
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Simultaneous Multithreading
and the  

Case for Chip Multiprocessing

COMP 522 Lecture 2 10 January 2019

!2

Microprocessor Architecture (Mid 90’s)

• Superscalar (SS) designs were the state of the art
—multiple instruction issue
—dynamic scheduling: h/w tracks instruction dependencies
—speculative execution: looks past predicted branches
—non-blocking caches: multiple outstanding memory accesses

• Transistors shrinking, count per chip doubling every 24 months
—more transistors supports more logic
—smaller transistors enable higher clock frequencies

• Apparent path to higher performance?
—more functional units
—wider instruction issue
—support for more speculation

!3

Impediments to Higher Performance

Claim: ⇑ issue width of SS will provide diminishing returns

Factors in 1996

• Fundamental circuit limitations

• Limited amount of instruction-level parallelism
—“one in every five instructions is a branch”

Hennessy and Patterson, Computer Architecture, 1996

• Long latency memory operations

!4

Superscalar Designs (e.g. R10K, PA-8K)

• 3 phases
—instruction fetch and decode
—issue and retirement
—execution

• Circuit-level performance limiters?
—wider issue widths increase need for  

deeper instruction issue Q’s for sufficient ||-ism
– claims:

 quadratic increase in size of issue Q
 limiting factor: long wires for broadcasting tags  

of issued instructions limit cycle time

—execution phase: quadratic ⇑ register file, quadratic ⇑ bypass logic
– Farkas et al ‘96: 8-issue perf only 20% > 4-issue (reg file complexity limits perf)

PA-8K:
56-ins Q

20% die area

The case for a single-chip multiprocessor, Olukotun et al., ASPLOS-VII, 1996.

Circuit technology impact
- Delays ⇑ as issue queues ⇑ and multi-port register files ⇑
- Increasing delays limit performance returns from wider issue

!5

Issue Waste

Instruction-level Parallelism Concerns

• Contributing factors
—instruction dependencies
—long-latency operations within a thread

 How do they contribute to waste?

Simultaneous multithreading: maximizing
on-chip parallelism, Tullsen et. al. ISCA, 1995.

!6

Sources of Wasted Issue Slots and Remedies

• TLB miss
—larger TLB; h/w instruction prefetching; h/w or s/w data prefetch

• I cache miss
—larger icache, more icache associativity; h/w prefetch

• D cache miss
—larger, more associativity, prefetching, more dynamic execution

• Control hazard
—speculative execution; aggressive if-conversion

• Branch misprediction
—better prediction logic; lower mispredict penalty

• Load delays (L1 hits)
—shorten load latency; better scheduling

• Instruction dependences
—better instruction scheduling

• Memory conflict (multiple access to same location in a cycle)
—improved instruction scheduling

!7

How Much IPC is There?

• Approach: study applications and evaluate their characteristics
—assess quantity and character of parallelism present

• Are there any pitfalls to this approach?

• Is there any better approach?

Intel’s Recognition, Mining, Synthesis Research Initiative

Compute-Intensive, Highly Parallel Applications and Uses
Intel Technology Journal, 9(2), May 19, 2005

DOI: 10.1535/itj.0902
http://www.intel.com/technology/itj/2005/volume09issue02/

graphics, computer vision, data mining, large-scale optimization

—what kinds of applications will be important for next-generation
architectures?
– speech recognition, e.g., Apple’s Siri, Microsoft Cortana

!8

Simulations of 8-issue Superscalar
Simultaneous multithreading: maximizing

on-chip parallelism, Tullsen et. al. ISCA, 1995.

Applications: most of SPEC92

• On average < 1.5 IPC (19%)

• Dominant waste differs by application

• Short FP dependences: 37%

Summary:
Highly underutilized

!9

Analysis of 8-issue Simulations

• No dominant cause of wasted cycles, but 61% vertical waste

• No “silver bullet” solution
—no single latency-tolerance technique likely to help dramatically

• Even if memory latencies eliminated, utilization < 40%

• Tullesen et. al. claim
—“instruction scheduling targets several important segments of

the wasted issue bandwidth, but we expect that our compiler has
already achieved most of the available gains in that regard”

 (using Multiflow trace-scheduling compiler)

• If specific latency hiding mechanisms limited, then need
general latency hiding solution to increase parallelism

!10

What Should be Next?

• If not ⇑ superscalar issue width, then what?

• Alternatives
—single chip multiprocessor
—simultaneous multithreaded processor

• How should we decide?

• Best approach depends upon application characteristics

!11

The Case for a Single-chip
Multiprocessor

!12

The Case for a Single Chip Multiprocessor

Two motivations

• “Technology push”
—delays ⇑ as issue queues ⇑ and multi-port register files grow
—increasing delays limit performance returns from wider issue

• “Application pull”
—limited IPC is a problem

!13

Comparing Alternative Designs

• 6-issue superscalar architecture

• 4 x 2-issue superscalar multiprocessor architecture

6-issue design scaled from 4-issue MIPS R10000;
2-issue design based on Alpha 21064

!14

6-issue superscalar 4 x 2-issue CMP

Floorplans: 6-issue SS vs. 4 x 2 CMP

—simpler issue logic
—much simpler renaming logic

 4x2 CMP differences
—1/4 size branch prediction buffer
—more execution units

4 x 2 CMP differences

30% area

Extrapolate sizes based on a 4-issue MIPS R10000 processor

!15

Integer Benchmarks

• eqntott: translates logic equations into truth tables
—manually parallelized bit vector comparison routine (90% time)

• compress: compresses and uncompresses files in memory
—unmodified on both SS and SMT architectures

• m88ksim: simulates Motorola 88000 CPU
—manually parallelized into 3 threads using SUIF compiler

– threads simulate different instructions in different phases
 parallelization analogous to the h/w pipelining it simulates

• MPSim: simulates a bus-based multiprocessor
—manually assign parts of model hierarchy to different threads
—4 threads: one for each simulated CPU

The case for a single-chip multiprocessor,
Olukotun et al., ASPLOS-VII, 1996.

!16

FP and Multiprogramming Benchmarks

Floating point applications (all parallelized with SUIF)

• applu: solves parabolic/eliptic PDEs

• apsi: computes temp, wind, velocity, and distrib. of pollutants

• swim: shallow water model with 1k x 1k grid

• tomcatv: generates mesh using Thompson solver

Multiprogramming application

• pmake: performs parallel make of gnuchess (C compiler)
—same application simulated on both architectures
—OS exploits extra PEs in MP architecture to run parallel compiles

The case for a single-chip multiprocessor,
Olukotun et al., ASPLOS-VII, 1996.

!17

IPC Breakdown of Superscalar PEs
2-issue

6-issue

• 2-issue
— much of IPC loss due to dcache stalls

• 6-issue
— limited ILP increases pipeline stalls
— fewer icache stalls with larger icache
— FP appl have significant ILP, but dcache

stalls consume > 50% IPC

The case for a single-chip multiprocessor,
Olukotun et al., ASPLOS-VII, 1996.

• 6-issue vs. 2-issue
— performance increases 1.6x tomcatv
— performance increases 2.4x swim

!18

Performance: 4 x 2 CMP vs. 6-issue SS

• Codes with coarse-grain thread-level parallelism
and multiprogramming workloads

—CMP performs 50-100% better than wide superscalar
—SS less able to dynamically extract parallelism from

128-wide instruction window

• Non-parallelizable codes
—wide superscalar architecture

performs up to 30% better

• Codes with fine-grain thread-level
parallelism, high communication
—wide superscalar architecture is at

most 10% better w/ same clock
frequency

—expect that simpler CPUs in CMP
would support higher clock rates
eliminating this advantage

!19

Simultaneous
Multithreading:

Maximizing On-chip
Parallelism

!20

High-level View of Threading Alternatives

From Hot Chips 15, August 2003
POWER5: IBM’s Next Generation POWER Microprocessor, Ron Kalla (IBM)

!21

Simultaneous Multithreading

Permit several independent threads  
to issue to multiple functional units each cycle

• Objective: increase processor utilization despite …
—long memory latencies
—limited available parallelism per thread

• Design parameters
—number of threads
—number of functional units
—issue width per thread
—binding between thread and units

– static
– completely dynamic

• Advantages: combines …
—multiple instruction issue from superscalar architectures
—latency hiding ability of multi-threaded architectures

!22

Goals of SMT Simulations

Evaluate alternatives

• Wide superscalars

• Traditional multi-threaded processors

• Small-scale multiple issue multiprocessors

!23

Alternatives Studied

• Baseline
—fine-grain multi-threading (not SMT; like Tera MTA, Sun Niagara)

– only one thread issues instructions each cycle
– can use entire issue width, but admits horizontal waste
– attacks vertical waste by

 hiding memory latency
 hiding functional unit latencies

• SMT
—SM: full simultaneous issue

– 8 threads compete for each issue slot each cycle
—SM: single issue, SM: dual issue, SM: four issue

– limit # instructions each thread can issue in a cycle
—SM: limited connection

– connect each h/w context to 1 of each type functional unit
– each unit can only receive instructions from its attached threads
– key points

 partitioning of functional units < dynamic than other models
 functional units still shared among threads (for high utilization)

!24

Instruction Scheduling

• Limited support for dynamic execution
—8-instruction per thread issue window

– issues instructions out of order to functional units
—dependence-free instructions are issued in-order to scheduling

window by each thread

• Use Multiflow trace compiler for good static scheduling
—trace scheduling

!25

SMT Performance: 3 Design Points

• Segments of each bar show IPC contribution by each thread
• Highest priority thread at the bottom
• What do the graphs show?
• Claim: fine-grain multithreading only beneficial for 2-5 threads

Figure credits: Simultaneous multithreading: maximizing
on-chip parallelism, Tullsen et. al. ISCA, 1995.

slowdown due to contention for other system resources
(e.g. cache, TLB, branch predictor)

!26

SMT: Comparison of All Models

Q: Why does IPC of fine-grain multi-threading plateau?

dual-issue:
94% efficiency

Figure credit: Simultaneous multithreading: maximizing on-chip parallelism, Tullsen et. al. ISCA, 1995.

!27

Cache Issues for SMT

• Decrease in locality from single-threaded model

• Waste due to Icache misses
—1% @ 1 thread
—14% @ 8 threads

• Waste due to Dcache misses
—12% @ 1 thread
—18% @ 8 threads

• Waste due to DTLB misses
—1% @ 1 thread
—6% @ 8 threads
—approaches

– increase shared DTLB from 64 to 96 entries: 1% waste @ 8 threads
– private DTLB entries: 24 each yields waste of 2%

!28

Cache Design for SMT

Private vs. shared L1 cache per thread?

• • Shared Dcache optimizes for
small # threads

• Shared Dcache outperforms
over all # threads

• Private Icaches help @ 7-8
threads

Notation: Icache.Dcache (KB)

for performance, which is
the best design point?

I D

!29

SMT vs. CMP

Key difference: way resources are partitioned and scheduled
—CMP statically partitions resources
—SMT enables partitioning to change every cycle

!30

SMT Claims

• SMT faster by 24%
—single SMT processor with 10 functional units
—conventional 8-PE single-issue MP with 32 functional units

• Study caveats
—architecture not built
—results may be optimistic in two respects

– number of pipeline stages required for instruction issue
 Alpha uses 2 pipeline stages for issue
 if SMT requires more issue stages, increase mispred penalty

– data cache access time for a shared cache
—this study should serve as an upper bound of SMT performance

!31

SMT Experience with IBM’s Power5

• Most workloads benefited from SMT: gains -11% to +41%

• Main cause of performance degradation: load/store activity

• Lower values of SMT gain came from
—repeated invalidation and reloading of L2 lines by 2 programs
—higher rejection of loads/stores as a result
—higher number of loads satisfied from L3 and memory

– data footprints wouldn’t fit into L2 cache

• SMT cost/benefit assessment
—24% chip area for SMT support yields 20.5% average SMT gain

• From LLNL: Using Power5 SMT on ASCI Purple
—use no more than 1 MPI task per CPU
—use 2nd virtual CPU for use by auxiliary threads or daemons
—performance characteristics vary

– sPPM and UMT2K realize a 20-22% performance gain (says IBM)

!32

Discussion Questions

• What questions do these papers leave unanswered?

• What are the implications of SMT for the memory subsystem?

• Interactions between the two techniques?
—synergies
—interference

• How should the techniques be combined?
—what is the right balance point between the techniques?

– how much superscalar execution per h/w thread?
– how many simultaneous multithreads per core?
– how many cores?

—how should one determine this?

!33

References

• Simultaneous multithreading: maximizing on-chip parallelism,
Dean Tullsen, Susan Eggers, and Henry Levy, In 25 Years of
ISCA, 1995.

• The case for a single-chip multiprocessor, K. Olukotun, B.
Nayfeh, L. Hammond, K. Wilson, and K. Chang, ASPLOS-VII,
1996.

• Characterization of simultaneous multithreading (SMT)
efficiency in POWER5, H. M. Mathis, A. E. Mericas, J. D.
McCalpin, R. J. Eickemeyer, and S. R. Kunkel, IBM Journal of
Research and Development, 49(4/5), 2005.

• Purple: Fifth Generation ASC Platform, https://asc.llnl.gov/
computing_resources/purple/

• Lecture Notes: Out-of-Order Processors. Rajeev
Balasubramonian October 13, 2007.  
http://www.eng.utah.edu/~cs6810/ooo.pdf

