
Synchronization Primitives:
Locks and Barriers

Srđan Milaković
03/26/2019

COMP 522

Synchronization Policies
• Blocking – deschedule waiting processes
• Busy-wait – repeatedly test shared variables
• Scheduling overhead is greater than wait time
• Processors resources are not needed for other tasks
• Scheduler-based blocking is inappropriate or impossible

3/26/19 COMP 522 2

Spin Locks and Barriers
• Spin locks
• Mutual exclusion

3/26/19 COMP 522 3

T1 T2 T3 T4

Phase 1
Phase 2

• Barriers
• No processes advance beyond a

particular point in computation
until all have arrived at that point
• Typically used to separate “phases”

of an application program Barrier

Spin Locks and Barriers
• Performance is very important
• Locks protect very small critical sections, and may be executed

enormous number of times
• Agarwal and Cherian investigation
• Synchronization accounted for as much as 49% of total network

traffic
• Busy-waiting on a single synchronization variable
• Why is this a problem?

• A lot of work for specialized harware
3/26/19 COMP 522 4

Atomic Operations
• Early algorithms used used only atomic reads and writes
• E.g. Peterson’s Algorithm
• Costly in time and space – a lot of shared variables and a large

number of operations used for coordination
•Modern processors support more sophisticated atomic

operations
• fetch_and_φ – Read-Modify-Write (RMW)
• test_and_set, fetch_and_store (swap or exchange),
fetch_and_add, compare_and_swap

3/26/19 COMP 522 5

Atomic Operations

3/26/19 COMP 522 6

• Modern processors support more sophisticated atomic
operations
• fetch_and_Φ – Read-Modify-Write (RMW)

• test_and_set()
• fetch_and_store(T desired)
• fetch_and_add(T arg)
• fetch_and_increment() ≡ fetch_and_add(1)
• compare_and_swap(T expected, T desired)

• Load-link/store-conditional
• fetch & square
• ARM, RISC-V

Outline
• Locks
• test_and_set Lock, The Ticket Lock, Array-Based Queuing Locks
• The MCS Lock
• Malthusian Locks
• Compact NUMA-aware Locks

• Barriers
• Centralized barriers, The software combining tree barrier,

Dissemination barrier, and Tournament Barriers
• A New Tree-Base Barrier

3/26/19 7COMP 522

References
1. Algorithms for scalable synchronization on shared-

memory multiprocessors. John Mellor-Crummey and
Michael L. Scott (Feb. 1991)

3/26/19 8COMP 522

2. Malthusian Locks. Dave Dice (Apr. 2017)

3. Compact NUMA-Aware Locks. Dave Dice, Alex Kogan (Oct.
2018)

The Simple test_and_set Lock
• The lock object have an atomic

Boolean flag

• Acquire – perform
test_and_set until you flip
the flag from false to true

• Release – set the flag to false

3/26/19 COMP 522 9

1 typedef atomic_bool lock;

1 void acquire_lock(lock *L)
2 while test_and_set(L) == true
3 NOP

1 void release_lock(lock *L)
2 *L = false

The Simple test_and_set Lock
• Flag access contention
• test_and_set is relatively

expensive
• Particularly expensive on cache-

coherent MPs
• Test-and-test_and_set
• Adding delay between consecutive

probes of the lock
• Exponential backoff

3/26/19 COMP 522 10

1 void acquire_lock(lock *L)
2 while true
3 while load(L) == true
4 NOP
5 if test_and_set(L) == false
6 break

1 void acquire_lock(lock *L)
2 delay = 1
3 while test_and_set(L) == true
4 pause(delay)
5 delay *= 2

The Ticket Lock
• Test-and-test_and_set – one RMW per waiting

processor whenever locks becomes available
• The ticket lock – one RMW per lock acquisition
• Lock acquisition happens in FIFO order – no starvation

3/26/19 COMP 522 11

The Ticket Lock
• The lock object have two counters
• Next ticket – the number of requests to acquire the lock
• Now serving – the number of times the lock has been released

• The counters
• are initialized to 0
• should be large enough to accommodate the maximum number of

simultaneous requests for the lock

3/26/19 COMP 522 12

1 typedef struct lock
2 atomic_uint next_ticket = 0
3 atomic_uint now_serving = 0

The Ticket Lock
• Acquire – perform fetch_and_increment on the next

ticket counter and busy wait until and wait until the the result
(its ticket) is equal to the value of the now serving counter
• Release – increment the value of the now serving counter

3/26/19 COMP 522 13

1 void acquire_lock(lock *L)
2 my_ticket = fetch_and_increment(&L->next_ticket)
3 while load(&L->now_serving) != my_ticket
4 NOP

1 void release_lock(lock *L)
2 increment(&L->now_serving)

The Ticket Lock
• Still a lot of contention due to loads
• Add delay like in test-and-test_and_set
• Exponential backoff?
• NO!

• Linear backoff based on how many processors are before me

3/26/19 COMP 522 14

1 void acquire_lock(lock *L)
2 my_ticket = fetch_and_increment(&L->next_ticket)
3 while true
4 pause(my_ticket – L->now_serving)
3 if load(&L->now_serving) == my_ticket
4 break

Array-Based Queuing Locks
• Ticket lock with proportional backoff requires non-constant

number of network transactions
• The idea is to use an atomic operation to obtain the address

of a location where to spin
• Array-based queuing locks require space per lock linear in

the number of threads
• The maximum number of threads must be known before

lock initialization

3/26/19 COMP 522 15

Anderson’s Lock

3/26/19 COMP 522 16

1 typedef struct lock
2 atomic_bool slots[numprocs] = {true, false, …, false}
3 atomic_uint next_slot = 0

1 void acquire_lock(lock *L, uint *my_place)
2 *my_place = fetch_and_increment(&L->next_slot)
3 if *my_place mod numprocs == 0
4 atomic_add(&L->next_slot, -numprocs)
5 *my_place = *my_place mod numprocs
6 while load(&L->slots[*my_place]) == false
7 NOP

1 void release_lock(lock *L, uint *my_place)
2 L->slots[*my_place] = false
3 L->slots[(*my_place + 1) mod numprocs] = true

Anderson’s Lock

01234next_slot: falsetrue
truefalse
false
false
false
false
false
false

p1 p3

p7 p2

3/26/19 COMP 522 17

slots:

Graunke and Thakkar’s Lock

3/26/19 COMP 522 18

1 typedef struct lock
2 atomic_bool slots[numprocs] = {true, true, …, true}
3 typedef atomic struct tail_t
4 atomic_bool *who_was_last = 0
5 this_means_locked = false
6 tail_t tail
7
8 processor private uint vpid // a unique virtual processor index

1 void acquire_lock(lock *L)
2 (who_is_ahead_of_me, what_is_locked) =
3 fetch_and_store(&L->tail, (&L->slots[vpid], L->slots[vpid]))
4 while load(who_is_ahead_of_me) == what_is_locked
5 NOP

1 void release_lock(lock *L)
2 &L->slots[vpid] = not L->slots[vpid]

Array-Based Queuing Locks
• Anderson’s lock
• Requires fetch_and_increment

• Graunke and Thakkar’s lock
• Requires fetch_and_store

3/26/19 COMP 522 19

A List-Base Queuing Lock - MCS
• Guarantees FIFO ordering of lock acquisitions1

• The ticket lock✓, array-based queuing locks ✓, test_and_set lock ✘
• Requires O(1) space per lock
• The ticket lock✓, array-based queuing locks ✘, test_and_set lock ✓

• Spins only on locally-accessible flag variables
•Works equally well on machines with and without cache

coherence
• Unique to the MCS lock ✓ ✓ ✓

3/26/19 COMP 522 20

1 requires compare_and_swap

The MCS lock
• The lock object is a pointer to a qnode
• qnode has a pointer to a next qnode

and a Boolean field locked
• Acquire – perform enqueue operation. If

the queue was empty, the lock is acquired,
otherwise spin on the locked field
• Release – if the queue is not empty, notify

the next processor in the queue by setting
the locked field to true

3/26/19 COMP 522 21

1 typedef struct qnode
2 qnode *next
3 atomic_bool locked
4
5 typedef qnode *lock

The MCS lock – acquire lock

3/26/19 COMP 522 22

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

The MCS lock – acquire lock

3/26/19 COMP 522 23

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

The MCS lock – acquire lock

3/26/19 COMP 522 24

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

The MCS lock – acquire lock

3/26/19 COMP 522 25

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

The MCS lock – acquire lock

3/26/19 COMP 522 26

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

The MCS lock – acquire lock

3/26/19 COMP 522 27

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

The MCS lock – acquire lock

3/26/19 COMP 522 28

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

The MCS lock – acquire lock

3/26/19 COMP 522 29

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

The MCS lock – acquire lock

3/26/19 COMP 522 30

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

The MCS lock – acquire lock

3/26/19 COMP 522 31

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

The MCS lock – acquire lock

3/26/19 COMP 522 32

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

spinning

The MCS lock – acquire lock

3/26/19 COMP 522

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

spinning

next:

spinning

33

The MCS lock – acquire lock

3/26/19 COMP 522

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

spinning

next:

spinning

next:

spinning

34

The MCS lock – release lock – case 1

3/26/19 COMP 522

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

releasing
the lock

next:

spinning

next:

spinning

next:

spinning

35

The MCS lock – release lock – case 1

3/26/19 COMP 522

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

leaving

next: next:

spinning

next:

spinning

36

spinning

The MCS lock – release lock – case 1

3/26/19 COMP 522

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

leaving

next:

executing
critical section

next:

spinning

next:

spinning

37

The MCS lock – release lock – case 1

3/26/19 COMP 522

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next:

executing
critical section

next:

spinning

next:

spinning

38

The MCS lock – release lock – case 2

3/26/19 COMP 522 39

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next: next:

The MCS lock – release lock – case 2

3/26/19 COMP 522 40

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next: next:

✘

releasing
the lock

The MCS lock – release lock – case 2

3/26/19 COMP 522 41

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next: next:

spinning on
qnode->next

The MCS lock – release lock – case 2

3/26/19 COMP 522 42

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next: next:

spinning on
qnode->next

The MCS lock – release lock – case 2

3/26/19 COMP 522 43

1 void acquire_lock(lock *L, qnode *I)
2 I->next = null
3 predecessor = fetch_and_set(L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = I
7 while I->locked == true
8 NOP

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

tail:

next: next:
leaving

The MCS lock – release without CAS

3/26/19 COMP 522 44

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, null)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

The MCS lock – release without CAS

3/26/19 COMP 522 45

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

The MCS lock – release without CAS

3/26/19 COMP 522 46

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

The MCS lock – release without CAS

3/26/19 COMP 522 47

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

The MCS lock – release without CAS

3/26/19 COMP 522 48

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

The MCS lock – release without CAS

3/26/19 COMP 522 49

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

next:

The MCS lock – release without CAS

3/26/19 COMP 522 50

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

next:

The MCS lock – release without CAS

3/26/19 COMP 522 51

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

next:

The MCS lock – release without CAS

3/26/19 COMP 522 52

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

next:

The MCS lock – release without CAS

3/26/19 COMP 522 53

next:

tail:

next:

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

next:

The MCS lock – release without CAS

3/26/19 COMP 522 54

next:

tail:1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 old_tail = fetch_and_store(L, null)
4 if old_tail == null
5 return
6 usurper = fetch_and_store(L, old_tail)
7 while I->next == null
8 NOP
9 if usurper != null
10 usurper->next = I->next
11 else
12 I->next->locked = false
13 else
14 I->next->locked = false

next:

Performance – Hardware description
• BBN Butterfly 1 – a distributed shared memory

multiprocessor
• Sequent Symmetry Model B – a cache coherent shared-bus

multiprocessor

3/26/19 COMP 522 55

BBN Butterfly 1
• Shared-memory multiprocessor

• Up to 256 nodes
• 8MHz and 1-4 MB

• Each processor has local memory

• Access to remote memory goes
through log4-depth switching network

• Remote memory read takes 5 µs (no
contention) which is roughly 5x
compared to local read

3/26/19 COMP 522 56

Figure credit: [1]

BBN Butterfly 1 – atomic operations
• Two operations:
• fetch_and_clear_then_add
• fetch_and_clear_then_xor

• Three arguments:
• dst – the address of the 16-bit destination operand
• mask – 16-bit mask
• src – 16-bit source operand

• *dst = (*dst AND !mask) Φ src
• Used to implement fetch_and_store, fetch_and_add, …
3/26/19 COMP 522 57

The Sequent Symmetry Model B
• Shared-bus multiprocessor
• Up to 30 processor nodes
• 16 MHz Intel 80386 and 64 KB two-way set associative cache

3/26/19 COMP 522 58

Figure credit: [1]

The Sequent Symmetry Model B
• Supported atomic operations:
• fetch_and_store
• various logical and arithmetic operations

• Can be applied to 1, 2, or 4 byte quantity
• The logical and arithmetic operations do not return the

previous value
• less useful compared to fetch_and_Φ

• No support for compare_and_swap

3/26/19 COMP 522 59

Butterfly – empty critical section

3/26/19 COMP 522 60

Low
er is better

Figure credit: [1]

Butterfly – empty critical section

3/26/19 COMP 522 61

Figure credit: [1] Figure credit: [1]

Butterfly – empty critical section

3/26/19 COMP 522 62

Figure credit: [1]

1 void release_lock(lock *L, qnode *I)
2 if I->next == null
3 if compare_and_swap(L, I, null)
4 return
5 while I->next == null
6 NOP
7 I->next->locked = false

Symmetry – empty critical section

3/26/19 COMP 522 63

Figure credit: [1]

Symmetry – small critical section

3/26/19 COMP 522 64

Figure credit: [1]

Malthusian Locks
Dave Dice (April 2017)

3/26/19 COMP 522 65

Malthusian Locks
• A lot of work was done to improve the performance of lock

methods
• Can we improve critical section performance?
• Applications running in modern multithreaded environments

are sometimes overthreaded
• The excess of threads does not improve performance
• In fact, it can degrade performance

3/26/19 COMP 522 66

Malthusian Locks – Motivation

3/26/19 COMP 522 67
Figure credit: [2]

Malthusian Locks – Motivation
• Single-socket processor
• 16 cores
• LLC (L3) is shared and has 8 MB

• Customer database has 1 MB

3/26/19 COMP 522 68

Malthusian Locks – Motivation
• Duration of the non-critical sections is 4 time longer than the

duration of CS
•Memory footprint of NCS is 1 MB
• FIFO lock & 16 threads ⇒ we have 17 MB footprint > 8 MB of LLC
• Threads limited to 5 ⇒ we have 6 MB footprint < 8 MB LLC

3/26/19 COMP 522 69

Malthusian Locks
• Intentionally limit the number of threads circulating over the lock
• Concurrency restriction (CR)
• The lock acquisition order
• Unfair during short term
• Fair over long-term

• Tradeoff fairness and throughput

3/26/19 COMP 522 70

The MCSCR lock
• Based on the MCS lock
• Two queues
• Active circulating set (ACS) – enabled threads
• Passive set (PS) – disabled threads

3/26/19 COMP 522 71

The MCSCR lock
• ACS should minimal set of threads that saturate lock
• At lock release-time:
• If there are nodes between the current lock owner and tail,

a node from ACS is moved to PS
• If the ACS is empty, a top node from PS is moved to ACS

• Long-term fairness
• Periodically move a node from PS to ACS
• Once every 1000 unlock operations

3/26/19 COMP 522 72

The MCSCR lock
• The size of ACS is determined automatically
• No tuning required

• All changes are implemented in the lock release method
• Effectively, the length of the critical section is increased
• The lock acquire method is same as in the MCS lock

3/26/19 COMP 522 73

Waiting policies
•What to do if we don’t have a lock?
• Unbounded spinning
• Consume pipeline resources and energy
• Increases and possibly preventing other threads to use turbo mode
• Polite spinning – PAUSE instruction (or equivalent)
• Low resume time

3/26/19 COMP 522 74

Waiting policies
• Parking
• Voluntary context switching
• Potentially reducing power consumption

and enabling turbo mode
• Long resume time

• Spin-Then-Park
• Hybrid approach
• Limit the maximum spin period to the length

of context-switch round trip

3/26/19 COMP 522 75

Performance - Hardware description
• Oracle SPARC T5-2
• 2 sockets (1 disabled)
• 16 cores per socket
• 8 logical cores
• 128 logical cores per socket
• Cache
• 16KB private L1 - unified
• 128KB private L2 - unified
• 8MB shared L3 - unified

3/26/19 COMP 522 76

Performance - Random Access Array
• N concurrent threads
• 10 seconds interval
• Total number of iterations
• NCS – 400 iterations that randomly fetch a value

from a thread private array of 256K 32-bit integers
• CS – 100 iterations that randomly fetch a value

form a shared array of 256K 32-bit integers
• The ideal speedup is 5x

3/26/19 COMP 522 77

Performance - Random Access Array

3/26/19 COMP 522 78

Figure credit: [2]

MCS-S – the classical MCS lock with a
polite instruction inside spin loop
MCS-STP – MCS lock with spin-then-park
wait policy
MCSCS-S – MCSCS lock with a polite
instruction inside spin loop
MCSCS-STP – MCSCS lock with spin-than-
park wait policy
null – empty lock method

120x throughput for 256 threads

H
ig

he
r

is
 b

et
te

r

Compact NUMA-Aware Locks
Dave Dice, Alex Kogan (October 2018)

3/26/19 COMP 522 79

CPU CPU MEM

CPU CPU MEM

Shared Memory Model

Uniform Memory Access (UMA) Non-Uniform Memory Access (NUMA)

3/26/19 80

CPU

MEM

CPU CPU CPU

BUS

MEM

MEM

Compact NUMA-aware Locks
• Previous NUMA-aware Locks use hierarchy
• Requires space linear to the number of sockets
• Linux kernel allows only 4 bytes per lock
• Databases and data structures that use fine grain locking

• Single-thread performance was not so good

3/26/19 COMP 522 81

Previous work
• Hierarchical backoff test-and-set lock (HBO)

4. Hierarchical backoff locks for nonuniform communication
architectures. Radovic, Hagersten (2003)

• Requires only one word of memory
• Store the socket number of the lock holder
• Same node acquire – small delay
• Different node acquire – large delay

• Not fair

• Starvation is possible
3/26/19 COMP 522 82

Previous work
5. High performance locks for multi-level NUMA systems.

Chabbi, Fagan, and Mellor-Crummey (2015)
6. Contention-conscious, locality-preserving locks.

Chabbi, Mellor-Crummey (2016)

3/26/19 83Image credit: [5]

Background (Linux Kernel Spin Lock)
•Multi-path approach
• fast path – test_and_set
• slow path – MCS lock

• Four-byte lock word is divided
• 1 bit – lock value
• 1 bit – pending
• 30 bits – queue tail

3/26/19 COMP 522 84

1 1 30 bits

Background (Linux Kernel Spin Lock)
• Acquire lock
• try to flip the lock value from 0 to 1
• successful ⇒ we acquired the lock
• otherwise ⇒ check for contention (the remaining bits)

• In case of contention ⇒ slow path ⇒ MCS lock
• Head of the queue spins on the pending bit

• Release lock
• Set the lock bit to 0

• No need to carry a queue node from lock to unlock

3/26/19 COMP 522 85

Compact NUMA-aware (CNA) lock
• Two queues
• Main queue – threads running on the same socket as the lock holder
• Secondary queue – threads running of a different socket

• Acquire lock – join the main queue
• Release lock – notify the first thread in the queue that is on the

same socket

3/26/19 COMP 522 86

CNA Lock - one word requirement
• Always traverse the queue – too expensive
•Move the traversed threads to the secondary queue
• How?
• Add an extra field to the lock
• Lock requires 2 words ✘

• Add an extra field to the queue node
• an extra store instruction – possible cache miss - okay

• Pass to the locked value ✓
3/26/19 COMP 522 87

Performance – key-value map

3/26/19 COMP 522 88
Figure credit: [3]

• AVL tree
• Single lock
• insert
• remove
• lookup

Barriers

3/26/19 COMP 522 89

Centralized barrier
• Each processor updates a small amount of space
• single counter and Boolean flag

•Most barriers are designed to used repeatedly
• separate phases of many-phase algorithms

3/26/19 COMP 522 90

Centralized barrier
• spin twice per barrier instance
• all processors have left the previous barrier
• all processors have arrived at the current barrier

• use a counter and a Boolean flag (sense)
• last thread flips the sense
• threads spin on sense
• on broadcast-based cache-coherent multiprocessor, spinning on

sense is not a problem

3/26/19 COMP 522 91

Centralized barrier
• Adaptive backoff schemes
• latency increase
• departure is delayed ⇒ arrival is delayed

• Centralized barriers will not scale well

3/26/19 COMP 522 92

The Software Combining Tree Barrier
• Reduce hot-spot contention
• Processors are divided into groups
• One group is assigned to each leaft of the tree
• Last processor continues up the tree

3/26/19 COMP 522 93

The Software Combining Tree Barrier

3/26/19 COMP 522 94

0 1 2 3 4 5 6 7

The Software Combining Tree Barrier

3/26/19 COMP 522 95

0 1 2 3 4 5 6 7

The Software Combining Tree Barrier

3/26/19 COMP 522 96

0 1 2 3 4 5 6 7

The Software Combining Tree Barrier

3/26/19 COMP 522 97

0 1 2 3 4 5 6 7

The Software Combining Tree Barrier

3/26/19 COMP 522 98

0 1 2 3 4 5 6 7

1

The Software Combining Tree Barrier

3/26/19 COMP 522 99

0 1 2 3 4 5 6 7

1

The Software Combining Tree Barrier

3/26/19 COMP 522 100

0 1 2 3 4 5 6 7

1 2 7

2

The Software Combining Tree Barrier

3/26/19 COMP 522 101

0 1 2 3 4 5 6 7

1 2 5 7

2

The Software Combining Tree Barrier

3/26/19 COMP 522 102

0 1 2 3 4 5 6 7

1 2 5 7

52

The Software Combining Tree Barrier

3/26/19 COMP 522 103

0 1 2 3 4 5 6 7

1 2 5 7

52

5

The Software Combining Tree Barrier
• Can significantly decrease memory contention
• Spin location cannot be statically determined
•Multiple processors can spin on same location in different

barrier instances
• Not a problem on broadcast-based cache-coherent machines

3/26/19 COMP 522 104

The Dissemination Barrier
• ⎡log2P⎤ rounds
• In round k (counting from 0), processor i, signals processor

(i + 2k) mod P
• ⎡log2P⎤ synchronization operations on the critical path
• P * ⎡log2P⎤ signals

3/26/19 COMP 522 105

The Dissemination Barrier

3/26/19 COMP 522 106

0 1 2 3 4 5 6 7

The Dissemination Barrier

3/26/19 COMP 522 107

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Round k = 0

The Dissemination Barrier

3/26/19 COMP 522 108

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Round k = 0

Round k = 1

The Dissemination Barrier

3/26/19 COMP 522 109

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Round k = 0

Round k = 1

Round k = 2

The Dissemination Barrier

3/26/19 COMP 522 110

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Round k = 0

Round k = 1

Round k = 2

Tournament barrier
• Processors begin at the leaves of a binary tree
• One processor from each node continues up
• ”Winning” processor is statically determined
• no need for fetch_and_Φ

• In round k (counting from zero), processor i sets a flag
awaited by processor j
• i ≡ 2k (mod 2k+1), j = i - 2k

• Processor i drops from the tournament

3/26/19 COMP 522 111

Tournament barrier
• Concurrent read, exclusive write (CREW)
• spinning on a global flag

• Exclusive read, exclusive write (EREW)
• spinning on separate flags - similar to combining tree

3/26/19 COMP 522 112

A new Tree-Based Barrier
• Spins only on locally accessible flags
• Requires O(P) space
• Performs theoretical minimum number of network

transactions (2P-2)
• Performs O(log P) network transactions on its critical path

3/26/19 COMP 522 113

A new Tree-Based Barrier
• A pair of P-node trees
• each processor is assigned a unique tree node
• arrival tree – link to a parent
• fan-in = 4
• packing 4 bytes in a word (inspect status for all children)

• wakeup tree – a set of child links
• fan-out = 2
• shortest critical path to resume P processors

3/26/19 COMP 522 114

A new Tree-Based Barrier
• Processor arrival
• set the flag in its parent node
• P - 1 network transactions
• ⎡log4P⎤ critical path

• Processor wakeup
• notify children by setting a flag in each of their nodes
• P - 1 network transactions
• ⎡log2P⎤ rounds

3/26/19 COMP 522 115

Butterfly - Performance

3/26/19 COMP 522 116

Figure credit: [1] Figure credit: [1]

Butterfly - Performance

3/26/19 COMP 522 117

Figure credit: [1]

Performance

3/26/19 COMP 522 118

Figure credit: [1]

Figure credit: [1]

Takeaway
• Hardware support not always required
• If possible, perform local spinning
• Scalable synchronization primitives are important for

applications performance

3/26/19 COMP 522 119

