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From Coherence to Consistency
• Coherence  

—focus: visible values of an individual variable 
—problems can arise if multiple actors (e.g., multiple cores) have 

access to multiple copies of a datum (e.g., in multiple caches) 
and at least one access is a write 
– must appear to be one and only one value per memory location 

—access to stale data (incoherence) is prevented using a 
coherence protocol 
– set of rules implemented by the distributed actors within a system 

• Consistency models  
—focus: visible values for multiple variables 
—define correct shared memory behavior in terms of loads and 

stores (memory reads and writes) 
– independent of caches or coherence 

—can stores be seen out of order? if so, under what conditions? 
– a spectrum of alternatives 

 sequential consistency to weak memory models



Example: What Can a Programmer Expect? 

• What value can be seen for MyTask➞data?
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Memory Consistency Model

• Memory model 
—formal specification of how shared memory will appear to 

programmers 

• Consistency 
—restricts values that can be returned by a read during execution 

• Why memory consistency models? Eliminate gap between  
—expected behavior  
—behavior supported by a system
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Impact of Memory Models

• Programmability 
—programmers must reason about allowable behaviors 

– surprisingly subtle! 

• Performance 
—determines what reorderings of loads and stores are legal 

– hardware 
– compiler 

• Portability 
—different systems implement different memory models

!5



Multiple Levels of Memory Models

• Machine level 
—affects hardware design (processor, memory, interconnect) 
—affects assembly-code programmer 

• Language level 
—affects both designers and users of high-level languages
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Memory Models for Uniprocessors

• Memory operations 
—occur one at a time 
—in order specified by program (program order) 

• Simple, intuitive sequential semantics for memory 

• Expectation 
—read of X will return value of last write (in program order) to X
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In practice: a uniprocessor can relax strict ordering 
    - suffices to maintain control and data dependences 
    - order constrained only when 
 - same location 
 - one controls execution of other



Why Relax Strict Ordering?

Overlapping and reordering memory accesses enables a range 
of hardware and software optimizations 

• Compiler optimizations 
—register allocation 
—code motion 
—loop transformations 

• Hardware optimizations 
—pipelining 
—multiple issue 
—write buffer bypassing 
—forwarding a value from one cache to another 
—lockup-free caches: don’t delay accesses that follow a miss
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A Memory Model for Multiprocessors?

• Intuitively, a read of a memory location should return the 
value of its “last” write  

• Natural for uniprocessors  

• Not obvious what this means for multiprocessors with 
concurrent operations  

• Idea: require that all memory operations appear to execute 
one at a time, and the operations of a single processor appear 
to execute in the order described by that processor’s program  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Sequential Consistency

• Intuitive memory model 
defined by Lamport [1979] 

• Result of an execution 
appears as if 

• all operations appear 
as if executed in some 
sequential order 

• memory operations of 
each thread appear in 
program order 
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simple memory system: 
no caches, no write buffers



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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Possible interleavings



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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Possible interleavings
–1, 2, 3, 4 ?

Intuitively, we want to forbid this!



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
Possible interleavings

–1, 2, 3, 4 ?



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
Possible interleavings

–1, 2, 3, 4 ?
–1, 3, 2, 4 ?

Intuitively, we want to forbid this!



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
✓

Possible interleavings
–1, 2, 3, 4 ?
–1, 3, 2, 4 ?



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
✓

Possible interleavings
–1, 2, 3, 4 ?
–1, 3, 2, 4 ?
–3, 4, 1, 2 ?

Intuitively, we want to forbid this!



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
✓

Possible interleavings
–1, 2, 3, 4 ?
–1, 3, 2, 4 ?
–3, 4, 1, 2 ? ✓



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
✓

Possible interleavings
–1, 2, 3, 4 ?
–1, 3, 2, 4 ?
–3, 4, 1, 2 ?
–4, 1, 2, 3 ?

Intuitively, we want to forbid this!

✓



Consider the Following …

After all statements execute, could r2 == 2 and r1 == 1?  
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✓
✓

Possible interleavings
–1, 2, 3, 4 ?
–1, 3, 2, 4 ?
–3, 4, 1, 2 ?
–4, 1, 2, 3 ?

Intuitively, we want to forbid this!

✓
Sequential consistency 

would not allow this



Does Program Order Really Matter?

Both threads could enter critical section  
— if the hardware allows a thread’s read to complete before a prior  

write completes  
— if the compiler reorders the thread’s read and write  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Implications of Sequential Consistency

• Assumption: memory atomicity 
—memory operations cannot overlap 

• Impact 
—limits aggressive hardware designs 
—limits compiler optimizations 

• Result: severely hampers performance
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Write Buffers (without Caches)

1. W=>R order using write buffers 
—write buffer with bypassing hides latency of writes 
—reads of different locations can bypass pending writes
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Initially: Flag1=Flag2=0. 

Can write buffers allow an 
ordering that violates 
sequential consistency?

Write Buffers (without Caches)

1. W=>R order using write buffers 
—write buffer with bypassing hides latency of writes 
—reads of different locations can bypass pending writes
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Initially: Flag1=Flag2=0. 

Can write buffers allow an 
ordering that violates 
sequential consistency? 

Yes: 1, 2, 3, 4

t: completion order

Write Buffers (without Caches)

1. W=>R order using write buffers 
—write buffer with bypassing hides latency of writes 
—reads of different locations can bypass pending writes
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Overlapping Writes (without Caches)

2. W=>W order using overlapping writes 
—general interconnect vs. bus (memory parallelism) 
—writes to different memory locations issued by same processor 

handled by different memory modules
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Initially: Data=Head=0 

Can overlapping writes  
violate sequential 
consistency? 

Overlapping Writes (without Caches)

2. W=>W order using overlapping writes 
—general interconnect vs. bus (memory parallelism) 
—multiple writes to different locations issued by same processor 

handled by different memory modules
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Initially: Data=Head=0 

Can overlapping writes  
violate sequential 
consistency? 

Yes: 1, 2, 3, 4

t: completion order

Overlapping Writes (without Caches)

2. W=>W order using overlapping writes 
—general interconnect vs. bus (memory parallelism) 
—multiple writes to different locations issued by same processor 

handled by different memory modules
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Non-blocking Reads (without Caches)

3. R=>R|W order using non-blocking reads 
—non-blocking reads + general memory interconnect 
—non-blocking caches, dynamic scheduling, speculative execution
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Initially: Data=Head=0 

Can non-blocking reads 
violate sequential 
consistency? 

Non-blocking Reads (without Caches)

3. R=>R|W order using non-blocking reads 
—non-blocking reads + general memory interconnect 
—non-blocking caches, dynamic scheduling, speculative execution
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Initially: Data=Head=0 

Can non-blocking reads 
violate sequential 
consistency? 

Yes: [spec] 1, 2, 3, 4

t: completion order

Non-blocking Reads (without Caches)

3. R=>R|W order using non-blocking reads 
—non-blocking reads (+ same memory interconnect) 
—non-blocking caches, dynamic scheduling, speculative execution
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Hardware Optimization Effects Summary

• Even without caches, hardware optimizations can 
—violate program order 
—violate sequential consistency
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Adding Caches

• Multiple caches can result in multiple copies of data values 

• Copies induce three requirements  
—coherence protocol: ensure any copies are up to date 

– typical strategies 
 invalidate protocol: invalidate copies 
 update protocol: update copies 

– memory consistency bounds interval when values must propagate 
—detecting when a write is complete 

– harder with copies present 
—propagating changes to copies is non-atomic 

– requires acknowledgments 
– … and you thought things were hard to reason about before!
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Caches

• W=>W order using write-through cache 
—general interconnect instead of bus (memory parallelism) 
—write-through cache for each processor (cache not shared)
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Initially: Data=Head=0 
 P2 cache has Data 

Can write-through caches 
violate sequential 
consistency? 

Caches

• W=>W order using write-through cache 
—general interconnect instead of bus (memory parallelism) 
—write-through cache for each processor (cache not shared)
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t2

t4 
t3

Initially: Data=Head=0 
 P2 cache has Data 

Can write-through caches 
violate sequential 
consistency? 

Yes: 1, 2, 3, 4, 5 

t: completion order

t1...t5

Caches

• W=>W order using write-through cache 
—general interconnect instead of bus (memory parallelism) 
—write-through cache for each processor (cache not shared)
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Caching Effects Summary

• Caches can  
—violate memory atomicity 
—violate sequential consistency
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Compilers

• Reordering accesses to different locations can be problematic 

• Register allocation of what should be a volatile is bad 

• Assuming data is not shared can cause a variety of problems 

• In the absence of analysis, must preserve order among 
memory operations 
—conflicts with code motion, register allocation, CSE, tiling, 

software pipelining … 

Compiler Effects Summary 

• Compiler optimizations can 
—violate program order, and thus 
—violate sequential consistency
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Summary

• Everybody violates sequential consistency! 
—hardware optimizations 
—caches 
—compilers
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Relaxed Memory Models

Relaxed orderings allowed by relaxed memory models
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only for different locations



Relaxing W➞R Order

Allows write buffers 
—write buffer with bypassing hides latency of writes 
—reads to different locations can bypass pending writes
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Relaxing W➞W Order

Allows overlapping writes 
—general interconnect vs. bus (memory parallelism) 
—multiple writes to different issued by same processor handled by 

different memory modules

!42



Relaxing R➞R|W Order

Allows non-blocking reads 
—non-blocking reads + general memory interconnect 
—non-blocking caches, dynamic scheduling, speculative execution
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Relaxing Write Atomicity

• Allow a processor to return value of its own write before all 
cached copies of data are invalidated or updated 
—allows read to return value before  

– write is serialized with other writes to same location 
– before invalidates or updates reach other processors 

—how?  
– forward value in write buffer to a later read 
– let read following write in write-through-cache return before write 

completes 

• Allow a thread to return value of another thread’s write before 
all cached copies of data are invalidated or updated

!44



Benefits of Relaxed Orderings

• Permits high performance hardware 

• Permits compiler optimizations  
—reorder instructions between synchronization instructions
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Darker Side of Relaxed Ordering

• Complicated safety nets 

• “Explaining how [to precisely preserve the atomicity of a 
write] is difficult within the simple framework presented in this 
article” (p. 16)
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Weak Ordering

• Assume two types of operations 
—synchronization 
—data (i.e., ‘everything else’) 

• Observation: typically, reordering data accesses between 
synchronization operations does not affect correctness
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Weak Ordering

• Assume two types of operations. 
—synchronization 
—data (i.e., ‘everything else’) 

• Observation: typically, reordering data accesses between 
synchronization operations does not affect correctness
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Approach 
 -  allow reordering among  
    normal data accesses 
 - require stricter ordering constraints  
    for accesses to synchronization  
    variables



Release Consistency

• Types of operations 

—ordinary ~ data accesses in weak ordering 
—special 

– syncs: two types 
 acquire: e.g. lock operation to gain access to a CS 
 release: write to grant permission to access CS 

– nsyncs: asynchronous operations that are not synchronization ops
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“Safety Net” Mechanisms

• Serialization instructions (IBM 370) 
—e.g. compare-and-swap, branches 
—placing serialization instruction after write guarantees SC 

• Atomic read-modify-write operations 
—e.g. SPARC TSO: program order appears to be preserved 

between W and following R if one of them is part of a RMW 
operation 
– can replace R with “identity” RMW to force ordering on R 
– can replace W with “oblivious” RMW to force ordering on W 

—preserving R ➞ W ordering with PC: replace R with “identity” 
RMW 

• Fence instructions 
—memory barrier: fence for all memory ops 
—store barrier: fence for writes only 
—SPARC MEMBAR: can enforce orderings between access types 

selectively !50



Relaxed Ordering in Practice
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Coping with Relaxed Models

• What if programmers had to keep all these details in mind? 
– relaxed program order + relaxed memory atomicity... 

• Abstraction: we want a memory model for a language 
—general enough 

– to permit performance 
– to be widely used 

—simple enough  
– to reason about 
– to be portable
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Examples of Language Level Models

• Java 
—detailed memory model specification for security, portability 

• C++ 
—simple to understand defaults to simplify development 
—full control for top performance 
—no concern for security 

• Unified Parallel C 
—supports both “strict” and “relaxed” memory models 
—simplicity vs. performance 
—default and per access choices
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Take-away Points

• Memory models, which describe the semantics of shared 
variables, are crucial to both correct multithreaded 
applications and the entire underlying implementation stack 

• Major programming languages are converging on a model that 
guarantees simple interleaving-based semantics for “data-
race-free” programs and most hardware vendors have 
committed to support this model  

• This process has exposed fundamental shortcomings in our 
languages and a hardware-software mismatch  
—semantics for programs that contain data races seem 

fundamentally difficult, but are necessary for concurrency safety 
and debuggability. 

—call upon software and hardware communities to develop 
languages and systems that enforce data-race-freedom, and co-
designed hardware that exploits and supports such semantics 
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