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Context

• Last class 
—simultaneous multithreading for improving IPC 
—CMP for scalable parallelism 
—processors today combine the two 

– e.g., Power7, Intel Xeon Phi, Blue Gene/Q, ... 

• Today’s focus 
—architectures based on fine-grain multithreading 
—design points 

– Cray MTA-2 & Cray XMT: scalable high performance shared memory 
system for technical computing 
 sustained operations per second 

– Sun Niagara: commercial multithreaded server applications 
 sustained throughput of client requests 

– Oracle’s SPARC T5



Conventional Parallel Programming Wisdom

For high performance ... 

• Place data near computation 

• Avoid modifying shared data 

• Access data in order and reuse 

• Avoid indirection and linked data-structures 

• Partition program into independent, balanced computations 

• Avoid adaptive and dynamic computations 

• Avoid synchronization  

• Minimize inter-process communication 

• Rule of thumb: stride 1 + heavy data reuse ➔ performance
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John Feo, Cray Inc.



Throughput Computing

• For a single thread 
—memory is the principal 

obstacle to high 
performance 
– server workloads exhibit 

poor locality 
—exploiting ILP provides 

only a modest reduction 
in running time 
– conventional ILP 

processors have low 
utilization
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Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira, 
 K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.

• With many threads 
—can find something to compute every cycle 
—significantly higher throughput 
—processor utilization is much higher



Fine-grain Multithreading

Use thread-level parallelism to hide latencies 

• Multiple active threads per processor 
—thread = sequential ordered block of  > 1 instructions 

• Overlap delays due to long latency operations in one thread 
with instruction execution of other threads 

—interleave execution of multiple threads within the pipeline 

• Fine-grain multithreading requires HW support 
—multiple thread contexts (registers, status word, PC) 
—choose ready instruction to execute from among multiple threads  
—context switch without any delay cycles 
—multiple outstanding memory requests per thread
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A Multithreading Thought Question

• Question: what degree of multithreading is necessary to cover 
memory latency?
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• Answer: need a sufficient number of memory accesses in 
flight to cover the bandwidth delay product 

 The steady state parallelism required to hide the latency is 
equivalent to the number of in-flight requests 

B. Smith, Taking the Lead in HPC http://media.corporate-ir.net/media_files/irol/98/98390/presentations/SC04_Final.pdf. 2004. 
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Cray MTA-2 and 
Threadstorm



Tera MTA-2 and Cray Threadstorm

• 128 hardware thread streams 

• One instruction pipeline 

• Switch between instruction streams with no delay 

• Instruction streams 
—instruction types 

– a memory operation (M-op) 
– a fused multiply-add (A-op)  
– a branch/logical or add operation (C-op) 

—MTA-2 
– individual instructions 
– explicit distance to next dependent instruction (3 bits max) 

 max of 8-instructions in flight from one thread 
—Threadstorm “long instruction word” 

!8M-op A-op C-op

At least 21 ready threads 
needed to keep MTA-2 
processor fully utilized 

Sequence Alignment on the 
MTA-2. S. Bokhari, J. Sauer. 
IPDPS 2003, 152.



MTA-2 Processor

!9
Figure credit: T. Ungerer, B. Robič, J. and Šilc.  A survey of processors with explicit multithreading. 

ACM Computing Surveys 35, 1 (Mar. 2003), 29-63.



Threadstorm Processor
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Figure credit: John Feo, Cray Inc.



Threadstorm Processor Logical View

!11Figure credit: John Feo, Cray Inc.

Interleaved multithreading



Cray XMT System Logical View

!12Figure credit: John Feo, Cray Inc.



Cray XMT Memory Subsystem

• Shared memory 
—some memory can be reserved as local memory at boot time 
—only compiler and runtime system have access to local memory 

– stack space, register spill area, thread private data 

• Memory module cache 
—decreases memory latency and increases bandwidth 
—no coherence issues 

• 8 word data blocks randomly distributed across the system 
—eliminates stride sensitivity and hotspots 
—makes programming for data locality impossible 
—block moves to data buffer, but only word moves to processor 

• Full/empty bits on each data word



Conventional Parallel Programming Wisdom

For high performance ... 

• Place data near computation 

• Avoid modifying shared data 

• Access data in order and reuse 

• Avoid indirection and linked data-structures 

• Partition program into independent, balanced computations 

• Avoid adaptive and dynamic computations 

• Avoid synchronization  

• Minimize inter-process communication 

• Rule of thumb: stride 1 + heavy data reuse ➔ performance
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John Feo, Cray Inc.

Unnecessary on the XMT!



Cray XMT System Architecture
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MTX Linux

Compute   Service & IO

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

Service Partition 
Specialized Linux nodes 

Login PEs  
IO Server PEs  
Network Server PEs   
FS Metadata Server PEs  
Database Server PEs  

Compute Partition 
    MTX (BSD)

Figure credit: John Feo, Cray Inc.



System Comparison: MTA-2 vs. XMT
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MTA-2 XMT

CPU clock speed 220 MHz 500 MHz

Max system size 256 P 8192 P

Max memory 
capacity

1 TB  (4 GB/P) 128 TB  (16 GB/P)

TLB reach 128 GB 128 TB

Network topology Modified Cayley graph 3D torus

Network bisection 
bandwidth 3.5 * P GB/s 15.36 * P2/3 GB/s

Network injection 
rate

220 MW/s per processor Varies with system size

Table courtesy of John Feo, Cray Inc.



Cray XMT Memory Bandwidth Scaling
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Example torus 
configurations 6x12x8 11x12x8 11x12x16 22x12x16 14x24x24

Processors 576 1056 2112 4224 8064

Memory capacity 9 TB 16.5 TB 33 TB 66 TB 126 TB

Sustainable remote 
memory reference 
rate (per processor)

60 MW/s 60 MW/s 45 MW/s 33 MW/s 30 MW/s

Sustainable remote 
memory reference 
rate (aggregate)

34.6 GW/s 63.4 GW/s 95.0 GW/s 139.4 GW/s 241.9 GW/s

Relative size 1.0 1.8 3.7 7.3 14.0

Relative performance 1.0 1.8 2.8 4.0 7.0

Table courtesy of John Feo, Cray Inc.



Cray Urika-GD Graph Discovery Appliance
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2012-2014?
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Sun Niagara-1



!20

Niagara-1 Design Goals

• Optimize performance of multithreaded commercial 
workloads 
—specifically, improve throughput across all threads 

• Hide memory latency 

• Operate with low power (Niagara-1 T1: 72W typical, 79W peak)  
—very significant issue for data centers 
—need not met by single-threaded ILP processors 

• Deliver high performance / watt
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Characteristics of Commercial Server Apps

• High thread-level parallelism 
—client request parallelism in WWW applications 

• Typically  
—low instruction-level parallelism 

– except DSS (high), SAP-2T (medium) 
—large working sets 

– except SAP-2T (medium) 
—medium to high data sharing 

– except Web99 

• Data sharing can cause high coherence miss rates
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Niagara-1 at a Glance
• Threads rather than speed: 32 hardware threads  

—4 threads per thread group, 8 thread groups 
—each thread group shares a pipeline 

• SPARC processing pipeline 
—L1 caches for instructions, data 
—hide memory latency with zero-delay  

thread switch 

• Shared 3MB L2 cache 
—4 banks, pipelined for bandwidth 
—12-way set associative 

• Crossbar interconnect 
—links SPARC processing pipelines to L2 cache 

banks 
—provides 200GB/s bandwidth 
—provides two-entry Q for each src/dest pair 

• Memory: 4 banks, DDR2 memory; > 20GB/s 
bandwidth

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira, 
 K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.
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SPARC Pipeline Features

• Single issue, 6-stage pipeline  

• 4 threads in a group share pipeline 
—private resources 

– registers (register windows) 
– instruction and store buffers 

—shared resources (among thread group) 
– L1 cache 
– TLB 
– exception units 
– most pipeline registers 

• All pipelines share one FP unit on chip 
—a bottleneck for scientific computing! 

 (however, the design point for the chip was commercial server 
applications, not scientific computing)
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Niagara-1’s SPARC Pipeline

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira, 
 K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.
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Niagara-1’s Fine-grain Multithreading

• Thread select logic decides which thread 
—fetches an instruction into instruction buffer 
—issues an instruction to decode stage 

• Selection policy 
—typically, switch threads every cycle 

– favor least-recently-executed thread 
—scheduler assumes cache hits 

– speculatively issue next instruction (but with lower priority) 

• Select the next thread using info from various stages 
—instruction type (e.g. deselect successor to load)  
—miss 
—trap or interrupt 
—resource conflicts (e.g. FPU, division)

same thread
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Multithreading & Pipelining (Ideal)

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira, 
 K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.
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Handling Interlocks in Niagara-1

• Loads 
—3 cycle latency 
—stall thread until hazard clears 

• Divider 
—ALU throughput = 1/cycle; divider = < 1/cycle 
—implication: any thread executing DIV may need to wait 
—scheduling 

– priority given to least recently executed thread 
– while divider or FPU in use, other threads can use other resources
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2 Threads + Hazard 

On load miss: flush add, reissue when value arrives from L2

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira, 
 K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.
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Niagara-1 Memory Subsystem

• L1 Icache 
—16KB, 4-way set associative, 32-byte lines, 3 cycle latency 
—random replacement: less area 
—Ifetch: two instructions/cycle 

•  L1 Dcache 
—8KB, 4-way set associative, 16-byte lines, write through 
—reduce avg access time: miss rates ~ 10% 
—why not larger? 

– commercial server applications need much larger caches for < miss rates 
  tradeoff not favorable to area 

—4 threads compensate for higher miss rates (hide latency) 
—states: valid, invalid 
—stores do not update L1 cache until update L2: global visibility in L2 

• L2 shared cache 
—3MB, 4 banks, 12-way set associative, pipelined for bandwidth 
—shadows L1 tags in a directory 
—deliver load miss and line being replaced to L2 at same time 
—copy-back policy
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Using Niagara-1

• Appears as if 32 processors to OS 

• Expect multi-threaded SMP applications to benefit 
—fast data sharing in L2 rather than using SMP bus 

• Simple pipeline 
—no special instruction scheduling necessary 
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Niagara-1 vs. Niagara-2

• Processor core 
—32 vs. 64 threads (doubled number of threads per core) 
—double number of execution units per core (2 vs. 1) 
—new pipeline stage “pick” 

– pick 2 of 8 threads to issue in a cycle 

• Memory hierarchy 
—doubled set associativity of L1 from 4 to 8 
—doubled the number of L2 cache banks from 4 to 8 

– now 1 per core: boosts performance ~18% over just 4 banks 
– from 12-way to 16-way set associative 

• Floating point 
—one per core rather than one per chip 
—turned Niagara2 into a very respectable chip for scientific 

computing



Performance Comparisons
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Niagara-1 Performance

• Claim almost linear scaling on commercial workloads 

• Peak and average load expected to be similar  

• Performance modeled at 1, 1.5 and 2GHz 
—clock rate had a minimal impact on performance1

Sun's Niagara falls neatly into multithreaded place. 
Charlie Demerjian, The Inquirer, 02 November 2004,
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Niagara-1 vs. Opteron Performance

The Real Story about Sun's CoolThreads (aka Niagara) 
http://h71028.www7.hp.com/ERC/cache/280124-0-0-0-121.html



Stream Benchmarks: MTA-2  vs. Niagara

• Copy:   a(i) = b(i) 

• Scale:   a(i) = s * b(i) 
• Add:     a(i) = b(i) + c(i) 

• Triad:   a(i) = b(i) + s * c(i)
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Figure credit: Evaluating the Potential for Multithreaded Platforms for Irregular 
Scientific Computations, Nieplocha et al. CF’05, Ischia, Italy.
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Sparse Matrix Vector Multiply

 Williams et al. PERI - Auto-tuning memory-intensive kernels for 
multicore. Journal of Physics: Conference Series 125  (2008) 012038
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Niagara2 vs. Commodity Processors
Sparse matrix vector multiply

Figure credit: S. Williams et al. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms, SC2007.



Two More Benchmarks: Stencil & LBMHD
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Figure credit: S. Williams et al. PERI - Auto-tuning memory-intensive kernels for multicore.  
Journal of Physics: Conference Series 125 (2008) 012038



Niagara 2 vs. Commodity Processors
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Figure credit: S. Williiams et al. PERI - Auto-tuning memory-intensive kernels for multicore.  
 Journal of Physics: Conference Series 125 (2008) 012038



Benchmarks - I

Power system state estimation problem 
—conjugate gradient solver 
—key kernel: sparse-matrix-vector product 

—parallelization for the MTA: almost entirely automatic 
—parallelization for Niagara: OpenMP directives for loops 

– parallel loop, reduction clause, data scoping (shared vs. private)

!40Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07. 



Power System State Estimation
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• Is this a fair comparison? • How might we improve it?

Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07. 



Benchmarks - 2

Anomaly detection for categorical data 
—traffic analysis of categorical data using a partial-dimension tree 
—key computation: insert into linked list of a node’s children 
—parallelization for the MTA: full-empty bit synchronization 

—parallelization for Niagara: OpenMP + hash table of locks 
– hash pointer addresses onto locks for fine-grain synchronization 

 drawback: unrelated operations might contend for a lock
!42Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07. 



Anomaly Detection Speedup
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MTA-2 Niagara-1

Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07. 



Betweenness Centrality

• Graph G=(V,E) 

• Let σst denote the 
number of shortest paths 
between vertices s and t. 

• Let σst(v) be the count 
that pass through a 
specified vertex v 

• Betweenness centrality 
of v is defined as
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Figure credit: A faster parallel algorithm and efficient multithreaded 
implementations for evaluating betweenness centrality on massive 

datasets, K. Madduri et al. IPDPS, 2009, pp.1-8.



Betweenness Centrality
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• 1PE: XMT 47% faster than MTA-2 
• 16 nodes: comparable 
• MTA-2 modified Cayley graph 

network scales much better than 
XMT torus

Figure credit: A faster parallel algorithm and efficient multithreaded implementations for evaluating 
betweenness centrality on massive datasets, K. Madduri et al. IPDPS, 2009, pp.1-8.



Chip Multi Threading (CMT) 
Oracle SPARC T5 

(March 2013)
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SPARC T5

!47Cross Bar Bisection B/W = 1TB/s



SPARC T3 to T5
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Feature T5 T4 T3
Frequency 3.6 GHz 3 GHz 1.65 GHz
O-o-O Yes Yes No
Dual Issue Yes Yes No

I/D Prefetch Yes Yes No
Cores 16 8 Up to 16 
Threads/Core 8 8 8
Sockets 1,2,4,8 1,2,4 1,2,4

Caches L1: 16KI, 16KD 
L2: 128K 
L3: 8MB  

(8 banks, 16 way)

L1: 16KI, 16KD 
L2: 128K 
L3: 4M 

(8 banks, 16 way)

L1: 16KI, 8KD 
L2: 6MB 
(16 banks, 24 way)

Functional 
Units/core

1 FPU, 2 Integer 

Crypto (14 ciphers)

1 FPU, 2 Integer 

Crypto (14 ciphers)

1 FPU, 2 Integer 

Crypto (12 ciphers)

Coherency 
Switch

7 x 153.6Gb/s 6 x 9.6Gb/s 6 x 9.6Gb/s



SPARC T5 Pipelines
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• Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC 

T5-1B Server Architecture. Oracle White Paper. July 2013.



SPARC T5 Multithreading
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• Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC 

T5-1B Server Architecture. Oracle White Paper. July 2013.



SPARC T5 Processor
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• Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC 

T5-1B Server Architecture. Oracle White Paper. July 2013.



SPARC T5 Scaling
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Key to scaling: directory-based coherence

• Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC 
T5-1B Server Architecture. Oracle White Paper. July 2013.



SPARC T5 System Performance

“SPARC T5-8 Server Delivers World Record TPC-C Single System Performance”
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TPC-C is an OLTP 
system benchmark. It 
simulates a complete 
environment where a 
population of terminal 
operators executes 
transactions against a 
database. The 
benchmark is centered 
around the principal 
activities 
(transactions) of an 
order-entry 
environment. These 
transactions include 
entering and delivering 
orders, recording 
payments, checking 
the status of orders, 
and monitoring the 
level of stock at the 
warehouses.

March 2013: http://www.oracle.com/us/solutions/performance-
scalability/sparc-t5-8-single-system-1925151.html



Thought Questions

• What are your thoughts about programmability of 
multithreaded processors? 

• Comment about their suitability for  
—dense matrix algorithms 
—sparse matrix algorithms 
—graph algorithms 

• What are the key issues in system design for multithreaded 
processors?

!54



!55

References

• Niagara: A 32-Way Multithreaded SPARC Processor, Poonacha 
Kongetira, Kathirgamar Aingaran, and Kunle Olukotun, IEEE 
Micro, pp. 21-29, March-April 2005. 

• Sun's Niagara falls neatly into multithreaded place, Charlie 
Demerjian, The Inquirer, 02 November 2004. 

• OpenSparc T1 Microarchitecture Specification, Sun 
Microsystems, http://opensparc-t1.sunsource.net/specs/  
OpenSPARCT1_Micro_Arch.pdf 

Niagara2: A Highly Threaded Server-on-a-Chip. Robert Golla. 
Sun Microsystems Slides, Oct. 10, 2006. 

ELDORADO. John Feo, David Harper, Simon Kahan, Petr 
Konecny. Proceedings of the 2nd Conference on Computing 
Frontiers (Ischia, Italy, May 04 - 06, 2005). ACM, NY, NY, 28-34.



!56

References

• A survey of processors with explicit multithreading. T. Ungerer, 
B. Robič, and J. Šilc. ACM Computing Surveys 35, 1 (Mar. 2003), 
29-63. DOI= http://doi.acm.org/10.1145/641865.641867 

• Eldorado. Presentation. John Feo. Cray, Inc., July 2005. 

• Evaluating the Potential for Multithreaded Platforms for Irregular 
Scientific Computations, Jarek Nieplocha, Andrés Márquez, 
John Feo, Daniel Chavarría-Miranda, George Chin, Chad 
Scherrer, Nathaniel Beagley. Proc. 4th Intl. Conf. on Computing 
Frontiers, Ischia, Italy, 2007, pages 47 - 58. 

• A faster parallel algorithm and efficient multithreaded 
implementations for evaluating betweenness centrality on 
massive datasets, K. Madduri, D. Ediger, K. Jiang, D. A. Bader, 
D. Chavarria-Miranda. IPDPS, 2009, pp.1-8. 

• Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC 
T5-1B Server Architecture. Oracle White Paper. July 2013.


