenter(s) advised, but not required, to show presentations to the
instructor in advance

Provide the instructor with electronic version of the presentation suitable for
posting on the class WWW page

!36

Class Participation - 20%

Research papers
—not always well written
—sometimes make misleading claims
—occasionally contain errors

Students are expected to contribute to the discussion of the papers in class
—subject the papers to critical analysis
—ask questions
—offer observations

!37

Presentation Evaluations - 10%

Submit brief written evaluations presentations by others

Why?
—if writing reviews of presentations, you will pay closer attention
—it will encourage you to think about presentation issues
—if you know that your presentation is being evaluated by your

classmates, you may try harder to make it engaging
A presentation evaluation

—vision: how well did the presenters explain why the area matters?
—style: mumbling, fail to make eye contact, too quickly or slowly?
—exposition: were the slides too busy, too ugly, or just right?
—question and answer: how well did the presenters seem to know

the material? were they honest about admitting when they didn't
know something?

—comments: any additional information that you would like to add

!38

Final Project - 30%

Explore a topic of interest in greater depth

Requirement: one of the following
—a term paper (must be done individually)

– may focus on the same topic as one of your presentations
– you should study different papers

—a final project (which may be a group), written project report
– group projects will submit a single writeup
– writeup will include a description of each member’s contribution to

the project

!39

References

John Markoff. Advanced Micro Plans to Show New Chip Ahead of Intel.
Technology, New York Times, August 31, 2004.

John Markoff. Intel's Big Shift After Hitting Technical Wall. Technology, New
York Times, May 17, 2004.

Laurie J. Flynn. Sun Microsystems Will Offer New Generation of Processors,
New York Times, November 14, 2005.

Ron Kalla. POWER5: IBM’s Next Generation POWER Microprocessor, Hot
Chips 15, August 2003.

Herb Sutter and James Larus. Software and the Concurrency Revolution,
ACM Queue Special Issue on Multiprocessors, 3(7), September, 2005.

Maurice Herlihy. The Transactional Manifesto. Keynote address at PLDI
2005.

