
wait free
synchronization
 Maurice Herlihy, ACM TOPLAS, Jan 1991

Friday, November 5, 2010

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text
Lightly updated by John Mellor-Crummey 21 March 2019

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text
Original slides by Tengyu Ma, 2010

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

johnmc
Typewritten Text

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

motivation

 Concurrent objects in shared memory

Traditional approach: mutual exclusion using locks

Some problems with mutual exclusion

no fault tolerance

a thread may fail in the critical section

a slow thread may delay others

Friday, November 5, 2010

Objects without Waiting?

New approach: wait-free concurrent object

a thread can proceed independent of others

Questions:

what wait-free objects are impossible?

how can we implement wait-free objects?

Friday, November 5, 2010

The main problem

Given two concurrent objects X, Y.

Is it possible to implement X by using Y?

Friday, November 5, 2010

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

wait free concurrent objectS

Definition: A concurrent object is wait-free if every
thread completes a method in finite number of steps

Friday, November 5, 2010

The main question

How to implement concurrent object X by Y?

Previous work

from single-writer single-reader boolean safe
register, we can build multi-writer multi-
reader atomic register

This paper shows that an atomic register is a
weak concurrent object

Friday, November 5, 2010

Understanding The Possibilities

Theorem: It is impossible to build a wait-free queue from
atomic registers

How can one prove theorem like this?

Basic idea:

determine a consensus number for each type of
concurrent object

show that objects with low consensus number
cannot implement ones with high consensus number

Friday, November 5, 2010

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

consensus problem

Suppose there are n threads

Each thread starts with an input value

By executing some protocol, each outputs a value

Three requirements:

Consistency: all threads decide the same value

Wait free: every thread eventually decides some value

Validity: the value decided is from the set of inputs

Friday, November 5, 2010

Parameters For consensus

Two factors that should be specified

What shared data-structure is used?

How many threads?

Friday, November 5, 2010

consensus number

The consensus number (CN) for object type X is
the largest number n, for which there exists a
consensus protocol of n threads using objects
of type X and atomic registers.

Object Supports
n-thread consensus protocol

Friday, November 5, 2010

Consensus Number

Consensus number measures synchronization
power

Classify objects by consensus number (CN)

objects with different CN in different classes

object with CN N cannot implement any
objects with CN of M > N.

Friday, November 5, 2010

Consensus hierarchy

consensus
number Objects

1 register

2 test&set, swap, fetch&add, queue,stack

...

2n-2 n-register assignment

....

memory to memory move and swap, augmented
queue, compare&swap,fetch&cons, sticky byte

Friday, November 5, 2010

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

Queue consensus number

Theorem: Queue has consensus number at least 2

Friday, November 5, 2010

Queue consensus number

Theorem: Queue has consensus number at least 2
Proof

Queue initially with two entries 0,1
Two shared atomic registers prefer[0], prefer[1]

Friday, November 5, 2010

Queue consensus number

Theorem: Queue has consensus number at least 2
Proof

Queue initially with two entries 0,1
Two shared atomic registers prefer[0], prefer[1]

Friday, November 5, 2010

Queue consensus number

Theorem: Queue has consensus number at least 2
Proof

Queue initially with two entries 0,1
Two shared atomic registers prefer[0], prefer[1]

If deque() = 1, the thread can always
read the value written by the other. Why?

Friday, November 5, 2010

Queue consensus number

Theorem: Queue has consensus number at least 2
Proof

Queue initially with two entries 0,1
Two shared atomic registers prefer[0], prefer[1]

If deque() = 1, the process can always
read the value written by the other. Why?

Is it wait-free ?

Friday, November 5, 2010

Augmented queue consensus number

Definition: An augmented queue is a FIFO queue with a
peek operation, which returns the head of the queue without
changing it.

Friday, November 5, 2010

Augmented queue consensus number

Theorem: Augmented Queue has infinite consensus number

Definition: An augmented queue is a FIFO queue with a
peek operation, which returns the head of the queue without
changing it.

Friday, November 5, 2010

Augmented queue consensus number

Algorithm 1 Algorithm for Pi

Require: Pi has input vi
1: enq(vi)
2: return peek()

Theorem: Augmented Queue has infinite consensus number

Definition: An augmented queue is a FIFO queue with a
peek operation, which returns the head of the queue without
changing it.

Friday, November 5, 2010

Augmented queue consensus number

Algorithm 1 Algorithm for Pi

Require: Pi has input vi
1: enq(vi)
2: return peek()

Theorem: Augmented Queue has infinite consensus number

Is it wait-free?

Definition: An augmented queue is a FIFO queue with
peek operation which return the head of the queue without
changing it.

Friday, November 5, 2010

n-register assignment

Definition(Multiple Assignment): The expression
r1, r2, . . . , rn := v1, . . . , vn

atomically assign each value vi to each register ri

Theorem: Registers with atomic m-assignment have consensus
number at least m

Friday, November 5, 2010

n-register assignment cont’d

p1

p2

p3

p4

p5

r12

r13

r14

r15

r23

r3

r1

r2

r4

r5 Proof:

Each thread has a single-
writer register.

Each two threads share a
multi-writer register

Algorithm 1 Algorithm for Pi

1: atomically assign ri, ri1, ri2, . . . , rin := vi, . . . , vi
2: return determineFirstAssignment()

Friday, November 5, 2010

n-register assignment

p1

p2

p3

p4

p5

Algorithm 1 Algorithm for pi
1: atomically assign ri, ri1, . . . , rin := v1, . . . , vi
2: return determineFirstAssignment()

Algorithm 2 determineFirstAssignment

for all 1 i < j n do

determineOrder(i,j)
end for

Algorithm 3 determineOrder(i,j)

Ensure: determine the order between occurred assignment
1: if rij has not been initialized then

2: assignments by pi, pj has not occurred.
3: else if ri is not initialized but rj is initialized then

4: pj precedes pi
5: else if rj is not initialized but ri is initialized then

6: pi precedes pj
7: else

8: if ri = rij then

9: pj precedes pi
10: else

11: pi precedes pj
12: end if

13: end if

Friday, November 5, 2010

n-register assignment

v1 v1

v1

v1
v1

p1

p2

p3

p4

p5

Algorithm 1 Algorithm for pi
1: atomically assign ri, ri1, . . . , rin := v1, . . . , vi
2: return determineFirstAssignment()

Algorithm 2 determineFirstAssignment

for all 1 i < j n do

determineOrder(i,j)
end for

Algorithm 3 determineOrder(i,j)

Ensure: determine the order between occurred assignment
1: if rij has not been initialized then

2: assignments by pi, pj has not occurred.
3: else if ri is not initialized but rj is initialized then

4: pj precedes pi
5: else if rj is not initialized but ri is initialized then

6: pi precedes pj
7: else

8: if ri = rij then

9: pj precedes pi
10: else

11: pi precedes pj
12: end if

13: end if

Friday, November 5, 2010

n-register assignment

v1 v1

v1v1

p1

p2

p3

p4

p5

v3

v3

v3

v3

v3

Algorithm 1 Algorithm for pi
1: atomically assign ri, ri1, . . . , rin := v1, . . . , vi
2: return determineFirstAssignment()

Algorithm 2 determineFirstAssignment

for all 1 i < j n do

determineOrder(i,j)
end for

Algorithm 3 determineOrder(i,j)

Ensure: determine the order between occurred assignment
1: if rij has not been initialized then

2: assignments by pi, pj has not occurred.
3: else if ri is not initialized but rj is initialized then

4: pj precedes pi
5: else if rj is not initialized but ri is initialized then

6: pi precedes pj
7: else

8: if ri = rij then

9: pj precedes pi
10: else

11: pi precedes pj
12: end if

13: end if

Friday, November 5, 2010

n-register assignment

v1

v1

p1

p2

p3

p4

p5

v3

v3 v3

v5

v5v5

v5

v5

v3

Algorithm 1 Algorithm for pi
1: atomically assign ri, ri1, . . . , rin := v1, . . . , vi
2: return determineFirstAssignment()

Algorithm 2 determineFirstAssignment

for all 1 i < j n do

determineOrder(i,j)
end for

Algorithm 3 determineOrder(i,j)

Ensure: determine the order between occurred assignment
1: if rij has not been initialized then

2: assignments by pi, pj has not occurred.
3: else if ri is not initialized but rj is initialized then

4: pj precedes pi
5: else if rj is not initialized but ri is initialized then

6: pi precedes pj
7: else

8: if ri = rij then

9: pj precedes pi
10: else

11: pi precedes pj
12: end if

13: end if

Friday, November 5, 2010

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

impossibility results

Proof Terminology

Protocol state: The states of all the concurrent objects and
the internal states of the algorithms run in every processes

A state is bivalent if starting from this state, any decision is
still possible.

A state is x-valent if starting from this state, the only
possible decision value is x.

A state is univalent if it is x-valent for some value x

Friday, November 5, 2010

Examples

A state is x-valent if
starting from this state, the
only possible decision
value is x.

A state is bivalent if starting
from this state, either
decision is still possible.

A state is univalent if it is x-
valent for some value x

Friday, November 5, 2010

Examples

A state is x-valent if
starting from this state, the
only possible decision
value is x.

A state is bivalent if starting
from this state, either
decision is still possible.

A state is univalent if it is x-
valent for some value x

Friday, November 5, 2010

Examples

A state is x-valent if
starting from this state, the
only possible decision
value is x.

A state is bivalent if starting
from this state, either
decision is still possible.

A state is univalent if it is x-
valent for some value x

v0 v1 bivalent?

0 1

prefer[0] prefer[1]

Queue

Friday, November 5, 2010

Examples

A state is x-valent if
starting from this state, the
only possible decision
value is x.

A state is bivalent if starting
from this state, either
decision is still possible.

A state is univalent if it is x-
valent for some value x

v0 null bivalent?

1

prefer[0] prefer[1]

Queue

Friday, November 5, 2010

Decision step

A decision step is an
operation which carries the
protocol from a bivalent state
to a univalent state.

Proposition: There exists a state,
such that every feasible
operation on it is a decision step.

The state should be reachable
from the initial state.

Friday, November 5, 2010

Decision step

A decision step is an
operation which carries the
protocol from a bivalent state
to a univalent state.

Proposition: There exists a state,
such that every feasible
operation on it is a decision step.

The state should be reachable
from the initial state.

Friday, November 5, 2010

Decision step

A decision step is an
operation which carries the
protocol from a bivalent state
to a univalent state.

Proposition: There exists a state,
such that every feasible
operation on it is a decision step.

The state should be reachable
from the initial state.

The first deque()
operation is the

decision step

Friday, November 5, 2010

Decision step

A decision step is an
operation which carries the
protocol from a bivalent state
to a univalent state.

Proposition: There exists a state,
such that every feasible
operation on it is a decision step.

The state should be reachable
from the initial state.

The first deque()
operation is the

decision step

v0 v1

0 1

prefer[0] prefer[1]

Queue

Friday, November 5, 2010

Decision step

A decision step is an
operation which carries the
protocol from a bivalent state
to a univalent state.

Proposition: There exists a state,
such that every feasible
operation on it is a decision step.

The state should be reachable
from the initial state.

The first deque()
operation is the

decision step

v0 v1

0 1

prefer[0] prefer[1]

Queue Only two feasible operations:
the deque() of P1, and the

deque() of P2
Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

bivalent

P1’s operation

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

bivalent

P1’s operation

bivalent

P2’s

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

bivalent

P1’s operation

bivalent

P2’s

bivalent

P1’s

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

bivalent

P1’s operation

bivalent

P2’s

bivalent

P1’s

bivalent

P2’s

bivalent

P2’s

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

bivalent

P1’s operation

bivalent

P2’s

bivalent

P1’s

bivalent

P2’s

bivalent

P2’s

Can not run forever!
Wait-free property

Friday, November 5, 2010

Critical State

Proposition: There exists a
state, which can be reached from
the initial state, such that every
feasible operation on it is a
decision step.

We call this state critical state

initial
state

Some initial
state is

bivalent

bivalent

P1’s operation

bivalent

P2’s

bivalent

P1’s

bivalent

P2’s

bivalent

P2’s

Can not run forever!
Wait-free property

Finally reach a critical state!
Friday, November 5, 2010

impossibility results

Theorem: atomic registers cannot
simulate 2-processes consensus
protocol.

Proof structure: Assume that
there exists a protocol. Find the
critical state (the state for which
every operation on it is decision
step).

Enumerate all the possible cases
of the operations following this
state.

critical
state: S

Friday, November 5, 2010

Atomic Registers - I/3

Consider: Two operations
following the critical state are
on different registers.

Trivial since the two operations
on different objects can be
commuted without changing
the final state.

critical
state: S

y-valentx-valent

P re
ad

 r1

Q write r2
bivalent.

Every following
state univalent

Every feasible operation on the
critical state is on the same base
object (register).

Friday, November 5, 2010

Atomic Registers - I/3

Consider: Two operations
following the critical state are
on different registers.

Trivial since the two operations
on different objects can be
commuted without changing
the final state.

critical
state: S

State S3

y-valentx-valent

P re
ad

 r1

Q write r2

Q write r2 P re
ad

 r1

bivalent.
Every following
state univalent

Every feasible operation on the
critical state is on the same base
object (register).

Friday, November 5, 2010

Atomic Registers - I/3

Consider: Two operations
following the critical state are
on different registers.

Trivial since the two operations
on different objects can be
commuted without changing
the final state.

critical
state: S

State S3

y-valentx-valent

P re
ad

 r1

Q write r2

Q write r2 P re
ad

 r1

bivalent.
Every following
state univalent

ContradictionEvery feasible operation on the
critical state is on the same base
object (register).

Friday, November 5, 2010

Atomic Registers - I/3

Consider: Two operations
following the critical state are
on different registers.

Trivial since the two operations
on different objects can be
commuted without changing
the final state.

critical
state: S

State S3

y-valentx-valent

P re
ad

 r1

Q write r2

Q write r2 P re
ad

 r1

bivalent.
Every following
state univalent

ContradictionEvery feasible operation on the
critical state is on the same base
object (register). this argument is valid in every

impossibility proof
Friday, November 5, 2010

Atomic Registers - 2/3
critical
state: S

y-valentx-valent

P re
ad

 Q opr

decides
y

Q runs alone

x-valent
Q opr

decides
x

Q runs alone

Equivalent for Q!
Q can not see the

difference

Two operations on the
same register.

1. one of the
operations is read

2. each of the
operations is write

Friday, November 5, 2010

Atomic Registers - 3/3
critical
state: S

y-valentx-valent

P w
rit

e Q write

decides
y

Q runs alone

x-valent
Q write

decides
x

Q runs alone

Equivalent for Q!
Q can not see the

difference

 overwrite
the register

Two operations on the
same register.

1. one of the
operations is read

2. each of the
operations is write

Friday, November 5, 2010

Motivation

Wait-free object model

Consensus problem

Wait-free solutions to the consensus problem

Impossibility proofs

Universal construction

Outline

Friday, November 5, 2010

universality Results

Every object with consensus number n, can implement any other
concurrent object within a system of n threads

Consensus object

a consensus protocol with a register where the decision value is
written

has a function decide(value: input). a thread calls decide to
invoke the consensus protocol and get the decision value as result.

every object with consensus number n can implement the
consensus object within a system of n threads.

Friday, November 5, 2010

universality Results

Implement a concurrent object by consensus
objects and atomic registers

General idea: An execution of a concurrent
object can be presented as a linked list of cells.

Friday, November 5, 2010

inv
new-state

after

before

seq

a basic
cell

result

The general idea: An execution of a concurrent
object can be presented as a linked list of cells.

A cell has the following fields

seq: sequence number indicating the order of the
operations. Increase by 1 for successive cells

inv: invocation (operation name, argument name)

new-state: the new state of the object

new-result: the result value of the operation

before, after: point to the cell previous and next to
it.

REpresenting a Concurrent Object

Friday, November 5, 2010

A linked list of cells

inv=
initial-state

after
before=

seq=1

result

?

?

anchor

[x]

after

before

seq=2
enq(x)

?

enq(x)

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

P1’s next operation:
peek()

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

When a thread invokes an operation,
it creates a cell with operation
information and sequence number 0.

Maintains a linked list of cells

Head

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

P1’s next operation:
peek()

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

We say a thread threads a cell if it
adds the cell into the linked list.

Naive idea: use a consensus protocol
to decide which cell should be
threaded next.

Head

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

P1’s next operation:
peek()

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

We say a process threads a cell if it
adds the cell into the linked list.

Naive idea: use a consensus protocol
to decide which cell should be
threaded next.

Head

Consensus
Object

thread P1’s
operation!

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

P1’s next operation:
peek()

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

Head

Consensus
Object

thread P1’s
operation!

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

Head

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

Head

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

undecided

seq=0
peek()

undecided

undecided

undecided

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

update fields of the cell

Head

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=0
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

update fields of the cell

Head

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

update fields of the cell

Head

peek()

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Then add the decided cell into the
linked list

update fields of the cell

Head

y

after
before

peek()

[y]

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

P1 announces another cell for operation enq(t)

Head

y

after
before

peek()

[y]

seq=0
enq(t)

undecided
undecided

undecided

undecided

P1’s next operation:
enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

P1 announces another cell for operation enq(t)

Head

y

after
before

peek()

[y]

seq=0
enq(t)

undecided
undecided

undecided

undecided

P1’s next operation:
enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

P1 announces another cell for operation enq(t)

Head

y

after
before

peek()

[y]

seq=0
enq(t)

undecided
undecided

undecided

undecided

P1’s next operation:
enq(t)

Consensus
Object

thread P1’s
operation!

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=0
enq(t)

undecided
undecided

undecided

undecided

P1’s next operation:
enq(t)

P1 announces another cell for operation enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=0
enq(t)

undecided
undecided

undecided

undecided

P1’s next operation:
enq(t)

P1 announces another cell for operation enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=0
enq(t)

undecided
undecided

undecided

undecided

P1’s next operation:
enq(t)

P1 announces another cell for operation enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

enq(t)

P1’s next operation:
enq(t)

P1 announces another cell for operation enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

P1 announces another cell for operation enq(t)

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

Two problems:
a) Not wait free.
Why?

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
eqn(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

Two problems:
a) Not wait free.
Why?

P2 might be too slow or
too unfortunate such that
it loses all the consensus!

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

Current List:

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

Head

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

Two problems:
a) Not wait free.
b) Consensus object can used only once.

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

Solution:
1. an array of atomic registers
head[] pointing to the latest cell
each process has seen
2. an array of atomic registers
announce[] pointing to cells to
be threaded

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

head[1] head[2] head[3]

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

head[1] head[2] head[3]

ann[1] ann[2] ann[3]

Friday, November 5, 2010

[x,y]

after

before

seq=3
enq(y)

?

enq(y)

[y]

after

before

seq=4
deq()

deq()

x

seq=5
peek()

undecided

seq=0
enq(z)

undecided

P2’s next operation:
enq(z)

undecided

undecided

y

after
before

peek()

[y]

seq=6
enq(t)

P1’s next operation:
enq(t)

[y,t]
?

after

before

•Make the after pointer a consensus
object

•The call c.after.decide() will return
the decision value of the consensus and
write the decision value to c.after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

seq = 0 indicates
that the cell has not
been threaded

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

make the head be as
close to the end of the
list as possible

Friday, November 5, 2010

actually it is a loop.
just for brevity. no
atomicity requirement

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

The main loop.
iterates as long as
the cell is not
threaded

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

h is the cell that the
thread tries
to help when its
head pointer points
to c

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

check if h needs
help, or if h has not
yet been threaded.

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

otherwise try to
thread own cell

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

Observe that c.after is a
consensus object and however
many times decide() is called,
the return value is the same.

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

However many times d is
updated by different processes,
the result is the same!!

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =0
after

cell of P2 ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =0
after

cell of P2 ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =0
after

cell of P2 ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =0
after

cell of P2 ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =0
after

cell of P2 ann[2]

head[2]head[1]

ann[1]

wait-free
P2 should

decide

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =0
after

cell of P2 ann[2]

head[2]head[1]

ann[1]

wait-free
P2 should

decide

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

seq =0
after

P2 tries to
help P1

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]
seq =0
after

seq =0
after

P1 is really
slow, P2 will

not wait for it.
decide ann[1].

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =0
after

seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =0
after

seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =0
after

seq =0
after

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

It tries to
help P2 !
Indeed, P2
needs help

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

what is the possible result?

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

Only the this can be returned!
Since c.after is a consensus object
and now c = head[1] = anchor
anchor.after.decide() has already
returned the value to P2

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

P1 can only rewrite the
second cell with the same
field value
 But it can quit the loop
quickly since its cell has been
threaded :)

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

P1 can only rewrite the
second cell with the same
field value
 But it can quit the loop
quickly since its cell has been
threaded :)

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

P1 can only rewrite the
second cell with the same
field value
 But it can quit the loop
quickly since its cell has been
threaded :)

Friday, November 5, 2010

initialize the cell with seq = 0

let announce[P] point to it.

head[P] = max{head[1], . . . , head[n]}
while announce[P].seq = 0 do

c = head[P]

h = announce[c.seq mod n + 1]

if h.seq = 0 then

prefer = h

else

prefer = announce[P]

end if

d = c.after.decide(prefer)

d.seq = c.seq + 1

update the field of d according to c.inv, c.new-state

head[P] = d

end while

return announce[P].result

seq =1
after

anchor

seq =2
after

ann[2]

head[2]head[1]

ann[1]

seq =3
after

seq =0
after

P1’s opr

P1 can only rewrite the
second cell with the same
field value
 But it can quit the loop
quickly since its cell has been
threaded :)

Friday, November 5, 2010

Proof of the correctness

Observations

non-zero sequence number indicates successful threading

the consensus protocols guarantee that the fields of the cells will
not be updated with different values.

at cell with sequence number k, every thread tries to help thread
(k+1) mod n

if a cell is announced by thread k+1, after at most n more cells
have been threaded

everyone will check if process k+1 needs help

everyone will help

Friday, November 5, 2010

more practical constructions

New universal construction

P. Choung, F. Ellen, V. Ramachandran “A universal
construction for wait-free transaction friendly data structure”.

implements any shared data structure with θ(s+p) space,
where s is the size of the shared data structure and p is the
number of processes.

uses only CAS and registers as base objects.

Ad-hoc wait-free data structures

lower overhead by using a purpose-built construction

Friday, November 5, 2010

Conclusions

Wait-free synchronization is possible, practical,
and useful!

Friday, November 5, 2010

References

Maurice Herlihy, “Wait-free synchronization”

Lynch and Tuttle, “An Introduction to Input/
Output Automata”

 Maurice Herlihy & Nir Shavit “Lecture notes of
Art of multiprocessor computing.

L. Lamport “How to make a multiprocessor
computer that correctly executes multiprocess
programs.”

Friday, November 5, 2010

Linearizability vs sequential
consistency

Linearizability is stronger than sequential
consistency.

sequential consistency is not composable:(not a
local property)

If two objects are both sequential consistent, the
composition of them might be not.

linearizability has composability.

We only need to study isolated object

Friday, November 5, 2010

