
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Cache Coherence Protocols for
Chip Multiprocessors - II

COMP 522 Lecture 6 24 January 2019

!2

Context

• Thus far
—chip multiprocessors
—hardware threading strategies
—future microprocessor issues and trends
—cache coherence and victim replication

• Today: more cache coherence protocols for current and future
chip multiprocessors

!3

Today’s References

• ASR: Adaptive selective replication for CMP caches. B.
Beckmann, M. Marty, and D. Wood. MICRO-39, Dec. 2006.

• Elastic Cooperative Caching: An Autonomous Dynamically
Adaptive Memory Hierarchy for Chip Multiprocessors. E.
Herrero, Jose Gonzalez, and Ramon Canal. ICSA ’10, Saint-
Malo, France, June 2010.

• Tardis: Time Traveling Coherence Algorithm for Distributed
Shared Memory. Xiangyao Yu and Srinivas Devadas. 2015. In
Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT) (PACT '15). IEEE
Computer Society, Washington, DC, USA, 227-240.

!4

Tiled Architectures

Organize multicore processor as a set of tiles

• Each tile
—one or more cores
—some private cache
—some shared cache

• Issues
—wire delay: tens of clock cycles across chip
—long delays data accesses by a core is often in other tiles

!5

Adaptive Selective Replication

Adaptive Selective Replication
• Demonstrate that cache replication policies should focus on shared read-

only blocks.
—for commercial workloads, shared read-only blocks account for 42-71% of L2

requests, but consume—without replication—only 10-21% of the L2 capacity
—replicating relatively few shared read-only blocks significantly reduces L2 access

time due to their tremendous locality: the top 3% of shared read-only blocks
account for 70% of requests

— aggressive replication degrades some workloads’ performance due to increased
off-chip misses

• Selective Probabilistic Replication (SPR)
—no designated home node for a cache line
—assumes private L2 caches and selectively limits replication on L1 evictions
—on an L1 cache eviction, SPR writes a shared block back to its local L2 if

– (i) the block was already allocated in the local L2
– (ii) the replication policy (below) allocates a new block
– otherwise, uses a ring writeback to merge the block with an existing remote

L2 copy
—on L1 cache writebacks, SPR uses probabilistic filtering to decide when to

replicate a block

!6
B. Beckmann, M. Marty, and D. Wood. ASR: Adaptive
selective replication for CMP caches. MICRO-39, Dec. 2006.

!7

Elastic Cooperative Caching

Background: Caching Strategies

• Static partitioning of cache resources
—private: unable to give all cache lines to a single thread
—shared: all threads have same priority and compete for lines

– threads may interfere: a needy thread can evict another’s data

• Dynamic repartitioning of cache resources per thread
—desirable to reduce off-chip traffic
—flavors

– software-based dynamic reconfiguration (OS manages resource)
 most organizations divide resources into independent sets for QoS

 e.g. cooperative cache partitioning
 partition resources in both space and time
 multiple time-sharing partitions to manage current capacity

– hardware dynamic reconfiguration
 use performance counters to measure benefit of increasing cache

size for each thread

!8

Motivation

Streaming applications don’t exploit cache close to processor
—access lots of data that won’t be reused
—when combined with other applications

– may needlessly evict blocks that might be reused

!9

Elastic Cooperative Caching Goals

• Want memory hierarchy that exercises intelligent control
—distributes resources fairly
—exploits differences between applications

• Should be managed by hardware rather than software

• Should provide elastic tradeoff between
—low latency of private caches
—low off-chip miss rate of shared caches

!10

Elastic Cooperative Caching

• No centralized structure

• First distributed cache repartitioning mechanism
—uses only local info
—distributed cache partitioning units

– support redistribution of cache resources
– operate autonomously with only local information

• Shared/private caches + repartitioning unit
—shared cache: stores evicted blocks from active private regions
—private regions: allow big local private caches to meet appl needs

!11

Distributed Coherence Engine (DCE)

DCEs are directory caches responsible for coherence over
part of the address space

—uses a “home node” mapping scheme for addresses

!12Figure credit: Elastic Cooperative Caching ..., E. Herrero et al. ICSA, June 2010..

DCE uses 1-FWD:
spill to a remote tile

rather than evict

ElasticCC Tile Structure

• Several independent L2 cache  
memories
—shared vs. private regions  

compete for the cache space

• Private regions
—store blocks evicted from  

local L1

• Shared regions
—store blocks spilled from  

neighboring caches

• Operation
—shared data is replicated into private regions
—shared region stores only unique blocks

!13Figure credit: Elastic Cooperative Caching ..., E. Herrero et al. ICSA, June 2010..

ElasticCC Repartitioning Unit

!14
Figure credit: Elastic Cooperative Caching ..., E. Herrero et al. ICSA, June 2010..

• Each tile has its own repartioning unit
• Each time a cache is repartitioned, broadcast partition info

ElasticCC Spilled Block Allocator

• One spilled block allocator per tile

• Uses partition info from each tile to send more evicted blocks
to tiles with more shared cache

• Can use stale partitioning info

!15

ElasticCC on a Chip

!16Figure credit: Elastic Cooperative Caching ..., E. Herrero et al. ICSA, June 2010..

Application Classes

• Saturating utility
—small working set that fits in cache
—characterized by improving performance until working set fits
—e.g. equake

• Low utility
—intense use of memory but no reuse
—e.g. Gafort

• Shared high utility
—several threads share a large number of blocks
—e.g. ammp

• Private high utility
—benefit from larger memory hierarchy, but do not share data
—e.g. swim

!17

Adaptive Spilling Based on Appl Type

• Saturating utility applications don’t need extra space

• Low utility applications don’t have reuse, so forbid them to
spill to remote tiles

• High utility applications can benefit from spilling
—PHU - allow spilling when 75% of cache (6 ways) is private
—SHU - detect by high cache-to-cache transfers

– have DCE track block sharing with one bit per block
– spill only shared blocks

!18

ElasticCC Evaluation: Performance

Performance

• Elastic Cooperative Caching outperforms
—private caches by 52%
—distributed shared cache by 53%
—Distributed Cooperative Caching by an average of 27%

– like ECC, but static partitioning of private and shared
—distributed Adaptive Selective Replication (ASR) by 12%

– monitors workload and replicates only when benefit (lower L2
hit latency) estimated to outweigh costs (more L2 misses)

!19Figure credit: Elastic Cooperative Caching ..., E. Herrero et al. ICSA, June 2010..

Higher
is better

with AMMP
(shared high utility)

Note: ASR claims 12%
better than victim replication

Performance Graph Notes

• Performance improvement is highly dependent on the
characteristics of all the applications being executed
simultaneously

• Performance improvements can only come from High Utility
benchmarks and in the other cases the adaptive mechanism
must find the lowest amount of dedicated resources that does
not degrade performance

!20

ElasticCC Evaluation: Energy, Misses

!21Figure credit: Elastic Cooperative Caching ..., E. Herrero et al. ICSA, June 2010..

Lower
is better

Higher
is better

ECC+AS < DCC (18.6%); ECC+AS < ASR (16.4%)

ECC+AS > DCC (71%); ECC+AS > ASR (24%)

Energy Efficiency

Cache Misses

Summary of ElasticCC

• Outperforms
—private caches by 52%
—distributed shared cache by 53%
—other proposed approaches

– Distributed Cooperative Caching by 27%
– Active Selective Replication by 12%

• Reduces number of off chip misses vs.
—distributed cooperative caching by 19%
—active selective replication by 16%

• Increases energy efficiency vs.
—Distributed Cooperative Caching by 71%
—Active Selective Replication by 24%

– by avoiding reallocation of non-reused cache blocks

!22

!23

Tardis: Time Traveling Coherence
Algorithm for Distributed Shared Memory

Tardis Motivation

• Correctness of shared memory systems depends upon
memory consistency model
—defines legal interleavings of memory ops by different actors

• Shared-memory systems depend on cache coherence

• Coherence protocol: important for performance and scalability

• Well-known coherence protocols discussed last class
—snooping: requires broadcast communication medium
—directory: maintain a list of sharers

• Concerns
—broadcast doesn’t scale as number of nodes increases
—storing sharer information doesn’t scale either
—long waits for invalidation acknowledgements

!24

Sequential Consistency

A system consisting of one or more processors  
with multiple cores is sequentially consistent  

if both of the following conditions hold:

1. The result of any execution is the same as if the operations of
all the cores were executed in some sequential order

2. The operations of each individual core appear in this
sequence in the order specified by its program

!25

L. Lamport, “How to make a multiprocessor computer that correctly executes multiprocess
programs,” Computers, IEEE Transactions on, vol. 100, no. 9, pp. 690–691, 1979.

!26

Tardis Overview
• Goal

—simple scalable protocol
—equivalent in performance to directory protocol

• Idea
—express memory consistency model by enforcing global memory

order using timestamp counters that represent logical and
physical time

• Advantages
—satisfies sequential consistency
—no requirement of globally synchronized clock

– unlike prior timestamp coherence schemes
—no multicast/broadcast support

– unlike prior directory coherence schemes
—storage of timestamp + owner ID is O(log N) for N cores

– no O(N) sharer information as for directory presence bits
– insight: writer can jump ahead to a time when sharer copies have

expired and perform write without violating sequential consistency

Tardis Timestamp Ordering

• Directory protocols enforce global memory order (<M) through
physical time order, e.g. for two operations X and Y on
memory location A

• Tardis: break the correlation between global memory order
and the physical time order for write after read (WAR)
dependencies while maintaining the correlation for write after
write (WAW) and read after write (RAW) dependencies

!27

(WAR)

(WAW)

(RAW)

Tardis Global Memory Order

• Tardis global memory order: combination of physical time and
logical timestamp order, i.e., physi-logical time order
—AKA physiological time order

• Operations without dependency (e.g., two concurrent read
operations) or with obvious relative ordering (e.g., accesses
to private data from the same core)
—can share the same timestamp
—global memory order is implicitly expressed using the physical

time order

!28

Sequential Consistency Rules with Tardis

• Rule 1:
• assuming in-order commits  

Tardis only needs to guarantee
• namely, operations from the same processor have monotonically

increasing timestamps in program order

• Rule 2:
• guarantee that a load observes the correct store in the global

memory order as defined by
• Correct store is the latest store – either the one with the largest

logical timestamp or the latest physical time among the stores
with the largest logical timestamp

!29

Tardis without Private Cache

• Core timestamp
—PTS - program timestamp: timestamp of last operation in

program order
– not equivalent to processor clock

 not incremented every cycle
 not globally synchronized

• Cache line
—RTS - read timestamp: largest timestamp among all loads of

cache line so far
—WTS - write timestamp: timestamp of latest store to cache line

• Invariant
—a cache line’s data must be valid between current WTS and RTS

!30

Timestamp Management w/out Private Cache

!31

Tardis with Private Cache

• Timestamp manager timestamp (MTS)
—maximal read timestamp of all cache lines mapped to this

timestamp manager but evicted to DRAM
– when evicting cache line c: MTS = MAX(c.RTS, MTS)

• Timestamp reservation
—allows a load to reserve a cache line in private cache for a period

of logical time (the lease)
—end timestamp of a reservation is stored in RTS
—cache line can be read until timestamp expires (PTS > RTS)
—read of a cache line with an expired lease -> request timestamp

manager to extend the lease

• Exclusive ownership
—modified cache line can be exclusively cached in private cache

– timestamp manager records line is in exclusive state and owner (log
N bits)

!32

State Transitions for Private Cache

!33

Directory Coherence Example

!34

Tardis Coherence Example

!35

Tardis vs. Directory Coherence

• Invalidation
—directory

– must send invalidate msgs to all sharers and await acks
—Tardis

– no invalidation
– exclusive ownership can be immediately returned without waiting
– timestamps guarantee sequential consistency

• Eviction
—directory

– message sent from private cache to directory where sharer stored
– when evicted from LLC, all private copies must be invalidated

—Tardis
– no sharer information maintained; no invalidation required
– after eviction from LLC, copies in private caches can exist and be

accessed
!36

Tardis vs. Directory Coherence

• Data renewal
—directory

– load hit only requires data to exist in private cache
—Tardis

– cache line lease may have expired
– renew request sent to timestamp manager

 incurs extra latency and network traffic
 optimization: speculative execution

 assume cache line with expired lease has valid data
 if renewal fails, roll back speculative computation

• Compress timestamps using base + delta scheme
—only store deltas in cache line
—rebase whenever any delta rolls over

!37

Tardis Advantages

• Scalability
—store only timestamps per cache line and owner ID in LLC

– owner ID and timestamps can share bits in LLC
 when owner ID needs to be stored, cache line is exclusively

owned and manager does not maintain the timestamps

• Simplicity
—derived from definition of sequential consistency
—timestamps explicitly represent global memory order

– easier to argue correctness
—no multicast/broadcast invalidations
—no acknowledgment collection
—fewer transient states than a directory protocol

!38

System Configuration

!39

Tardis Timestamp Statistics

!40

Tardis Performance

!41

64 Out-of-order Cores

64 In-order Cores

Ackwise: maintain a limited number of sharers and broadcasts
invalidations to all cores when the number of sharers exceeds the limit
(Tile-gx family of multicore processors,” http://www.tilera.com)

network traffic

Baseline is MSI: full info about all sharers

Tardis Performance

!42

Ackwise: maintain a limited number of sharers and broadcasts
invalidations to all cores when the number of sharers exceeds the limit
(Tile-gx family of multicore processors,” http://www.tilera.com)

use spin waiting

network traffic

Tardis Performance vs. Increment Period

!43

spin wait on stale values with
longer self-increment period

Tardis Conclusions

• Match baseline performance for directory protocol

• Better scalability for large number of cores

!44

Additional References

• Efficient Timestamp-Based Cache Coherence Protocol for
Many-Core Architectures. Yuan Yao, Guanhua Wang, Zhiguo
Ge, Tulika Mitra, Wenzhi Chen, and Naxin Zhang. 2016. In
Proceedings of the 2016 International Conference on
Supercomputing (ICS '16). ACM, New York, NY, USA, , Article
19 , 13 pages. DOI=http://dx.doi.org/10.1145/2925426.2926270

!45

