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Context

o |astclass

—simultaneous multithreading for improving IPC
—CMP for scalable parallelism

—processors today combine the two
— e.g., Power7, Intel Xeon Phi, Blue Gene/Q, ...

e Today’s focus

—architectures based on fine-grain multithreading
—design points

— Cray MTA-2 & Cray XMT: scalable high performance shared memory
system for technical computing

sustained operations per second

— Sun Niagara: commercial multithreaded server applications
sustained throughput of client requests

— Oracle’s SPARC T5



Conventional Parallel Programming Wisdom

For high performance ...
e Place data near computation
e Avoid modifying shared data
* Access data in order and reuse
e Avoid indirection and linked data-structures
e Partition program into independent, balanced computations
e Avoid adaptive and dynamic computations
e Avoid synchronization
e Minimize inter-process communication

¢ Rule of thumb: stride 1 + heavy data reuse = performance

John Feo, Cray Inc.



Throughput Computing
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e With many threads
—can find something to compute every cycle
—significantly higher throughput
—processor utilization is much higher

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira,
K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.



Fine-grain Multithreading

Use thread-level parallelism to hide latencies

e Multiple active threads per processor
—thread = sequential ordered block of > 1 instructions

e Overlap delays due to long latency operations in one thread
with instruction execution of other threads

—interleave execution of multiple threads within the pipeline

* Fine-grain multithreading requires HW support
—multiple thread contexts (registers, status word, PC)
—choose ready instruction to execute from among multiple threads

—context switch without any delay cycles
—multiple outstanding memory requests per thread



A Multithreading Thought Question

Question: what degree of multithreading is necessary to cover
memory latency?

Answer: need a sufficient number of memory accesses in
flight to cover the bandwidth delay product

The steady state parallelism required to hide the latency is
equivalent to the number of in-flight requests

* |n a system that transports objects from input to output
without creating or destroying them,

latency x bandwidth = concurrency
* In queueing theory, this result is known as Little’s law.

=) =)
=) =)

B. Smith, Taking the Lead in HPC http://media.corporate-ir.net/media_files/irol/98/98390/presentations/SC04_Final.pdf. 2004.
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Cray MTA-2 and
Threadstorm



Tera MTA-2 and Cray Threadstorm

e 128 hardware thread streams

®* One instruction pipeline

e Switch between instruction streams with no delay

Instruction streams At least 21 ready threads

—instruction types needed to keep MTA-2
— a memory operation (M-op) processor fully utilized
— a fused multiply-add (A-op)

Sequence Alignment on the
— abranch/logical or add operation (C-op) MTA-2. S. Bokhari, J. Sauer.

IPDPS 2003, 152.
—MTA-2
— individual instructions
— explicit distance to next dependent instruction (3 bits max)
max of 8-instructions in flight from one thread

—Threadstorm “long instruction word”

M-op | A-op | C-op
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Threadstorm Processor Logical View
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Cray XMT System Logical View
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Figure credit: John Feo, Cray Inc. 12



Cray XMT Memory Subsystem

e Shared memory

—some memory can be reserved as local memory at boot time

—only compiler and runtime system have access to local memory
— stack space, register spill area, thread private data

* Memory module cache

—decreases memory latency and increases bandwidth
—no coherence issues

e 8 word data blocks randomly distributed across the system

—eliminates stride sensitivity and hotspots
—makes programming for data locality impossible
—block moves to data buffer, but only word moves to processor

e Full/empty bits on each data word



Conventional Parallel Programming Wisdom

For high performance ...
e Place data near computation
e Avoid modifying shared data
* Access data in order and reuse
e Avoid indirection and linked daiasivucidres

e Partition program into ingshencent, balanced computations

e Avoid adaptive anc-syn=uc€ computations
e Avoid svnchpatdz7 lon
e Minimi*¢ Jiticie<process communication

¢ Rule of thumb: stride 1 + heavy data reuse = performance

John Feo, Cray Inc.
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Cray XMT System Architecture
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Figure credit: John Feo, Cray Inc.
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System Comparison: MTA-2 vs. XMT

MTA-2

220 MHz

CPU clock speed

500 MHz

VEVENR Gl IF- 3 256 P

8192 P

Max memory
capacity

1TB (4 GB/P)

128 TB (16 GB/P)

TLB reach 128 GB

128 TB

N1 7614 @ (o] Lol [eTs\VAB Modified Cayley graph

3D torus

Network bisection

bandwidth 3.5*P GBI/s

15.36 * P23 GB/s

Network injection
rate

220 MW/s per processor

Varies with system size

Table courtesy of John Feo, Cray Inc.
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Cray XMT Memory Bandwidth Scaling

Example torus

. - 6x12x8 11x12x8 11x12x16 22x12x16 14x24x24

configurations

576 1056 2112 4224 8064
Memory capacity 9TB 16.5 TB 33TB 66 TB 126 TB
Sustainable remote
memory reference 60 MW/s 60 MW/s 45 MW/s 33 MWi/s 30 MWi/s
rate (per processor)
Sustainable remote
memory reference 34.6 GW/s 63.4 GW/s | 95.0 GW/s | 139.4 GW/s | 241.9 GWIs
rate (aggregate)

1.0 1.8 3.7 7-3 14.0
Relative performance 1.0 1.8 2.8 4.0 7.0

Table courtesy of John Feo, Cray Inc.
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Cray Urika-GD Graph Discovery Appliance

Product Brief | Technical Specifications ::M

. : ~ | The Urika-GD™ graph analytics appliance designed for data
C ray U Il ka- G D discovery in very large datasets using graph analytics. The Urika

, - appliance is available in a range of different sizes. Contact Cray
Technical Specifications for specifications of appliances larger than 512 processors
(Urika-512).

The Urika-GD appliance consists of:

* Graph analytics platform, providing graph-optimized hardware with shared-memory, multithreading and scalable 1/0
* Graph analytics database, providing an RDF triplestore and SPARQL query engine

* Graph analytics application services, providing management, security and data pipeline functions

2012-2014?

GRAPH ANALYTICS PLATFORM

Urika-128 Urika-512

Cabinets - Processor ‘ 1 ‘ 2 ‘ 3 ‘ 6
Cabinets — Storage _ 1 _ 1
Processors
Threadstorm4 Graph Accelerators J 128 512
with128 hardware threads per processor
x86 Management and /0 “ 68 “ 68
Global Shared Memory (TB) 4 16
External Connectivity
10 Gigabit Ethernet Ports 2
Gigabit Ethernet ports 8
Infiniband HCAs Optional Optional
Fibre Channel HBAs 4 4
Interconnect Three-dimensional torus interconnect using the Cray Seastar2 communications processor.

Each SeaStar?2 provides six 7.6 GB/s links to neighbors, and a 6.4 GB/s connection to the x86 or

\ [hreadstorm processor.
Total interconnect bandwidth scales linearly with increasing system size.

18



Sun Niagara-1

19



Niagara-1 Design Goals

Optimize performance of multithreaded commercial
workloads

—specifically, improve throughput across all threads

Hide memory latency

Operate with low power (Niagara-1 T1: 72W typical, 79W peak)

—very significant issue for data centers
—need not met by single-threaded ILP processors

Deliver high performance / watt

20



Characteristics of Commercial Server Apps

High thread-level parallelism
—client request parallelism in WWW applications
Typically
—Ilow instruction-level parallelism
— except DSS (high), SAP-2T (medium)
—large working sets
— except SAP-2T (medium)

—medium to high data sharing
— except Web99

Data sharing can cause high coherence miss rates

21



Niagara-1 at a Glance

e Threads rather than speed: 32 hardware threads
—4 threads per thread group, 8 thread groups

—each thread group shares a pipeline waw == 1=
e SPARC processing pipeline Sprc e N ey
—L1 caches for instructions, data A g |
—hide memory latency with zero-delay e R I o - e
thread switch Spcae —
e Shared 3MB L2 cache w . o| e -
—4 banks, pipelined for bandwidth e
—12-way set associative | |
e Crossbar interconnect i o
—links SPARC processing pipelines to L2 cache
banks

—provides 200GB/s bandwidth
—provides two-entry Q for each src/dest pair

e Memory: 4 banks, DDR2 memory; > 20GB/s

bandwidth

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira,
K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.



SPARC Pipeline Features

e Single issue, 6-stage pipeline

e 4 threads in a group share pipeline
—private resources

registers (register windows)
instruction and store buffers

—shared resources (among thread group)

L1 cache

TLB

exception units

most pipeline registers

e All pipelines share one FP unit on chip
—a bottleneck for scientific computing!

(however, the design point for the chip was commercial server
applications, not scientific computing)

23



Niagara-1’s SPARC Pipeline

Fetch Thread select Decode | Execute I Memory Writeback
Register
file
x 4
ICache Instruction \ * -
- DCache
ITLB buffer x 4 Theead| | W, |—=| DB |Crossbar
select —=| Decode — o 0 store interface
Mux piv [ | buffersx4
A

Thread selects

Thread
select
Mux

PC
logic
x4

Thread

select
logic

-«—— |nstruction type

-+—— Misses

-«—— Traps and interrupts

~+—— Resource conflicts

Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira,

K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.
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Niagara-1’s Fine-grain Multithreading

Thread select logic decides which thread

—fetches an instruction into instruction buffer
. . . same thread
—issues an instruction to decode stage

Selection policy

—typically, switch threads every cycle
— favor least-recently-executed thread

—scheduler assumes cache hits
— speculatively issue next instruction (but with lower priority)

Select the next thread using info from various stages
—instruction type (e.g. deselect successor to load)
—miss
—trap or interrupt
—resource conflicts (e.g. FPU, division)

25



Multithreading & Pipelining (ldeal)
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Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira,
K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.



Handling Interlocks in Niagara-1

Loads

—3 cycle latency
—stall thread until hazard clears

Divider
—ALU throughput = 1/cycle; divider = < 1/cycle

—implication: any thread executing DIV may need to wait

—scheduling
— priority given to least recently executed thread

— while divider or FPU in use, other threads can use other resources

27
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Cycles
=
P .
' S | Diod Eioud Mg Wioiq
: :
I [
: S K
] |
s | ! Foadd } Sttab i Dab  Eotww Mooy Wb
8 L4 :
- | L —
= : : :
2 ' Fiaa 1 Staa 1+ Dy S M4 Wiz
L : :
| !
| |
| !
' Fubr | Swoedd Doadd Enaid Mosk
e
Figure credit: Niagara: A 32-Way Multithreaded SPARC Processor, P. Kongetira,
' K. Aingaran, and K. Olukotun, IEEE Micro, pp. 21-29, March-April 2005.

On load miss: flush add, reissue when value arrives from L2
20




Niagara-1 Memory Subsystem

L1 Icache

—16KB, 4-way set associative, 32-byte lines, 3 cycle latency
—random replacement: less area
—Ifetch: two instructions/cycle

L1 Dcache

—38KB, 4-way set associative, 16-byte lines. write through
—reduce avg access time: miss rates ~ 10%

—why not larger?
— commercial server applications need much larger caches for < miss rates
tradeoff not favorable to area
—4 threads compensate for higher miss rates (hide latenc
—states: valid, invalid
—stores do not update L1 cache until update L2: global visibility in L2

L2 shared cache

—3MB. 4 banks. 12-way set associative, pipelined for bandwidth

—shadows L1 tags in a directory
—deliver load miss and line being replaced to L2 at same time

—copy-back policy

29



Using Niagara-1

e Appears as if 32 processors to OS

e Expect multi-threaded SMP applications to benefit
—fast data sharing in L2 rather than using SMP bus

e Simple pipeline
—no special instruction scheduling necessary

30



Niagara-1 vs. Niagara-2

Processor core

—32 vs. 64 threads (doubled number of threads per core)
—double number of execution units per core (2 vs. 1)
—new pipeline stage “pick”

— pick 2 of 8 threads to issue in a cycle

Memory hierarchy

—doubled set associativity of L1 from 4 to 8

—doubled the number of L2 cache banks from 4 to 8
— now 1 per core: boosts performance ~18% over just 4 banks
— from 12-way to 16-way set associative

Floating point

—one per core rather than one per chip

—turned Niagara2 into a very respectable chip for scientific
computing

31



Performance Comparisons

32



Niagara-1 Performance

e Claim almost linear scaling on commercial workloads
e Peak and average load expected to be similar

® Performance modeled at 1, 1.5 and 2GHz
—clock rate had a minimal impact on performancef

Sun's Niagara falls neatly into multithreaded place.

Charlie Demerjian, The Inquirer, 02 November 2004, 13



Niagara-1 vs. Opteron Performance

Central Server

Operating System

SAP Release

Database

Certification Number
Processor Type
Processor/Cores/Threads
Configured Memory
Form Factor (Rack Units)

Calculated System Power
(Watts)*

Number of SAP SD Benchmark
Users

Number of SAP SD Benchmark
Users/Watt

HP ProLiant DL385
Windows Server 2003

SAP R/3@ Enterprise 4.7
SQL Server 2000
2005026
Dual-Core Opteron 2.2 GHz
2/4/4
16 GB
2U
388

983

2.5

Sun Fire Model T2000
Solaris 10

mySAP™ ERP 2004
MaxDB 7.5
2005047
UltraSPARC T1 1.2 GHz
1/8/32
32 GB
2U
376

950

2.5

The Real Story about Sun's CoolThreads (aka Niagara)
http://h71028.www7.hp.com/ERC/cache/280124-0-0-0-121.html
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Stream Benchmarks: MTA-2 vs. Niagara

e Copy: af(i)=b(i)

e Scale: a(i)=s * b(i)

e Add:

a(i) = b(i) + c(i)

e Triad: a(i) =b(i) +s * c(i)

—+— Copy —m=— Scale ——Add Triad —— Avg.
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Number of MTA-2 proce ssors
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—

1

2 4 8 16 K4
Number of Niagara Threads

Figure credit: Evaluating the Potential for Multithreaded Platforms for Irregular
Scientific Computations, Nieplocha et al. CF’05, Ischia, Italy.
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Sparse Matrix Vector Multiply

A.val

A.rowstart

EEEEEEEEEEEEEEEE <
EEEEEEEEEEEEEEEE <

(b)

algebra conceptualization CSR data structure

for (r=0; r<A.rows; r++) {
double y0 = 0.0;
for (i=A.rowstart[r]; i<A.rowstart[r+1]; i++){
y0 += A.val[i] * x[A.col[i]];
}
ylr]l = y0;

(c)

CSR reference code

Williams et al. PERI - Auto-tuning memory-intensive kernels for
multicore. Journal of Physics: Conference Series 125 (2008) 012038

A.co1| |
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Niagara2 vs. Commodity Processors

Sparse matrix vector multiply

Core AMD Intel Sun
Architecture (Opteron X2| Clovertown | Niagara2
Type super scalar| super scalar MT
‘ out of order| out of order |dual issue*
Clock (GHz) 2.2 23 1.4
L1 DCache 64KB 32KB SKB
Local Store — —
DP fops/cycle 2 4 1
DP GFlop/s 44 9.33 1.4
| System [Opteron X2| Clovertown | Niagara2 |
# Sockets 2 2 |
Cores/Socket 2 4 8
4MB 16MB 4MB
. (1 MB/core)|(4MB/2cores)| (shared)
DP GFlop/'s 17.6 74.7 11.2
DDR2 FBDIMM | FBDIMM
667 MHz | 667 MHz |667 MHz |
DRAMTYPE | 01286 | 4x6db | 4x128b
DRAM
(read GB/s) 213 213 42.6
Ratio
Flop:Byte 0.83 3.52 0.26
Max Socket
Pwr (Watts) 190 160 84
Sustained Sys
Pwr (Watts) 230 330 350

3.5
3.0 4
2.5 -
w

= 2.0 1
30
1.0 A
0.5 4

[AMD x2|

CODual Socket x 2 Core [*]

02 Core[*

[ 1 Core[PF,RB,CB]
01 Core[PF,RB]

01 Core[PF)
H1 Core - Naive

6e \} \3 \Y <
o v“"’::\*ge;ﬁw <‘°p‘«.1""w

3.5

3.0

Intel Clovertown

A OSKI-PETSc

QO OSKI B

25 4
320
3

E 151

1.0 4
0.5 -

0.0 -

o e, o S "‘“«o“‘ ¥ 0’ e
€

6.0

o

A=

5.0 4

» 4.0

~

é‘ 3.0 4

© 2.0
1.0

Sun Niagara2

M1 Core - Naive

1

01 Core x 8 Threads[*] []2 Cores x 8 Threads[*]
[04 Cores x 8 Threads[*] []8 Cores x 8 Threads[*]

W & g ? o
o ¢d>°° «® y J’p") g dﬂv‘ Vv ‘,,5\9
02 Sockets x 4 Cores[*] |
4 Cores
02 ComL |
@1 Core 1
01 Core|PF.RB
@1 Core[PF
H1 Core - Naive
A OSKI-PETSc
O 0OSKI
(9\‘ e \9 \’t\
“wd‘. «’" S we®
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1 —

0.0 -
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=
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§ W o® o e
o, *,99"‘ N oo“' o PR p cv":‘.‘,v”' v

Figure credit: S. Williams et al. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms, SC2007.



Two More Benchmarks: Stencil & LBMHD

.—:/f \\"\
’ Next[x,y,z] =
,,,,,, o / AN c0 * current[x,y,z] +
e /o Y a =
! 'S x+1 Y current[x+1,y,z] +
i Sz | current[x-1,y,z] +
[ e ! current[x,y+1,z] +
R \ v/ current[x,y-1,z] +
+Y T A current[x,y,z+1] +
N - e current[x,y,z-1]
+X 2, ‘/,’ );
(a) (b) (c)
PDE grid stencil for heat equation PDE inner loop
’ struct{
// macroscopic quantities
double * pensity;
double * momentum[3];
double * Magnetic[3];
// distributions
double * MomentumDist[27];
double * magneticoist[3][27];
+Y }
+X
\ J
(a) (b) (c) (d)
macroscopic variables momentum distribution magnetic distribution data structure

Figure 4. Visualization of the datastructures associated with LBMHD: (a) the 3D macroscopic grid, (b) the
D3Q27 momentum scalar velocities, (¢) D3Q15 magnetic vector velocities, and (d) C structure of arrays
datastructure. Note, each pointer refers t a N3 grid, and X is the unit stride dimension.

The code is far too complex to duplicate here, although a conceptualization of the lattice method and the
data structure itself is shown in figure 4. Nevertheless, the collision() operator must read 73 doubles, write 79
doubles, and perform 1300 floating-point operations per lattice update. This results in a compulsory limited
arithmetic intensity of about 0.7 on write allocate architectures.

Figure credit: S. Williams et al. PERI - Auto-tuning memory-intensive kernels for multicore.
Journal of Physics: Conference Series 125 (2008) 012038
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GFlop/s

Niagara 2 vs. Commodity Processors

18 — 70.0
Oauto-tuned pthreads (explicit SIMD and DMA)
16 + [auto-tuned pthreads |
Opthreads 60.0
14 = ' "
50.0
12 ] ;
10 i i 40.0 1
8 I 2 30.0 -
6 I I o
L | G 20.0 '
4 | | _
2 ﬁ [ |l | 10.0 -
i .o 1] O
s T £ s T g - s 3 g T g 288 2T 2 =278
§£8: &8: &2z &&% S8 &%z &%z &%z
o 9 0w 9 0o 9 o 9 n 9 o 9 n 9 o 9
Xeon E5345 Opteron 2356 T2+ T5140 QS20 (Cell Xeon E5345 Opteron 2356 T2+ T5140 QS20 (Cell
(Clovertown) (Barcelona) (Victoria Falls) Blade) (Clovertown) (Barcelona) (Victoria Falls) Blade)
(a) Performance (b) Power Efficiency
System Xeon E5345 Opteron 2356 UltraSparc T5140 T2+ QS20
y (Clovertown) (Barcelona) (Victoria Falls) Cell Blade
# Sockets 2 2 2 2
Cores/Socket 4 4 8 1 8
shared .2/1.3 Cache |4 x4MB(shared by 2)|2x2MB(shared by 4)| 2 x4MB(shared by 8) — —
DP GFlop/s 74 .66 73.6 18.7 12.8 29
DRAM 21.33(read) 7133 42 66(read) 512
Bandwidth (GB/s) 10.66(write) T 21.33(write) T
DP Flop:Byte Ratio 233 345 0.29 0.25 | 0.57
System Power (Watts)® 330 350 610 2857
Threading Pthreads Pthreads Pthreads Pthreads | libspe2.1
Compiler icc 10.0 gcc4.1.2 gcc404 xlc82 | xlc 82

Figure credit: S. Williams et al. PERI - Auto-tuning memory-intensive kernels for multicore.
Journal of Physics: Conference Series 125 (2008) 012038
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Benchmarks - |

Power system state estimation problem

—conjugate gradient solver
—key kernel: sparse-matrix-vector product
do i =1, N
t = 0.0
CSMTA loop serial
do j = irow(i), irow(i + 1) -1
t =t + a(j) * x(icol(3))
end do
r(i) = t

end do

—parallelization for the MTA: almost entirely automatic

—parallelization for Niagara: OpenMP directives for loops
— parallel loop, reduction clause, data scoping (shared vs. private)

Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07.



Power System State Estimation
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Figure 11: Wall clock time (left) and speedup (right) for PSE on the Cray MTA-2
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Figure 12: Wall clock time (left) and speedup (right) for PSE on the Sun Niagara

¢ |s this a fair comparison? e How might we improve it?

Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07.



Benchmarks - 2

Anomaly detection for categorical data

—traffic analysis of categorical data using a partial-dimension tree
—key computation: insert into linked list of a node’s children
—parallelization for the MTA: full-empty bit synchronization

while true {
ptr = node.next
if ptr is null
ptr = readfe(node.next)
if ptr is not null then continue
ptr = memory for new node
initialize new node
writeef(node.next, ptr)
break
else if next node is the one I want
increment counter
writeef(node.next, ptr)
break
else
writeef(node.next, ptr)
node = ptr
end if
} end while

—parallelization for Niagara: OpenMP + hash table of locks
— hash pointer addresses onto locks for fine-grain synchronization

drawback: unrelated operations might contend for a lock

Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07.



Anomaly Detection Speedup
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Nieplocha et al. Evaluating the Potential of Multithreaded Platforms for Irregular Scientific Computations. CF’07.



Betweenness Centrality

— 1e+8
Graph G=(V,E) .
Let ost denote the
number of shortest paths ¢ 2] . :
between vertices sandt. = "*] -
Let ost(v) be the count I
that pass through a 1
specified vertex v te-s
1e-5 T T T
Betweenness centrality Node Degree
of v is defined as Figure 4. Centrality analysis (Node degree vs. approxi-
mate betweenness value) of the IBDb movie actor data
| o -t('l’) set (1.54 million vertices and 78 million edges). Vertices
B(f.‘( 3 ) — Z 5t represent actors, and edges correspond to actors co-
| T st starring in movies.

s#Fv#£teV

Figure credit: A faster parallel algorithm and efficient multithreaded
implementations for evaluating betweenness centrality on massive

datasets, K. Madduri et al. IPDPS, 2009, pp.1-8. 44



Betweenness Centrality

Table 3. Performance of the SSCA#2 betweenness
centrality kernel for a graph of SCALE 24 on the Cray

XMT and the Cray MTA-2.

System/Configuration TEPS rate (Millions of edges per second)

XMT, 1 processor 15.33
XMT, 16 processors 160.00
MTA-2, 1 processor 10.39
MTA-2, 16 processors 160.16
MTA-2, 40 processors 353.53

e 1PE: XMT 47% faster than MTA-2

* 16 nodes: comparable

e MTA-2 modified Cayley graph
network scales much better than
XMT torus

180

- - -
N B (o2
o o o

-
o
o

Betweenness TEPS rate
(Millions of edges per second)
8 &8 8

o

(o]
o
1

8 12 16

Number of processors

Figure 3. Parallel performance of SSCA#2 between-
ness kernel on the Cray XMT for a graph of 16.77 million

vertices and 134.21 million edges (SCALE 24).

Figure credit: A faster parallel algorithm and efficient multithreaded implementations for evaluating
betweenness centrality on massive datasets, K. Madduri et al. IPDPS, 2009, pp.1-8. i
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Chip Multi Threading (CMT)
Oracle SPARC T5
(March 2013)
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SPARC T5
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SPARC T3to T5

Feature T5 T4 T3
Frequency 3.6 GHz 3 GHz 1.65 GHz
0-0-0 Yes Yes No
Dual Issue Yes Yes No
I/D Prefetch Yes Yes No
Cores 16 8 Up to 16
Threads/Core |8 8 8
Sockets 1,2,4,8 1,2,4 1,2,4
Caches L1: 16KIl, 16KD L1: 16KIl, 16KD L1: 16KI, 8KD
L2: 128K L2: 128K L2: 6MB
L3: 8MB L3: 4M (16 banks, 24 way)
(8 banks, 16 way) (8 banks, 16 way)
Functional 1 FPU, 2 Integer 1 FPU, 2 Integer 1 FPU, 2 Integer
Units/core Crypto (14 ciphers) | Crypto (14 ciphers) | Crypto (12 ciphers)
Coherency 7 x 153.6Gb/s |6 x 9.6Gb/s 6 x 9.6Gb/s
Switch
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SPARC T5 Pipelines

p
16-Stage Integer Pipeline

T ICHOFAEr DS Er D SCec O Destet yDecotes) premmel emames Jremmes
Ritoackexote L issuot i esuns L ssuer s ol

20-Stage Load-Store Pipeline

i i il il il i) i i

27-Stage Floating-point Graphics Pipeline

e Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC
T5-1B Server Architecture. Oracle White Paper. July 2013.
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SPARC T5 Multithreading

Core1| Core2| Core3| Cored| Core5| Core6| Core7| Core8| Core 9 Cou10|60n11 00n12|Cou1acon1460n15|(:on10

I Memory Latency Il Compute

Twoudd
Teeacdt
L )
Treeadt
Tweud 8
Treadt
Twoul 8
Teeact
Twoul 8
Teeadt
Tweui
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Twoad 8

Figure 3. A single 16-core SPARC T5 processor supports up to 128 threads, with up to two threads running in each
core simultaneously.

Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC
T5-1B Server Architecture. Oracle White Paper. July 2013. 50



SPARC T5 Processor

8
DOR3 - 1066 MHz DOR3 - 1066 MHz DDR3 - 1086 MHz  DOR3 - 1066 MHz 8g
B : ©
TR :
5 @
| 1 2 g
g8
BoB BoB BoB | BoB x g
Memory Memory Memory Coherency Links
Control Control Control 12.8 Gbps per lane
H H H - 12 lanes per link
Coherence W Coherence Unit Coherence Unit
SPARC S3 | f =1 |
Core
28KB L2

108

8 x 9 Crossbar (~1TBps bandwidth)

8 threads per Core
Figure 4. The SPARC T5 processor provides seven coherence links to connect to up to four other processors.
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e Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC
T5-1B Server Architecture. Oracle White Paper. July 2013. 51



SPARC T5 Scaling

Scaling

1 7 | | | | | | |
3 2 3 4 5 6 7 3

Socket Count

Key to scaling: directory-based coherence

e Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC

T5-1B Server Architecture. Oracle White Paper. July 2013. 59



SPARC T5 System Performance

“SPARC T5-8 Server Delivers World Record TPC-C Single System Performance”

TPC-Cis an OLTP
system benchmark. It
simulates a complete
environment where a
population of terminal
operators executes
transactions against a
database. The
benchmark is centered
around the principal
activities
(transactions) of an
order-entry
environment. These
transactions include
entering and delivering
orders, recording
payments, checking
the status of orders,
and monitoring the
level of stock at the
warehouses.

SPARC T5-8 IBM Power
780 3-node
cluster

Processor Model 3.6 GHz 3.86 GHz
(CPUs/Cores/Threads) SPARC T5 Power 7
(8/128/1024) (24/192/768)

tpmC 8,552,523 10,366,254
Price / tpmC $0.55 USD $1.38 USD
tpmC / CPU 1,069,065.4 431,927.3
Memory Size 4TB 6TB
Database Oracle IBM DB2 9.7
Database 11g
Release 2
Availability Date 9/25/2013 10/13/2010

IBM Power IBM x3850 X5

595

5.0 GHz
Power 6
(32/64/128)

6,085,166
$2.81 USD
190,161.4
47TB

IBM DB2 9.5

12/10/2008

2.40 GHz
Intel

Xeon E7-8870
(4/40/80)

3,014,684
$0.59 USD
753,671
3TB

IBM DB2 9.7

9/22/2011

March 2013: http://www.oracle.com/us/solutions/performance-

scalability/sparc-t5-8-single-system-1925151.html

IBM Flex
x240

2.90 GHz
Intel

Xeon E5-2690
(2/16/32)

1,503,544
$0.53 USD
751,772
768 TB

IBM DB2 9.7

8/16/2012
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Thought Questions

What are your thoughts about programmability of
multithreaded processors?

Comment about their suitability for
—dense matrix algorithms
—sparse matrix algorithms
—qgraph algorithms

What are the key issues in system design for multithreaded
processors?
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