Synchronization Primitives:
Locks and Barriers

Srdan Milakovic
03/26/2019
COMP 522



Synchronization Policies

* Blocking — deschedule waiting processes

* Busy-wait — repeatedly test shared variables
* Scheduling overhead is greater than wait time
* Processors resources are not needed for other tasks
* Scheduler-based blocking is inappropriate or impossible



Spin Locks and Barriers

T1 T2 T3 T4

* Spin locks

* Mutual exclusion

e Barriers

* No processes advance beyond a
particular point in computation

until all have arrived at that point 1 1 1 | e

| | | | — ase
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of an application program ' N N EYTTY Barrier




Spin Locks and Barriers

* Performance is very important

* Locks protect very small critical sections, and may be executed
enormous number of times

* Agarwal and Cherian investigation

e Synchronization accounted for as much as 49% of total network
traffic

* Busy-waiting on a single synchronization variable
* Why is this a problem?

* A lot of work for specialized harware



Atomic Operations

* Early algorithms used used only atomic reads and writes
* E.g. Peterson’s Algorithm
* Costly in time and space — a lot of shared variables and a large
number of operations used for coordination
* Modern processors support more sophisticated atomic
operations
* fetch and ¢ —Read-Modify-Write (RMW)

* test and set, fetch and store (swap or exchange),
fetch and add, compare and swap



Atomic Operations

* Modern processors support more sophisticated atomic
operations
* fetch and & - Read-Modify-Write (RMW)
* test and set ()
* fetch and store (T desired)
* fetch and add(T arg)
* fetch and increment () = fetch and add(1l)
* compare and swap (T expected, T desired)

e Load-link/store-conditional

 fetch & square
 ARM, RISC-V



Outline

* Locks
* test and set Lock, The Ticket Lock, Array-Based Queuing Locks
* The MCS Lock
* Malthusian Locks
* Compact NUMA-aware Locks

e Barriers

* Centralized barriers, The software combining tree barrier,
Dissemination barrier, and Tournament Barriers

* A New Tree-Base Barrier
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The Simple test and set Lock

* The lock object have an atomic |1 typedef atomic bool lock;

Boolean flag

* Acquire — perform 1 void acquire lock(lock *L)
test and set untilyou flip |5 ¥rioe testandser(b) == true
the flag from false to true

* Release — set the flag to false > Vol rejease_lock(lock "L




The Simple test and set Lock

* Flag access contention

. . 1 void acquire lock(lock *L)
*test and set s relatively 2 while true
expensive 2 thJ\;éI.):> load (L) == true
 Particularly expensive on cache- 5 1f test_and_set(L) == false
6 break
coherent MPs
e Test-and-test and set
— — 1 void acquire lock(lock *L)
* Adding delay between consecutive 2 delay =1
3 while test and set (L) == true
probes of the lock 4 pause (delay)
e Exponential backoff 5 delay *= 2




The Ticket Lock

* Test-and-test and set —one RMW per waiting
processor whenever locks becomes available

* The ticket lock — one RMW per lock acquisition
* Lock acquisition happens in FIFO order — no starvation



The Ticket Lock

* The lock object have two counters
* Next ticket — the number of requests to acquire the lock
* Now serving — the number of times the lock has been released

* The counters
e are initialized to O

* should be large enough to accommodate the maximum number of
simultaneous requests for the lock

1 typedef struct lock
2 atomic uint next ticket
3 atomic uint now serving




The Ticket Lock

* Acquire — perform fetch and increment on the next
ticket counter and busy wait until and wait until the the result
(its ticket) is equal to the value of the now serving counter

* Release — increment the value of the now serving counter

1 void acquire lock(lock *L)

2 my ticket = fetch and increment (&L->next ticket)
3 while load(&L->now serving) != my ticket

4 NOP

1 void release lock(lock *L)
2 increment (&L->now serving)




The Ticket Lock

e Still a lot of contention due to loads

* Add delay like in test-and-test and set

* Exponential backoff?
* NO!
* Linear backoff based on how many processors are before me

1 void acquire lock(lock *L)

2 my ticket = fetch and increment (&L->next ticket)
3 while true

4 pause (my ticket - L->now serving)

3 if load(gL—>now_serving)_== my ticket

4 break




Array-Based Queuing Locks

* Ticket lock with proportional backoff requires non-constant
number of network transactions

* The idea is to use an atomic operation to obtain the address
of a location where to spin

* Array-based queuing locks require space per lock linear in
the number of threads

e The maximum number of threads must be known before
lock initialization
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Anderson’s Lock

1 typedef struct lock

2 atomic bool slots[numprocs] = {true, false, .., false}
3 atomic uint next slot = 0

1 void acquire lock(lock *L, uint *my place)

2 *my place = fetch_and_increment(&£—>next_slot)

3 if *my place mod numprocs ==

4 atomic add (&L->next slot, —-numprocs)

5 *my_placg = *my_place_mod numprocs

0 while load (&L->slots[*my place]) == false

7 NOP a

1 void release lock(lock *L, uint *my place)
2 L->slots[*my place] = false
3 L->slots[ (*my place + 1) mod numprocs] = true
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Anderson’s Lock

slots:

-~

next_slot: 4

false

false

false

false

false

false

false




Graunke and Thakkar’s Lock

1 typedef struct lock

2 atomic bool slots[numprocs] = {true, true, .., true}

3 typedef atomic struct tail t

4 atomic bool *who was last = 0

5 this means locked = false

6 tail t tail

7

8 processor private uint vpid // a unique virtual processor index
1 void acquire lock(lock *L)

2 (who is ahead of me, what is locked) =

3 fetch and store(&L->tail, (&L->slots[vpid], L->slots[vpid]))
4 while load(who is ahead of me) == what 1is locked

5 NOP

1 void release lock(lock *L)
2 &L->slots[vpid] = not L->slots[vpid]
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Array-Based Queuing Locks

* Anderson’s lock
* Requires fetch and increment

e Graunke and Thakkar’s lock
* Requires fetch and store



A List-Base Queuing Lock - MCS

* Guarantees FIFO ordering of lock acquisitions'

* The ticket lock./, array-based queuing locks -/, test_and_set lock X
e Requires O(1) space per lock

* The ticket lock./, array-based queuing locks X, test_and_set lock

* Spins only on locally-accessible flag variables

* Works equally well on machines with and without cache
coherence

* Unique to the MCS lock

! requires compare and swap



The MCS lock

* The lock object is a pointer to a gnode typedef struct qnode

gqnode *next

1
2

* gnode has a pointer to a next gnhode 3 atomic_bool locked
and a Boolean field locked -

typedef gnode *lock

* Acquire — perform enqueue operation. If
the queue was empty, the lock is acquired,
otherwise spin on the locked field

* Release — if the queue is not empty, notify
the next processor in the queue by setting
the locked field to true



The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null

3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return

5 I->locked = true 5 while I->next == null

6 predecessor->next = 1 6 NOP

7 while I->locked == true 7 IT->next->locked = false

8 NOP




The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null

3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return

5 I->locked = true 5 while I->next == null

6 predecessor->next = 1 6 NOP

7 while I->locked == true 7 IT->next->locked = false

8 NOP

il [\




The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null

3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return

5 I->locked = true 5 while I->next == null

6 predecessor->next = 1 6 NOP

7 while I->locked == true 7 IT->next->locked = false

8 NOP

il [\

next:



The MCS lock — acquire lock

1 void release lock(lock *L, gnode *I)
2 if I->next == null

3 if compare and swap (L, I, null)
4 return

5 while I->next == null

6 NOP

7 I->next->locked = false

next:

1 void acquire lock(lock *L, gnode *I)
2 I->next = null
3 predecessor = fetch and set (L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = 1
7 while I->locked == true
8 NOP
tail: |




The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
7 while I->locked == true 7 IT->next->locked = false
8 NOP
tail: |
next:
executing

critical section



The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
7 while I->locked == true 7 I->next->locked = false
8 NOP
tail: |

|

next: next: |\

executing
critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
- 3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:

next: next: |\

executing
critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)

2 I->next = null 2 if I->next == null

3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
= 4 if predecessor != null 4 return

5 I->locked = true 5 while I->next == null

6 predecessor->next = 1 6 NOP

7 while I->locked == true 7 I->next->locked = false

8 NOP

tail:

next: next: |\

executing
critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
= 5 I->locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:

next: next: |\

executing
critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
— 0 predecessor—->next = 1 6 NOP
7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:

next: next: |\

executing
critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
— ] while I->locked == true 7 I->next->locked = false
8 NOP
tail:

\ 4

next: next: |\

critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->1locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
=2 7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:
next: next: »l hext: r\\\

executing spinning spinning
critical section
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The MCS lock — acquire lock

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->1locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
=2 7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:
next: next: » next: »| next:
executing spinning spinning spinning

critical section
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The MCS lock — release lock — case 1

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->1locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
=2 7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:
next: next: » next: »| next:
releasing spinning spinning spinning

the lock
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The MCS lock — release lock — case 1

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->1locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
<l while I->locked == true 7 I->next->locked = false
8 NOP
tail:
next: next: » next: »| next:

leaving spinning spinning spinning
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The MCS lock — release lock — case 1

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)
2 I->next = null 2 if IT->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->1locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
—| 7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:
next: next: » next: »| next:
leaving executing spinning spinning

critical section
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The MCS lock — release lock — case 1

1 void acquire lock(lock *L, gnode *I) 1 void release lock(lock *L, gnode *I)

2 I->next = null 2 if IT->next == null

3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)

4 if predecessor != null 4 return

5 I->1locked = true 5 while I->next == null

6 predecessor->next = 1 6 NOP

7 while I->locked == true 7 I->next->locked = false

8 NOP

tail:

next: » next: »| next:
executing spinning spinning

critical section
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The MCS lock — release lock — case 2

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
6 predecessor->next = 1 6 NOP
7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:

next: next: |\
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The MCS lock — release lock — case 2

O J oy U b w DN

void acquire lock(lock *L, gnode *I)
null

I->next
predecessor

if predecessor

I->1locked

predecessor->next
while I->locked

NOP

fetch and set (L, I)

null

true
= T
true

tail:

next:

releasing
the lock

3/26/19

next:

N
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1 void release lock(lock *L, gnode *I)
2 if I->next == null

3 if compare and swap (L,

4 return

5 while I->next == null

6 NOP

7 I->next->locked = false

40

I, null) X




The MCS lock — release lock — case 2

O J oy U b w DN

void acquire lock(lock *L, gnode *I)
I->next = null

predecessor

= fetch and set (L, I)

if predecessor != null

I->1locked

= true

predecessor—->next = 1
while I->locked == true

NOP

1 void release lock(lock *L, gnode *I)
2 if I->next == null

3 if compare and swap (L, I, null)
4 return

5 while I->next == null

6 NOP

7 I->next->locked = false

tail:

next:

spinning on
gnode->next

next: r\\




The MCS lock — release lock — case 2

1 void acquire lock(lock *L, gnode *I) 1 wvoid release lock(lock *L, gnode *1I)
2 I->next = null 2 if I->next == null
3 predecessor = fetch and set (L, I) 3 if compare and swap (L, I, null)
4 if predecessor != null 4 return
5 I->locked = true 5 while I->next == null
= 6 predecessor->next = I 6 NOP
7 while I->locked == true 7 I->next->locked = false
8 NOP
tail:

next: next: |\

spinning on
gnode->next




The MCS lock — release lock — case 2

void acquire lock(lock *L, gnode *I)

I, null)

1 void release lock(lock *L, gnode *I)
2 if I->next == null

3 if compare and swap (L,

4 return

5 while I->next == null

6 NOP

7 I->next->locked = false

leaving

1
2 I->next = null
3 predecessor = fetch and set (L, I)
4 if predecessor != null
5 I->locked = true
6 predecessor->next = 1
7 while I->locked == true
8 NOP

tail:

next: next: |\




The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I)

2 if I->next == null

3 old tail = fetch and store(L, null)
4 if old tail == null

5 return

6 usurper = fetch and store (L, null)
7 while I->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false




The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I) ail.
2 if I->next == null :
3 old tail = fetch and store(L, null)

4 if old tail == null [

5 return next:

0 usurper = fetch and store (L, old tail)

7 while TI->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false




The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I) tail.

2 if I->next == null :

3 old tail = fetch and store(L, null)

4 if old tail == null v
S return next: next: N
0 usurper = fetch and store (L, old tail)

7 while TI->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false




The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I) ail. P\J
2 if I->next == null :

3 old tail = fetch and store(L, null)

4 if old tail == null

S return next: next: N
0 usurper = fetch and store (L, old tail)

7 while TI->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false




The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I) ail. P\J
2 if I->next == null :

3 old tail = fetch and store(L, null)

4 if old tail == null

S return next: next: N
0 usurper = fetch and store (L, old tail)

7 while TI->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false




The MCS lock — release without CAS

O J o U x W DN

el el e
S W N PO

void release lock(lock *L, gnode *I)

if I->next == null
old tail = fetch and store(L, null)
if old tail == null
return
usurper = fetch and store (L, old tail)
while TI->next == null
NOP
if usurper != null
usurper->next = I->next
else
I->next->locked = false
else

I->next->locked = false
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The MCS lock — release without CAS

O J o U x W DN

el el e
S W N PO

void release lock(lock *L, gnode *I)

if I->next == null
old tail = fetch and store(L, null)
if old tail == null
return
usurper = fetch and store (L, old tail)
while TI->next == null
NOP
if usurper != null
usurper->next = I->next
else
I->next->locked = false
else

I->next->locked = false
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The MCS lock — release without CAS

O J o U x W DN

el el e
S W N PO

void release lock(lock *L, gnode *I)

if I->next == null
old tail = fetch and store(L, null)
if old tail == null
return
usurper = fetch and store (L, old tail)
while TI->next == null
NOP
if usurper != null
usurper->next = I->next
else
I->next->locked = false
else

I->next->locked = false
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next:
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The MCS lock — release without CAS

O J o U x W DN

el el e
S W N PO

void release lock(lock *L, gnode *I)

if I->next == null
old tail = fetch and store(L, null)
if old tail == null
return
usurper = fetch and store (L, old tail)
while TI->next == null
NOP
if usurper != null
usurper->next = I->next
else
I->next->locked = false
else

I->next->locked = false
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next:
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The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I) tail.

2 if I->next == null :

3 old tail = fetch and store(L, null)

4 if old tail == null v
S return next: next: N next:
0 usurper = fetch and store (L, old tail)

7 while TI->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false
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The MCS lock — release without CAS

1 void release lock(lock *L, gnode *I) tail.

2 if I->next == null :

3 old tail = fetch and store(L, null)

4 if old tail == null v
5 return next: N next:
0 usurper = fetch and store (L, old tail)

7 while TI->next == null

8 NOP

9 if usurper != null

10 usurper—->next = I->next

11 else

12 I->next->locked = false

13 else

14 I->next->locked = false
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Performance — Hardware description

* BBN Butterfly 1 — a distributed shared memory
multiprocessor

* Sequent Symmetry Model B — a cache coherent shared-bus
multiprocessor



BBN Butterfly 1

* Shared-memory multiprocessor

* Up to 256 nodes
e 8MHz and 1-4 MB

* Each processor has local memory

* Access to remote memory goes
through log,-depth switching network

 Remote memory read takes 5 ps (no
contention) which is roughly 5x
compared to local read

\

P

/

Figure credit: [1]



BBN Butterfly 1 —atomic operations

* Two operations:
* fetch and clear then add
e fetch and clear then xor

* Three arguments:
* dst — the address of the 16-bit destination operand
* mask — 16-bit mask
* src — 16-bit source operand

e *dst = (*dst AND !mask) & src
* Used to implement fetch and store, fetch and addg, ..



The Sequent Symmetry Model B

e Shared-bus multiprocessor
* Up to 30 processor nodes
* 16 MHz Intel 80386 and 64 KB two-way set associative cache

1

M M| © 0O M Figure credit: [1]




The Sequent Symmetry Model B

* Supported atomic operations:
* fetch and store
e various logical and arithmetic operations

e Can be applied to 1, 2, or 4 byte quantity

* The logical and arithmetic operations do not return the
previous value

* less useful compared to fetch and @

* No support for compare and swap



Butterfly — empty critical section
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Figure credit: [1]
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Butterfly — empty critical section

100

90 —

80 —

70

Time
(us)

4—=a anderson
«- o test & set, exp. backoff
o———o ticket, prop. backoff

A'_'mCS

3/26/19
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Processors

Figure credit: [1]
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Butterfly — empty critical section

100

%0 4—=a anderson
«- o test & set, exp. backoff

80 -| o ticket, prop. backoff

f_ 1 void release lock(lock *L, gnode *I)
70 e 2 if I->next == null
3 if compare and swap (L, I, null)
Time 4 return
(ks) 5 while I->next == null
6 NOP
7 I->next->locked = false
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Figure credit: [1]
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Symmetry — empty critical section
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Symmetry — small critical section
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Malthusian Locks



Malthusian Locks

* A lot of work was done to improve the performance of lock
methods

e Can we improve critical section performance?

* Applications running in modern multithreaded environments
are sometimes overthreaded

* The excess of threads does not improve performance
* In fact, it can degrade performance
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Malthusian Locks — Motivation
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Figure credit: [2]
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Malthusian Locks — Motivation

* Single-socket processor

* 16 cores
e LLC (L3) is shared and has 8 MB

e Customer database has 1 MB



Malthusian Locks — Motivation

* Duration of the non-critical sections is 4 time longer than the
duration of CS

* Memory footprint of NCS is 1 MB
* FIFO lock & 16 threads = we have 17 MB footprint > 8 MB of LLC
* Threads limited to 5 = we have 6 MB footprint



Malthusian Locks

* Intentionally limit the number of threads circulating over the lock
* Concurrency restriction (CR)

* The lock acquisition order

e Unfair during short term
* Fair over long-term

* Tradeoff fairness and throughput



The MCSCR lock

e Based on the MCS lock

* TwWo queues

* Active circulating set (ACS) — enabled threads
* Passive set (PS) — disabled threads



The MCSCR lock

e ACS should minimal set of threads that saturate lock

e At lock release-time:

* |[f there are nodes between the current lock owner and tail,
a node from ACS is moved to PS

* If the ACS is empty, a top node from PS is moved to ACS

* Long-term fairness

* Periodically move a node from PS to ACS
* Once every 1000 unlock operations



The MCSCR lock

* The size of ACS is determined automatically

* All changes are implemented in the lock release method
* Effectively, the length of the critical section is increased
* The lock acquire method is same as in the MCS lock



Waiting policies

e What to do if we don’t have a lock?

* Unbounded spinning
* Consume pipeline resources and energy
* Increases and possibly preventing other threads to use turbo mode
* Polite spinning — PAUSE instruction (or equivalent)
* Low resume time



Waiting policies

* Parking
* Voluntary context switching

* Potentially reducing power consumption
and enabling turbo mode

* Long resume time

* Spin-Then-Park
* Hybrid approach

* Limit the maximum spin period to the length
of context-switch round trip



Performance - Hardware description

* Oracle SPARC T5-2
2 sockets (1 disabled)
* 16 cores per socket
* 8 logical cores
* 128 logical cores per socket

* Cache
e 16KB private L1 - unified
e 128KB private L2 - unified
 8MB shared L3 - unified



Performance - Random Access Array

e N concurrent threads
e 10 seconds interval
 Total number of iterations

* NCS - 400 iterations that randomly fetch a value
from a thread private array of 256K 32-bit integers

* CS—100 iterations that randomly fetch a value
form a shared array of 256K 32-bit integers

* The ideal speedup is 5x



Performance - Random Access Array

MCS-S — the classical MCS lock with a
polite instruction inside spin loop
MCS-STP — MCS lock with spin-then-park
wait policy

MICSCS-S — MCSCS lock with a polite

instruction inside spin loop
MCSCS-STP — MCSCS lock with spin-than-

park wait policy
null —empty lock method

120x throughput for 256 threads
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Compact NUMA-Aware Locks



Shared Memory Model

Uniform Memory Access (UMA) Non-Uniform Memory Access (NUMA)

BUS
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Compact NUMA-aware Locks

* Previous NUMA-aware Locks use hierarchy
* Requires space linear to the number of sockets
* Linux kernel allows only 4 bytes per lock
* Databases and data structures that use fine grain locking

* Single-thread performance was not so good



Previous work

* Hierarchical backoff test-and-set lock (HBO)

4. Hierarchical backoff locks for nonuniform communication
architectures. Radovic, Hagersten (2003)

* Requires only one word of memory
* Store the socket number of the lock holder
 Same node acquire —small delay
* Different node acquire — large delay

* Not fair
e Starvation is possible



Previous work

5. High performance locks for multi-level NUMA systemes.
Chabbi, Fagan, and Mellor-Crummey (2015)

6. Contention-conscious, locality-preserving locks.
Chabbi, Mellor-Crummey (2016)

Outer-most-level MCS lock ‘ -------- >

Node-level MCS locks

Image credit: [5]



Background (Linux Kernel Spin Lock)

* Multi-path approach
* fast path—test and set
* slow path — MCS lock

* Four-byte lock word is divided
e 1 bit—lock value
* 1 bit—pending
* 30 bits — queue tail
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Background (Linux Kernel Spin Lock)

* Acquire lock

* try to flip the lock value from O to 1
 successful = we acquired the lock
e otherwise = check for contention (the remaining bits)

* In case of contention = slow path = MCS lock
* Head of the queue spins on the pending bit

e Release lock
e Set the lock bitto O

* No need to carry a queue node from lock to unlock



Compact NUMA-aware (CNA) lock

* TwWo queues
* Main queue —threads running on the same socket as the lock holder

e Secondary queue — threads running of a different socket
* Acquire lock — join the main queue

* Release lock — notify the first thread in the queue that is on the
same socket



CNA Lock - one word requirement

* Always traverse the queue — too expensive
* Move the traversed threads to the secondary queue
* How?

e Add an extra field to the lock
* Lock requires 2 words X

* Add an extra field to the queue node
* an extra store instruction — possible cache miss - okay

e Pass to the locked value



Performance — key-value map
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e AVL tree 3 5
* Single lock S 4.5
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Figure credit: [3]
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Barriers



Centralized barrier

* Each processor updates a small amount of space
* single counter and Boolean flag

* Most barriers are designhed to used repeatedly
* separate phases of many-phase algorithms



Centralized barrier

* spin twice per barrier instance
* all processors have left the previous barrier
* all processors have arrived at the current barrier

e use a counter and a Boolean flag (sense)
e |ast thread flips the sense
* threads spin on sense

* on broadcast-based cache-coherent multiprocessor, spinning on
sense is not a problem



Centralized barrier

* Adaptive backoff schemes
* [atency increase
e departure is delayed = arrival is delayed

* Centralized barriers will not scale well



The Software Combining Tree Barrier

* Reduce hot-spot contention

* Processors are divided into groups

* One group is assigned to each leaft of the tree
* Last processor continues up the tree



The Software Combining Tree Barrier

DOOOOOOO



The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier
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The Software Combining Tree Barrier

* Can significantly decrease memory contention
* Spin location cannot be statically determined

* Multiple processors can spin on same location in different
barrier instances

* Not a problem on broadcast-based cache-coherent machines



The Dissemination Barrier

. _IogzP] rounds

* In round k (counting from 0), processor i, signals processor
(i + 2¥) mod P

. _IogzP] synchronization operations on the critical path

op * [IogzP] signals



The Dissemination Barrier

DOOOOOOO



The Dissemination Barrier

Round k=0



The Dissemination Barrier
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The Dissemination Barrier
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The Dissemination Barrier
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Tournament barrier

* Processors begin at the leaves of a binary tree
* One processor from each node continues up

* "Winning” processor is statically determined
* noneed for fetch and @

* In round k (counting from zero), processor i sets a flag
awaited by processor |
o i =2k (mod 2%1),j =i - 2k

* Processor i drops from the tournament



Tournament barrier

* Concurrent read, exclusive write (CREW)
* spinning on a global flag

* Exclusive read, exclusive write (EREW)
* spinning on separate flags - similar to combining tree



A new Tree-Based Barrier

 Spins only on locally accessible flags
* Requires O(P) space

e Performs theoretical minimum number of network
transactions (2P-2)

* Performs O(log P) network transactions on its critical path



A new Tree-Based Barrier

* A pair of P-node trees
e each processor is assighed a unique tree node
e arrival tree — link to a parent
* fan-in=4
* packing 4 bytes in a word (inspect status for all children)
* wakeup tree — a set of child links
* fan-out =2
 shortest critical path to resume P processors



A new Tree-Based Barrier

* Processor arrival
 set the flag in its parent node
* P -1 network transactions
e [log4P] critical path

* Processor wakeup
* notify children by setting a flag in each of their nodes
* P -1 network transactions
* [log,Pl rounds



Butterfly - Performance
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Butterfly - Performance
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Performance
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Takeaway

* Hardware support not always required
* If possible, perform local spinning

* Scalable synchronization primitives are important for
applications performance



