WAIT FREE SYNCHRONIZATION Maurice Herlihy, ACM TOPLAS, Jan 1991

Original slides by Tengyu Ma, 2010
Lightly updated by John Mellor-Crummey 21 March 2019

OUTLINE

- Motivation
- Wait-free object model
- Consensus problem
- Wait-free solutions to the consensus problem
- Impossibility proofs
- Universal construction

OUTLINE

Motivation

- Wait-free object model
- Consensus problem
- Wait-free solutions to the consensus problem
- Impossibility proofs
- Universal construction

MOTIVATION

Concurrent objects in shared memory

- Traditional approach: mutual exclusion using locks
- Some problems with mutual exclusion
- no fault tolerance
- a thread may fail in the critical section
- a slow thread may delay others

OBJECTS WITHOUT WAITING?

- New approach: wait-free concurrent object
- a thread can proceed independent of others
- Questions:
- what wait-free objects are impossible?
- how can we implement wait-free objects?

THE MAIN PROBLEM

Given two concurrent objects X, Y.

- Is it possible to implement X by using Y ?

OUTLINE

- Motivation

Wait-free object model
Consensus problem

- Wait-free solutions to the consensus problem
- Impossibility proofs
- Universal construction

WAIT FREE CONCURRENT OBJECTS

Definition: A concurrent object is wait-free if every thread completes a method in finite number of steps

THE MAIN QUESTION

- How to implement concurrent object X by Y ?
- Previous work
- from single-writer single-reader boolean safe register, we can build multi-writer multireader atomic register
- This paper shows that an atomic register is a weak concurrent object

UNDERSTANDING THE POSSIBILITIES

- Theorem: It is impossible to build a wait-free queue from atomic registers
- How can one prove theorem like this?
- Basic idea:
- determine a consensus number for each type of concurrent object
- show that objects with low consensus number cannot implement ones with high consensus number

OUTLINE

- Motivation
- Wait-free object model

Consensus problem

- Wait-free solutions to the consensus problem
- Impossibility proofs
- Universal construction

CONSENSUSPROBLEM

- Suppose there are n threads
- Each thread starts with an input value
- By executing some protocol, each outputs a value
- Three requirements:
- Consistency: all threads decide the same value
- Wait free: every thread eventually decides some value
- Validity: the value decided is from the set of inputs

PARAMETERS FOR CONSENSUS

- Two factors that should be specified
- What shared data-structure is used?
- How many threads?

CONSENSUS NUMBER

Object

Supports n-thread consensus protocol

The consensus number (CN) for object type X is the largest number n, for which there exists a consensus protocol of n threads using objects of type X and atomic registers.

CONSENSUSNUMBER

- Consensus number measures synchronization power
- Classify objects by consensus number (CN)
- objects with different CN in different classes
- object with CN N cannot implement any objects with CN of $\mathrm{M}>\mathrm{N}$.

CONSENSUS HIERARCHY

consensus number	Objects
1	register
2	test\&set, swap, fetch\&add, queue,stack
\ldots	$\ldots . .$.
$2 \mathrm{n}-2$	n-register assignment
\ldots	memory to memory move and swap, augmented queue, compare\&swap,fetch\&cons, sticky byte
∞	

OUTLINE

- Motivation
- Wait-free object model

Consensus problem
Wait-free solutions to the consensus problem

- Impossibility proofs
- Universal construction

QUEUE CONSENSUS NUMBER

- Theorem: Queue has consensus number at least 2

QUEUE CONSENSUS NUMBER

- Theorem: Queue has consensus number at least 2
- Proof
- Queue initially with two entries 0,1
- Two shared atomic registers prefer[0], prefer[1]

QUEUE CONSENSUS NUMBER

- Theorem: Queue has consensus number at least 2
- Proof
- Queue initially with two entries 0,1
- Two shared atomic registers prefer[0], prefer[1]

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
    1: \(\operatorname{prefer}[\mathrm{i}]:=v_{i}\)
    2: if deque() \(=0\) then
    3: return prefer[i]
    4: else
    5: return prefer[1-i]
6: end if
```


QUEUE CONSENSUS NUMBER

- Theorem: Queue has consensus number at least 2
- Proof
- Queue initially with two entries 0,1
- Two shared atomic registers prefer[0], prefer[1]

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
    : \(\operatorname{prefer}[\mathrm{i}]:=v_{i}\)
    2: if deque( \()=0\) then
        return prefer \([\mathrm{i}]\)
    else If deque( \()=1\), the thread can always
    5: return prefer[1-i]
    6: end if
                                read the value written by the other. Why?
```


QUEUE CONSENSUS NUMBER

- Theorem: Queue has consensus number at least 2
- Proof
- Queue initially with two entries 0,1
- Two shared atomic registers prefer[0], prefer[1]

Is it wait-free?

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
    : prefer \([\mathrm{i}]:=v_{i}\)
    2: if deque ()\(=0\) then
        return prefer[i]
    : else If deque ()\(=1\), the process can always
    5: return prefer[1-i]
    6: end if
                                read the value written by the other. Why?
```


AUGMENTED QUEUE CONSENSUS NUMBER

Definition: An augmented queue is a FIFO queue with a peek operation, which returns the head of the queue without changing it.

AUGMENTED QUEUE CONSENSUS NUMBER

Definition: An augmented queue is a FIFO queue with a peek operation, which returns the head of the queue without changing it.

Theorem: Augmented Queue has infinite consensus number

AUGMENTED QUEUE CONSENSUS NUMBER

Definition: An augmented queue is a FIFO queue with a peek operation, which returns the head of the queue without changing it.

Theorem: Augmented Queue has infinite consensus number
$\overline{\text { Algorithm } 1 \text { Algorithm for } P_{i}}$

Require: P_{i} has input v_{i}
1: $\operatorname{enq}\left(v_{i}\right)$
2: return peek()

AUGMENTED QUEUE CONSENSUSNUMBER

Definition: An augmented queue is a FIFO queue with peek operation which return the head of the queue without changing it.

Theorem: Augmented Queue has infinite consensus number
Algorithm 1 Algorithm for P_{i}

Require: P_{i} has input v_{i}
1: enq $\left(v_{i}\right)$
Is it wait-free?
2: return $\operatorname{peek}()$

N-REGISTER ASSIGNMENT

- Definition(Multiple Assignment): The expression

$$
r_{1}, r_{2}, \ldots, r_{n}:=v_{1}, \ldots, v_{n}
$$

atomically assign each value v_{i} to each register r_{i}

Theorem: Registers with atomic m-assignment have consensus number at least m

N-REGISTER ASSIGNMENT CONT'D

Proof:

- Each thread has a singlewriter register.
- Each two threads share a multi-writer register

Algorithm 1 Algorithm for P_{i}
1: atomically assign $r_{i}, r_{i 1}, r_{i 2}, \ldots, r_{i n}:=v_{i}, \ldots, v_{i}$
2: return determineFirstAssignment()

2: return determineFirstAssignment()

N-REGISTER ASSIGNMENT

```
Algorithm 1 Algorithm for \(p_{i}\)
    1: atomically assign \(r_{i}, r_{i 1}, \ldots, r_{i n}:=v_{1}, \ldots, v_{i}\)
    2: return determineFirstAssignment()
```

```
Algorithm 2 determineFirstAssignment
    for all \(1 \leq i<j \leq n\) do
        determineOrder \((\mathrm{i}, \mathrm{j})\)
    end for
```

```
Algorithm 3 determineOrder(i,j)
        \(p_{j}\) precedes \(p_{i}\)
        \(p_{i}\) precedes \(p_{j}\)
    else
        if \(r_{i}=r_{i j}\) then
            \(p_{j}\) precedes \(p_{i}\)
        else
            \(p_{i}\) precedes \(p_{j}\)
        end if
    end if
```

Ensure: determine the order between occurred assignment
if $r_{i j}$ has not been initialized then
assignments by p_{i}, p_{j} has not occurred.
else if r_{i} is not initialized but r_{j} is initialized then
else if r_{j} is not initialized but r_{i} is initialized then

N-REGISTER ASSIGNMENT

```
Algorithm 1 Algorithm for \(p_{i}\)
    1: atomically assign \(r_{i}, r_{i 1}, \ldots, r_{i n}:=v_{1}, \ldots, v_{i}\)
    2: return determineFirstAssignment()
```

Algorithm 2 determineFirstAssignment
for all $1 \leq i<j \leq n$ do
\quad determineOrder (i, j)
end for

```
Algorithm 3 determineOrder(i,j)
        \(p_{j}\) precedes \(p_{i}\)
        \(p_{i}\) precedes \(p_{j}\)
    else
        if \(r_{i}=r_{i j}\) then
            \(p_{j}\) precedes \(p_{i}\)
        else
            \(p_{i}\) precedes \(p_{j}\)
        end if
    end if
```

Ensure: determine the order between occurred assignment
if $r_{i j}$ has not been initialized then
assignments by p_{i}, p_{j} has not occurred.
else if r_{i} is not initialized but r_{j} is initialized then
else if r_{j} is not initialized but r_{i} is initialized then

N-REGISTER ASSIGNMENT

```
Algorithm 1 Algorithm for \(p_{i}\)
    1: atomically assign \(r_{i}, r_{i 1}, \ldots, r_{i n}:=v_{1}, \ldots, v_{i}\)
    2: return determineFirstAssignment()
```

Algorithm 2 determineFirstAssignment
for all $1 \leq i<j \leq n$ do
\quad determineOrder (i, j)
end for

```
Algorithm 3 determineOrder(i,j)
        \(p_{j}\) precedes \(p_{i}\)
        \(p_{i}\) precedes \(p_{j}\)
    else
        if \(r_{i}=r_{i j}\) then
            \(p_{j}\) precedes \(p_{i}\)
        else
            \(p_{i}\) precedes \(p_{j}\)
        end if
    end if
```

Ensure: determine the order between occurred assignment
if $r_{i j}$ has not been initialized then
assignments by p_{i}, p_{j} has not occurred.
else if r_{i} is not initialized but r_{j} is initialized then
else if r_{j} is not initialized but r_{i} is initialized then

N-REGISTER ASSIGNMENT

```
Algorithm 1 Algorithm for \(p_{i}\)
    1: atomically assign \(r_{i}, r_{i 1}, \ldots, r_{i n}:=v_{1}, \ldots, v_{i}\)
    2: return determineFirstAssignment()
```


OUTLINE

- Motivation
- Wait-free object model

Consensus problem

- Wait-free solutions to the consensus problem Impossibility proofs
- Universal construction

IMPOSSIBILITY RESULTS

Proof Terminology

- Protocol state: The states of all the concurrent objects and the internal states of the algorithms run in every processes
- A state is bivalent if starting from this state, any decision is still possible.
- A state is x-valent if starting from this state, the only possible decision value is x.
- A state is univalent if it is x-valent for some value x

EXAMPLES

- A state is x-valent if starting from this state, the only possible decision value is x.
- A state is bivalent if starting from this state, either decision is still possible.
- A state is univalent if it is $x-$ valent for some value x

EXAMPLES

- A state is x-valent if starting from this state, the only possible decision value is x.
- A state is bivalent if starting from this state, either decision is still possible.
- A state is univalent if it is x valent for some value x

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
```

Algorithm 1 Algorithm for P_{i} with input value v_{i}
1: prefer $[\mathrm{i}]:=v_{i}$
1: prefer $[\mathrm{i}]:=v_{i}$
2: if deque ()$=0$ then
2: if deque ()$=0$ then
3: return prefer[i]
3: return prefer[i]
4: else
4: else
return prefer[1-i]
return prefer[1-i]
end if

```
    end if
```


EXAMPLES

- A state is x-valent if starting from this state, the only possible decision value is x.
- A state is bivalent if starting

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
    1: prefer \([\mathrm{i}]:=v_{i}\)
    2: if deque ()\(=0\) then
    3: return prefer[i]
    4: else
        return prefer[1-i]
    end if
```

 from this state, either decision is still possible.

- A state is univalent if it is x valent for some value x

EXAMPLES

- A state is x-valent if starting from this state, the only possible decision value is x .
- A state is bivalent if starting from this state, either decision is still possible.
- A state is univalent if it is x -
 valent for some value x

```
```

Algorithm 1 Algorithm for P_{i} with input value v_{i}

```
```

Algorithm 1 Algorithm for P_{i} with input value v_{i}
1: $\operatorname{prefer}[\mathrm{i}]:=v_{i}$
1: $\operatorname{prefer}[\mathrm{i}]:=v_{i}$
2: if deque() $=0$ then
2: if deque() $=0$ then
3: return prefer[i]
3: return prefer[i]
4: else
4: else
return prefer[1-i]
return prefer[1-i]
end if

```
```

 end if
    ```
```


DECISION STEP

- A decision step is an operation which carries the protocol from a bivalent state to a univalent state.
- Proposition: There exists a state, such that every feasible operation on it is a decision step.
- The state should be reachable from the initial state.

DECISION STEP

- A decision step is an operation which carries the protocol from a bivalent state to a univalent state.

Algorithm 1 Algorithm for P_{i} with input value v_{i}
1: prefer $[\mathrm{i}]:=v_{i}$
2: if deque() $=0$ then
return prefer [i]
else
return prefer[1-i]
end if

- Proposition: There exists a state, such that every feasible operation on it is a decision step.
- The state should be reachable from the initial state.

DECISION STEP

- A decision step is an operation which carries the protocol from a bivalent state to a univalent state.
- Proposition: There exists a state, such that every feasible operation on it is a decision step.
- The state should be reachable from the initial state.

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
    1: prefer \([\mathrm{i}]:=v_{i}\)
    2: if deque() \(=0\) then
        return prefer [i]
    else
        return prefer[1-i]
    end if
```

The first deque() operation is the decision step

DECISION STEP

- A decision step is an operation which carries the protocol from a bivalent state to a univalent state.
- Proposition: There exists a state, such that every feasible operation on it is a decision step.
- The state should be reachable from the initial state.

DECISION STEP

- A decision step is an operation which carries the protocol from a bivalent state to a univalent state.
- Proposition: There exists a state, such that every feasible operation on it is a decision step.
- The state should be reachable from the initial state.

```
Algorithm 1 Algorithm for \(P_{i}\) with input value \(v_{i}\)
    1: prefer \([\mathrm{i}]:=v_{i}\)
    2: if deque ()\(=0\) then
        return prefer[i]
    else
        return prefer[1-i]
    end if
```

The first deque() operation is the decision step

Queue
$0 \quad 1$

Only two feasible operations: the deque() of P1, and the deque() of P2

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a decision step.
- We call this state critical state

CRITICAL STATE

- Proposition: There exists a state, which can be reached from
 the initial state, such that every feasible operation on it is a decision step.
- We call this state critical state

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a

- We call this state critical state

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a decision step.

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a decision step.
- We call this state critical state

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a decision step.
- We call this state critical state

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a decision step.
- We call this state critical state

CRITICAL STATE

- Proposition: There exists a state, which can be reached from the initial state, such that every feasible operation on it is a decision step.

IMPOSSIBILITY RESULTS

- Theorem: atomic registers cannot simulate 2-processes consensus protocol.
- Proof structure: Assume that there exists a protocol. Find the critical state (the state for which every operation on it is decision step).
- Enumerate all the possible cases of the operations following this state.

ATOMIC REGISTERS - $1 / 3$

- Consider: Two operations following the critical state are on different registers.
- Trivial since the two operations on different objects can be commuted without changing the final state.
- Every feasible operation on the critical state is on the same base object (register).

ATOMIC REGISTERS - $1 / 3$

- Consider: Two operations following the critical state are on different registers.
- Trivial since the two operations on different objects can be commuted without changing the final state.

- Every feasible operation on the critical state is on the same base object (register).

ATOMIC REGISTERS - $1 / 3$

- Consider: Two operations following the critical state are on different registers.
- Trivial since the two operations on different objects can be commuted without changing the final state.
 object (register).

ATOMIC REGISTERS - $1 / 3$

- Consider: Two operations following the critical state are on different registers.
- Trivial since the two operations on different objects can be commuted without changing the final state.
 object (register).
this argument is valid in every impossibility proof

ATOMIC REGISTERS $-2 / 3$

Two operations on the same register.

1. one of the operations is read
2. each of the operations is write

ATOMIC REGISTERS $-3 / 3$

Two operations on the same register.

1. one of the operations is read
2. each of the operations is write

OUTLINE

- Motivation
- Wait-free object model

Consensus problem

- Wait-free solutions to the consensus problem
- Impossibility proofs

Universal construction

universality results

- Every object with consensus number n, can implement any other concurrent object within a system of n threads
- Consensus object
- a consensus protocol with a register where the decision value is written
- has a function decide(value: input). a thread calls decide to invoke the consensus protocol and get the decision value as result.
- every object with consensus number n can implement the consensus object within a system of n threads.

UNIVERSALITY RESULTS

- Implement a concurrent object by consensus objects and atomic registers
- General idea: An execution of a concurrent object can be presented as a linked list of cells.

REPRESENTING A CONCURRENT OBJECT

- The general idea: An execution of a concurrent object can be presented as a linked list of cells.
- A cell has the following fields
- seq: sequence number indicating the order of the operations. Increase by 1 for successive cells
- inv: invocation (operation name, argument name)
- new-state: the new state of the object

| seq |
| :---: |
| inv |
| new-state |
| result |
| after |
| before |

- new-result: the result value of the operation
- before, after: point to the cell previous and next to it.

A LINKED LIST OF CELLS

| anchor | enq(x) | enq(y) | deq() |
| :---: | :---: | :---: | :---: |
| seq=1 | seq=2 | seq=3 | seq=4 |
| inv= \perp | enq(x) | enq(y) | deq() |
| initial-state | [x] | [x, y] | [y] |
| result | \perp | \perp | x |
| after | after | after | after |
| before $=\perp$ | before | before | before |

P1's next operation:

- When a thread invokes an operation, it creates a cell with operation information and sequence number 0 .
- Maintains a linked list of cells

peek() seq=0 peek()
undecided undecided undecided undecided

P2's next operation: enq(z)

| seq $=0$ |
| :---: |
| enq (z) |
| undecided |
| undecided |
| undecided |
| undecided |

- We say a thread threads a cell if it adds the cell into the linked list.
- Naive idea: use a consensus protocol to decide which cell should be threaded next.

| Current List: |
| :---: |
| enq(y) |
| seq=3 |
| enq(y) |
| $[x, y]$ |
| \perp |
| after |
| before |

P1's next operation: peek() seq=0 peek()
undecided undecided
undecided undecided

P2's next operation: enq(z)

| seq=0 |
| :---: |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

- We say a process threads a cell if it adds the cell into the linked list.
- Naive idea: use a consensus protocol to decide which cell should be threaded next.

P1's next operation: peek() seq=0 peek() undecided undecided undecided undecided

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation:

- Then add the decided cell into the linked list


```
seq=0
```

peek()
undecided
undecided
undecided
undecided

P2's next operation:
enq(z)
seq=0
enq(z)
undecided
undecided
undecided
undecided

- Then add the decided cell into the linked list

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

- Then add the decided cell into the linked list
- update fields of the cell

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

- Then add the decided cell into the linked list
- update fields of the cell

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq (z) |
| undecided |
| undecided |
| undecided |
| undecided |

- Then add the decided cell into the linked list
- update fields of the cell

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

- Then add the decided cell into the linked list
- update fields of the cell

P2's next operation:

| enq(z) |
| :---: |
| seq $=0$ |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)

P1 announces another cell for operation enq (t)

| seq $=0$ |
| :---: |
| enq (t) |
| undecided |
| undecided |
| undecided |
| undecided |

Current List:

| enq(y) | deq() | peek() |
| :---: | :---: | :---: |
| seq=3 | seq=4 | seq=5 |
| enq(y) | deq() | peek() |
| [x, y] | [y] | [y] |
| \perp | x | y |
| after | after | after |
| before | before | before |

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)

P1 announces another cell for operation enq (t)

| seq $=0$ |
| :---: |
| enq (t) |
| undecided |
| undecided |
| undecided |
| undecided |

Current List:

| enq(y) | deq() | peek() |
| :---: | :---: | :---: |
| seq=3 | seq=4 | seq=5 |
| enq(y) | deq() | peek() |
| [x, y] | [y] | [y] |
| \perp | x | y |
| after | after | after |
| before | before | before |

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)
P1 announces another cell for operation enq (t)

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)

P1 announces another cell for operation enq(t)

| seq $=0$ |
| :---: |
| enq (t) |
| undecided |
| undecided |
| undecided |
| undecided |

Current List:

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)

P1 announces another cell for operation enq (t)

| seq $=0$ |
| :---: |
| enq (t) |
| undecided |
| undecided |
| undecided |
| undecided |

Current List:

| enq(y) | deq() | peek() |
| :---: | :---: | :---: |
| seq=3 | seq=4 | seq=5 |
| enq(y) | deq() | peek() |
| [x, y] | [y] | [y] |
| \perp | x | y |
| after | after | after |
| before | before | before |

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)
P1 announces another cell for operation enq(t)
seq=0 enq(t) undecided undecided undecided undecided

P2's next operation:

| enq (z) |
| :---: |
| seq=0 |
| enq (z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)

P1 announces another cell for operation enq(t) enq(t)

Current List:

| enq (y) |
| :---: |
| seq $=3$ |
| enq (y) |
| $[x, y]$ |
| \perp |
| after |
| before |

| $\operatorname{deq}()$ |
| :---: |
| $\operatorname{seq}=4$ |
| $\operatorname{deq}()$ |
| $[y]$ |
| x |
| after |
| before |

| peek() |
| :---: |
| seq=5 |
| peek () |
| $[y]$ |
| y |
| after |
| before |

P2's next operation:

| enq(z) |
| :---: |
| seq $=0$ |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation:
enq(t)

P1 announces another cell for operation enq(t)
seq=6 enq(t) [y,t] \perp after before

Current List:

| enq(y) |
| :---: |
| seq $=3$ |
| enq (y) |
| $[x, y]$ |
| \perp |
| after |
| before |

| $\operatorname{deq}()$ |
| :---: |
| $\operatorname{seq}=4$ |
| $\operatorname{deq}()$ |
| $[y]$ |
| x |
| after |
| before |

| peek() |
| :---: |
| seq=5 |
| peek () |
| $[y]$ |
| y |
| after |
| before |

| enq($z)$ |
| :---: |
| seq $=0$ |
| enq (z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation:
Two problems:
a) Not wait free. Why?

| enq((t) |
| :---: | :---: |
| seq=6 |
| enq(t$)$ |
| $[\mathrm{y}, \mathrm{t}]$ |
| |
| after |
| before |

Current List:

| enq(y) | deq() | peek() |
| :---: | :---: | :---: |
| seq=3 | seq=4 | seq=5 |
| enq(y) | deq() | peek() |
| [x, y] | [y] | [y] |
| \perp | x | y |
| after | after | after |
| before | before | before |

| enq($z)$ |
| :---: |
| seq=0 |
| enq (z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation:
Two problems: P2 might be too slow or a) Not wait free. Why?
too unfortunate such that it loses all the consensus!
enq(t)
seq=6
enq(t) [y, t] \perp after before

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| eqn(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation:
Two problems:
a) Not wait free.
b) Consensus object can used only once.

Current List:

| enq(y) |
| :---: |
| seq $=3$ |
| enq (y) |
| $[\mathrm{x}, \mathrm{y}]$ |
| \perp |
| after |
| before |

| $\operatorname{deq}()$ |
| :---: |
| seq=4 |
| $\operatorname{deq}()$ |
| $[y]$ |
| x |
| after |
| before |

| peek() |
| :---: |
| seq=5 |
| peek () |
| $[y]$ |
| y |
| after |
| before |

enq(t)
seq=6
enq(t) [y,t] \perp after before

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

Solution:

1. an array of atomic registers head[] pointing to the latest cell each process has seen 2. an array of atomic registers announce[] pointing to cells to be threaded

P1's next operation: enq(t)
seq=6
enq(t)
[y,t]
\perp
after
before

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

P1's next operation: enq(t)

- Make the after pointer a consensus object
- The call c. after.decide() will return the decision value of the consensus and write the decision value to c . after

P1's next operation:
enq(t)
seq=6
enq(t) [y,t] \perp after before

P2's next operation:

| enq(z) |
| :---: |
| seq=0 |
| enq(z) |
| undecided |
| undecided |
| undecided |
| undecided |

initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with seq $=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$. seq $=0$ do

$$
\mathrm{c}=\operatorname{head}[\mathrm{P}]
$$

$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
$\mathrm{d} . \mathrm{seq}=\mathrm{c} . \mathrm{seq}+1$
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$. seq $=0$ do
$\mathrm{c}=\operatorname{head}[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if $h . s e q=0$ then prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}] . \mathrm{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if h.seq $=0$ then prefer $=h$
make the head be as close to the end of the list as possible
else

$$
\text { prefer }=\text { announce }[\mathrm{P}]
$$

end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c} . \mathrm{seq}+1$
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}] . \mathrm{seq}=0$ do
$\mathrm{c}=\operatorname{head}[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h.seq $=0$ then prefer $=h$
actually it is a loop. just for brevity. no atomicity requirement
else

$$
\text { prefer }=\text { announce }[\mathrm{P}]
$$

end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c} . \mathrm{seq}+1$
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$.seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if

The main loop. iterates as long as the cell is not threaded
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$.seq $=0$ do

```
    \(\mathrm{c}=\) head \([\mathrm{P}]\)
    \(\mathrm{h}=\) announce \([\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]\)
    if \(\mathrm{h} . \mathrm{seq}=0\) then
        prefer \(=h\)
        else
            prefer \(=\) announce \([\mathrm{P}]\)
        end if
        \(\mathrm{d}=\mathrm{c}\). after.decide(prefer)
        d.seq \(=\mathrm{c} . \operatorname{seq}+1\)
        update the field of d according to c.inv, c.new-state
        head \([P]=\mathrm{d}\)
    end while
    return announce \([\mathrm{P}]\).result
```

initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$h=$ announce[c.seq $\bmod n+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
$\mathrm{d} . \mathrm{seq}=\mathrm{c} . \mathrm{seq}+1$
h is the cell that the thread tries
to help when its head pointer points
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if h.seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[P]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
check if h needs help, or if h has not yet been threaded.
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$.seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then prefer $=\mathrm{h}$
else

prefer $=$ announce $[\mathrm{P}]$

end if

$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c} . \mathrm{seq}+1$
update the field of d according to c.inv, c.new-state head $[\mathrm{P}]=\mathrm{d}$
otherwise try to thread own cell
end while
return announce[P].result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do

$\mathrm{c}=$ head $[\mathrm{P}]$

$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if h.seq $=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if

Observe that c.after is a consensus object and however many times decide() is called, the return value is the same.
$\mathrm{d}=$ c.after.decide(prefer)
d.seq $=$ c.seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$.seq $=0$ do
$\mathrm{c}=\operatorname{head}[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=$ c.seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$.seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with $\operatorname{seq}=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
However many times d is updated by different processes, the result is the same!!
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
initialize the cell with seq $=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. .seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1$]
if $h . s e q=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state head $[P]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

```
initialize the cell with \(\operatorname{seq}=0\)
let announce \([\mathrm{P}]\) point to it.
head \([\mathrm{P}]=\max \{\) head \([1], \ldots\), head \([n]\}\)
while announce \([P]\). seq \(=0\) do
    \(\mathrm{c}=\operatorname{head}[\mathrm{P}]\)
    \(\mathrm{h}=\) announce[c.seq \(\bmod \mathrm{n}+1\) ]
    if \(\mathrm{h} . \mathrm{seq}=0\) then
        prefer \(=h\)
    else
        prefer \(=\) announce \([\mathrm{P}]\)
    end if
    \(\mathrm{d}=\mathrm{c}\). after.decide(prefer)
    d.seq \(=\mathrm{c} . \mathrm{seq}+1\)
    update the field of \(d\) according to c.inv, c.new-state
    head \([\mathrm{P}]=\mathrm{d}\)
end while
return announce \([\mathrm{P}]\).result
```



```
initialize the cell with \(\operatorname{seq}=0\)
let announce \([\mathrm{P}]\) point to it.
head \([\mathrm{P}]=\max \{\) head \([1], \ldots\), head \([n]\}\)
while announce \([P]\). seq \(=0\) do
```

cell of P2

seq $=0$
after

```
    \(\mathrm{c}=\) head \([\mathrm{P}]\)
    \(\mathrm{h}=\) announce[c.seq \(\bmod \mathrm{n}+1\) ]
    if \(\mathrm{h} . \mathrm{seq}=0\) then
        prefer \(=h\)
    else
        prefer \(=\) announce \([\mathrm{P}]\)
    end if
    \(\mathrm{d}=\mathrm{c}\). after.decide(prefer)
    d.seq \(=c . s e q+1\)
    update the field of \(d\) according to c.inv, c.new-state
    head \([\mathrm{P}]=\mathrm{d}\)
end while
return announce \([\mathrm{P}]\).result
```



```
initialize the cell with \(\operatorname{seq}=0\)
let announce \([\mathrm{P}]\) point to it.
head \([\mathrm{P}]=\max \{\) head \([1], \ldots\), head \([n]\}\)
while announce \([P]\). seq \(=0\) do
    \(\mathrm{c}=\operatorname{head}[\mathrm{P}]\)
    \(\mathrm{h}=\) announce[c.seq \(\bmod \mathrm{n}+1\) ]
    if \(\mathrm{h} . \mathrm{seq}=0\) then
        prefer \(=h\)
    else
        prefer \(=\) announce \([\mathrm{P}]\)
    end if
    \(\mathrm{d}=\mathrm{c}\). after.decide(prefer)
    d.seq \(=\mathrm{c}\). seq +1
    update the field of \(d\) according to c.inv, c.new-state
    head \([\mathrm{P}]=\mathrm{d}\)
end while
return announce \([\mathrm{P}]\).result
```


initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
cell of P2
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=$ c.seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to , c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=\operatorname{head}[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if h.seq $=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c} . \mathrm{seq}+1$
update the field of d according to
 head $[\mathrm{P}]=\mathrm{d}$ end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if h.seq $=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c} . \mathrm{seq}+1$
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$ let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=\operatorname{head}[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
end if

$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state head $[\mathrm{P}]=\mathrm{d}$ end while return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if

$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=$ c.seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=\operatorname{head}[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if h .seq $=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
what is the possible result?
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce $[\mathrm{c} . \operatorname{seq} \bmod \mathrm{n}+1]$
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[P] . \operatorname{seq}=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

Only the this can be returned! Since c.after is a consensus object and now $\mathrm{c}=$ head[1] = anchor anchor.after.decide() has already P1 'returned the value to P2
anchor

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=h$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=$ c.seq +1
update the field of d according to c.inv, new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result
P1 can only rewrite the second cell with the same field value
But it can quit the loop quickly since its cell has been threaded :)

initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=$ c.seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

P1 can only rewrite the second cell with the same field value
But it can quit the loop quickly since its cell has been threaded :)
initialize the cell with $s e q=0$
let announce $[\mathrm{P}]$ point to it.
head $[\mathrm{P}]=\max \{$ head $[1], \ldots$, head $[n]\}$
while announce $[\mathrm{P}]$. seq $=0$ do
$\mathrm{c}=$ head $[\mathrm{P}]$
$\mathrm{h}=$ announce[c.seq $\bmod \mathrm{n}+1$]
if $\mathrm{h} . \mathrm{seq}=0$ then
prefer $=\mathrm{h}$
else
prefer $=$ announce $[\mathrm{P}]$
end if
$\mathrm{d}=\mathrm{c}$. after.decide(prefer)
d.seq $=\mathrm{c}$. seq +1
update the field of d according to c.inv, c.new-state
head $[\mathrm{P}]=\mathrm{d}$
end while
return announce $[\mathrm{P}]$.result

P1 can only rewrite the second cell with the same field value
But it can quit the loop quickly since its cell has been threaded :)

PROOF OF THE CORRECTNESS

- Observations
- non-zero sequence number indicates successful threading
- the consensus protocols guarantee that the fields of the cells will not be updated with different values.
- at cell with sequence number k, every thread tries to help thread $(k+1) \bmod n$
- if a cell is announced by thread $\mathrm{k}+1$, after at most n more cells have been threaded
- everyone will check if process $\mathrm{k}+1$ needs help
- everyone will help

MORE PRACTICAL CONSTRUCTIONS

- New universal construction
- P. Choung, F. Ellen, V. Ramachandran "A universal construction for wait-free transaction friendly data structure".
- implements any shared data structure with $\theta(s+p)$ space, where s is the size of the shared data structure and p is the number of processes.
- uses only CAS and registers as base objects.
- Ad-hoc wait-free data structures
- lower overhead by using a purpose-built construction

CONCLUSIONS

- Wait-free synchronization is possible, practical, and useful!

$R \in F \in R \in N C \in S$

- Maurice Herlihy, "Wait-free synchronization"
- Lynch and Tuttle, "An Introduction to Input/ Output Automata"
- Maurice Herlihy \& Nir Shavit "Lecture notes of Art of multiprocessor computing.
- L. Lamport "How to make a multiprocessor computer that correctly executes multiprocess programs."

LINEARIZABILITY VS SEQUENTIAL CONSISTENCY

- Linearizability is stronger than sequential consistency.
- sequential consistency is not composable:(not a local property)
- If two objects are both sequential consistent, the composition of them might be not.
- linearizability has composability.
- We only need to study isolated object

